28
p = RT (11.1) [R=R univ /m mole ] du = c V dT (11.2) dh = c p dT (11.3) c p + c v = R (11.4) c p = kR/(k-1) (11.6a) [k=] c v = R/(k-1) (11.6b) [k=] pv k = p/ k = constant (11.12

p = RT (11.1)[R=R univ /m mole ] du = c V dT (11.2) dh = c p dT (11.3)

  • Upload
    yannis

  • View
    54

  • Download
    0

Embed Size (px)

DESCRIPTION

p = RT (11.1)[R=R univ /m mole ] du = c V dT (11.2) dh = c p dT (11.3) c p + c v = R (11.4) c p = kR/(k-1) (11.6a)[k=] c v = R/(k-1) (11.6b)[k=] p v k = p/ k = constant (11.12c). EQUATION OF STATE FOR IDEAL GAS p = RT (11.1). [units of Kelvin]. - PowerPoint PPT Presentation

Citation preview

Page 1: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

p = RT (11.1) [R=Runiv/mmole]

du = cVdT (11.2)

dh = cpdT (11.3)

cp + cv = R (11.4)

cp = kR/(k-1) (11.6a) [k=]

cv = R/(k-1) (11.6b) [k=]

pvk = p/k = constant (11.12c)

Page 2: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

EQUATION OF STATEFOR IDEAL GAS

p = RT (11.1)

Good to 1% for air at 1 atm and temperatures > 140 K (-130 oC) or for room temperature and < 30 atm

= unique constant for each gas[units of Kelvin]

Page 3: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

If L doubled (system 2) but same v, then

(# of collisions/sec)1 = v x (1 sec)/L (# of collisions/sec)2 = v x (1 sec)/2L

(# of collisions/sec)1= ½ (# of collisions/sec)2

Daniel Bernoulli ~ Hydrodynamics, 1738

(system 1)

PV = const

Page 4: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

Daniel Bernoulli PV = const

p = F/A

F {# collisions / sec}

p1 (# of collisions/sec)1/(L)2

p2 (# of collisions/sec)2/(2L)2

p2 ½ (# of collisions/sec1)/(2L)2

p2 = 1/8 p1

Vol2= 8Vol1

p2Vol2 = p1Vol1 QED

Page 5: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

. .

..

.

.

(# of collisions/sec)1

p1, n1, m1, vx1, T1, L1

(# of collisions/sec)2

p2, n1 m1, vx1, T1, L2=2L1

L 2L

Daniel Bernoulli ~ PV = const

Hydrodynamics, 1738

.

.

.

.

.

.

Page 6: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

“ The elasticity of air is not only increased by compression but by heat supplied to it, and since it is admitted thatheat may be considered as an increasing internal motion of the particles, it follows that … this indicates a more intense motion of the particles of air.”

Daniel Bernoulli

Here was the recipe for quantifying the idea that heat is motion

– two generations before Count Rumford, but it came too early.

Page 7: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

IDEAL GAS: p = RT (eq. 1.11)R = Runiv/mmole

pV = N(# of moles)RunivT

Page 8: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

Assume perfect elastic reflections so: - 2mvx is change of x-momentum per collision.

Initially assume vx is same for all particles.

What is Pressure ?

Page 9: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

t = 2L/vx

= (mvx)/t =2mvx/(2L/vx) = mvx2/L

Time between collisions, t, of particle with samewall is equal to:

L

Force of one particle impact = Magnitude of momentum change per second due to one particle:

Page 10: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

nmvx2/L

Magnitude of momentum change per second due to n molecules:

<vx2> = <vy

2> = <vz2>;

<vx2> + <vy

2> + <vz2> = <v2>

<vx2> = 1/3 <v2>

1/3 nm<v2>/L

Page 11: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

Pressure = F/A = [1/3nm<v2>/L]/L2

P = 1/3nm<v2>/L3

PV = 1/3nm<v2> = 2/3n (1/2 m<v2>)

average kinetic energy per particle

Empirically it is found that : PV = nkBT

n=#of particles; kB=1.38x10-23 J/K

Page 12: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

PV = 2/3n (1/2 m<v2>)

Empirically it is found that:

PV = nkBT

T(Ko) = [2/(3kB) ] [avg K.E.]

Page 13: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

pV = (2/3) n <mv2/2>

Uinternal for monotonic gas

Uint = f(T) depending if p or V held constant

uint, v,… designate per unit mass

duint/dT = cv (11.2)

duint/dT =cp

(# of particles)

pV = nkBT

Page 14: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

pV = nkBTn = [Nm][NAvag]

6.02x1023

nkBT = Nm x NAvag kBT = Nm x NAvag [Runiv/Navag.] T

pV= NmRunivT

Page 15: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

pV= NmRunivT

p=(1/V)Nmmmole{Runiv/mmole}T

p=(m/V){Runiv/mmole}T

p= {Runiv/mmole}T = RT (11.1)

Page 16: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

IDEAL GASpV = NmRunivT

p = {Runiv/mmole}Tp v = {Runiv/mmole}TpV Uint = f(T)

Page 17: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

The differential work dW done on the gas in compressing it by moving it –dx is –

Fdx.

dW on gas = F(-dx) = -pAdx = -pdVgoes into dT

Page 18: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

pV = 2/3 U for monotonic gaspV = (k - 1) U in general

k = cp/cv = 5/3 for monotonic gasU = pV/(k - 1)

dU = (pdV+Vdp)/(k - 1) – eq. of state

ASIDE: Want to derive important relation between p and V for adiabatic condition,

i.e. Q = 0

Page 19: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

Compression of gas under adiabatic conditions means all work goes into increasing the

internal energy of the molecules, so:

dU = W = -pdV for adiabatic (Q = 0)

Equation of statedU = (Vdp + pdV) / (k - 1)

Cons. of energy dU = W + Q

Page 20: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

dU = W + QdU = (Vdp + pdV) / (k - 1)

-pdV = (Vdp + pdV) / (k - 1)

-(pdV)(k - 1) = Vdp + pdV

-(pdV)k + pdV = Vdp + pdV

-(pdV)k - Vdp = 0

Page 21: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

-(pdV)k - Vdp = 0

(divide by -pV)(dV/V) + (dp/p) = 0

(integrate)kln(V) +ln(p) = ln(C)

ln(pVk) = ln(C)

pVk = C or pvk = c (11.12c)

Page 22: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

IDEAL GASdU = W + QQ/m = cvdT + pdv pv = RT (R=Runiv/mmole)

pdv + vdp = RdTQ/m = cvdT + RdT - vdpDivide by dT

[Q/m]/dT = cv + R – vdp/dTIf isobaric, i.e. dp=0 then

{[Q/m]/dT}p = cp = cv + R (11.4)

Page 23: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

cp = cv + R; cp – cv = RDivide by cv, & let k = cp/cv;

k - 1 = R/cv, or

cv =R/(k-1) (11.6b)

Multiply by cp/cv

cp = kR/(k-1) (11.6a)

usually k = in most books

Page 24: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)

IDEAL GAS

h = u + pvdh = du + d(pv)dh = cvdT + RdTdh = (cv + R)dTdh = cpdT (11.3)

Page 25: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)
Page 26: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)
Page 27: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)
Page 28: p =  RT     (11.1)[R=R univ /m mole ] du = c V dT  (11.2) dh = c p dT   (11.3)