98
Pairwise sequence Alignment

Pairwise sequence Alignment

  • Upload
    adem

  • View
    65

  • Download
    0

Embed Size (px)

DESCRIPTION

Pairwise sequence Alignment. Sequence Alignment. Sequence analysis is the process of making biological inferences from the known sequence of monomers in protein, DNA and RNA polymers. Complete DNA Sequences. More than 400 complete genomes have been sequenced. Evolution. Sequence alignment. - PowerPoint PPT Presentation

Citation preview

Page 1: Pairwise sequence  Alignment

Pairwise sequence Alignment

Page 2: Pairwise sequence  Alignment

Sequence AlignmentSequence Alignment

• Sequence analysis is the process of making biological inferences from the known sequence of monomers in protein, DNA and RNA polymers.

Page 3: Pairwise sequence  Alignment

Complete DNA Sequences

More than 400 complete genomes

have been sequenced

Page 4: Pairwise sequence  Alignment

Evolution

Page 5: Pairwise sequence  Alignment

Sequence alignment

• Comparing DNA/protein sequences for– Similarity– Homology

• Prediction of function• Construction of phylogeny• Shotgun assembly

– End-space-free alignment / overlap alignment

• Finding motifs

Page 6: Pairwise sequence  Alignment

Sequence Alignment

Procedure of comparing two (pairwise) or more (multiple) sequences by searching for a series of individual characters that are in the same order in the sequences

GCTAGTCAGATCTGACGCTA | |||| ||||| ||| TGGTCACATCTGCCGC

Page 7: Pairwise sequence  Alignment

Sequence Alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

DefinitionGiven two strings x = x1x2...xM, y = y1y2…yN,

an alignment is an assignment of gaps to positions0,…, M in x, and 0,…, N in y, so as to line up each letter in one sequence with either a letter, or a gapin the other sequence

AGGCTATCACCTGACCTCCAGGCCGATGCCCTAGCTATCACGACCGCGGTCGATTTGCCCGAC

Page 8: Pairwise sequence  Alignment

Sources of variation• Nucleotide substitution

– Replication error– Chemical reaction

• Insertions or deletions (indels)– Unequal crossing over– Replication slippage

• Duplication

– a single gene (complete gene duplication)

– part of a gene (internal or partial gene duplication)

• Domain duplication

• Exon shuffling

– part of a chromosome (partial polysomy)

– an entire chromosome (aneuploidy or polysomy)

– the whole genome (polyploidy)

Page 9: Pairwise sequence  Alignment

Common mutations in DNA

Substitution:

A C G T T G A C

A C G A T G A C

Deletion:

A C G T T G A C

A C G A C

Insertion:

A C G T T G A C

A C G C A A T T G A C

Page 10: Pairwise sequence  Alignment
Page 11: Pairwise sequence  Alignment

Seq.Align. Protein Function

Similar functionMore than 25% sequence identity

?Similar 3D structure

?

Similar sequences produce similar proteins

Protein1 Protein2

?

Page 12: Pairwise sequence  Alignment

Differing rates of DNA evolution

• Functional/selective constraints (particular features of coding regions, particular features in 5' untranslated regions)

• Variation among different gene regions with different functions (different parts of a protein may evolve at different rates).

• Within proteins, variations are observed between– surface and interior amino acids in proteins (order of magnitude difference in rates in

haemoglobins)– charged and non-charged amino acids– protein domains with different functions– regions which are strongly constrained to preserve particular functions and regions

which are not– different types of proteins -- those with constrained interaction surfaces and those

without

Page 13: Pairwise sequence  Alignment

Common assumptions

• All nucleotide sites change independently• The substitution rate is constant over time and in

different lineages• The base composition is at equilibrium• The conditional probabilities of nucleotide substitutions

are the same for all sites, and do not change over time• Most of these are not true in many cases…Most of these are not true in many cases…

Page 14: Pairwise sequence  Alignment

Pairwise alignments in the 1950s

-corticotropin (sheep)Corticotropin A (pig)

ala gly glu asp asp gluasp gly ala glu asp glu

OxytocinVasopressin

CYIQNCPLGCYFQNCPRG

Page 15: Pairwise sequence  Alignment

Early example of sequence alignment: globins (1961)

H.C. Watson and J.C. Kendrew, “Comparison Between the Amino-Acid Sequences of Sperm Whale Myoglobin and of Human Hæmoglobin.” Nature 190:670-672, 1961.

myoglobin globins:

Page 16: Pairwise sequence  Alignment
Page 17: Pairwise sequence  Alignment

• It is used to decide if two proteins (or genes) are related structurally or functionally

• It is used to identify domains or motifs that are shared between proteins

• It is the basis of BLAST searching (next week)

• It is used in the analysis of genomes

Pairwise sequence alignment is the most fundamental operation of bioinformatics

Page 18: Pairwise sequence  Alignment

Pairwise alignment: protein sequencescan be more informative than DNA

• protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties

• codons are degenerate: changes in the third position often do not alter the amino acid that is specified

• protein sequences offer a longer “look-back” time

• DNA sequences can be translated into protein, and then used in pairwise alignments

Page 19: Pairwise sequence  Alignment

Page 54

Page 20: Pairwise sequence  Alignment

• DNA can be translated into six potential proteins

5’ CAT CAA 5’ ATC AAC 5’ TCA ACT

5’ GTG GGT 5’ TGG GTA 5’ GGG TAG

Pairwise alignment: protein sequencescan be more informative than DNA

5’ CATCAACTACAACTCCAAAGACACCCTTACACATCAACAAACCTACCCAC 3’3’ GTAGTTGATGTTGAGGTTTCTGTGGGAATGTGTAGTTGTTTGGATGGGTG 5’

Page 21: Pairwise sequence  Alignment

Pairwise alignment: protein sequencescan be more informative than DNA

• Many times, DNA alignments are appropriate--to confirm the identity of a cDNA--to study noncoding regions of DNA--to study DNA polymorphisms--example: Neanderthal vs modern human DNA

Query: 181 catcaactacaactccaaagacacccttacacccactaggatatcaacaaacctacccac 240 |||||||| |||| |||||| ||||| | ||||||||||||||||||||||||||||||| Sbjct: 189 catcaactgcaaccccaaagccacccct-cacccactaggatatcaacaaacctacccac 247

Page 22: Pairwise sequence  Alignment

retinol-binding protein(NP_006735)

-lactoglobulin(P02754)

Page 42

Page 23: Pairwise sequence  Alignment

Pairwise alignment The process of lining up two or more sequences to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.

Definitions

Page 24: Pairwise sequence  Alignment

HomologySimilarity attributed to descent from a common ancestor.

Definitions

Page 42

Page 25: Pairwise sequence  Alignment

HomologySimilarity attributed to descent from a common ancestor.

Definitions

RBP: 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 + K ++ + + + GTW++ MA + L + A V T + +L+ W+ glycodelin: 23 QTKQDLELPKLAGTWHSMAMA-TNNISLMATLKAPLRVHITSLLPTPEDNLEI V LHRWEN 81

Identity

The extent to which two (nucleotide or amino acid) sequences are invariant.

Page 44

Page 26: Pairwise sequence  Alignment

Orthologs Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function.

Paralogs Homologous sequences within a single species that arose by gene duplication.

Definitions: two types of homology

Page 43

Page 27: Pairwise sequence  Alignment

Orthologs:members of a gene (protein)family in variousorganisms.This tree showsRBP orthologs.

common carp

zebrafish

rainbow trout

teleost

African clawed frog

chicken

mouserat

rabbitcowpighorse

human

10 changes Page 43

Page 28: Pairwise sequence  Alignment

Paralogs:members of a gene (protein)family within aspecies

apolipoprotein D

retinol-bindingprotein 4

Complementcomponent 8

prostaglandinD2 synthase

neutrophilgelatinase-associatedlipocalin

10 changesLipocalin 1Odorant-bindingprotein 2A

progestagen-associatedendometrialprotein

Alpha-1Microglobulin/bikunin

Page 44

Page 29: Pairwise sequence  Alignment
Page 30: Pairwise sequence  Alignment

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | . |. . . | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin

51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin

98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV...........QYSC 136 RBP || ||. | :.|||| | . .| 94 IPAVFKIDALNENKVL........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin

137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || . | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI....... 178 lactoglobulin

Pairwise alignment of retinol-binding protein and -lactoglobulin

Page 46

Page 31: Pairwise sequence  Alignment

SimilarityThe extent to which nucleotide or protein sequences are related. It is based upon identity plus conservation.

IdentityThe extent to which two sequences are invariant.

Conservation Changes at a specific position of an amino acid or (less commonly, DNA) sequence that preserve the physico-chemical properties of the original residue.

Definitions

Page 32: Pairwise sequence  Alignment

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | . |. . . | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin

51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin

98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV...........QYSC 136 RBP || ||. | :.|||| | . .| 94 IPAVFKIDALNENKVL........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin

137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || . | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI....... 178 lactoglobulin

Pairwise alignment of retinol-binding protein and -lactoglobulin

Identity(bar)

Page 46

Page 33: Pairwise sequence  Alignment

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | . |. . . | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin

51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin

98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV...........QYSC 136 RBP || ||. | :.|||| | . .| 94 IPAVFKIDALNENKVL........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin

137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || . | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI....... 178 lactoglobulin

Pairwise alignment of retinol-binding protein and -lactoglobulin

Somewhatsimilar

(one dot)

Verysimilar

(two dots)

Page 46

Page 34: Pairwise sequence  Alignment

Pairwise alignment The process of lining up two or more sequences to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.

Definitions

Page 47

Page 35: Pairwise sequence  Alignment

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | . |. . . | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin

51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin

98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV...........QYSC 136 RBP || ||. | :.|||| | . .| 94 IPAVFKIDALNENKVL........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin

137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || . | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI....... 178 lactoglobulin

Pairwise alignment of retinol-binding protein and -lactoglobulin

Internalgap

Terminalgap Page 46

Page 36: Pairwise sequence  Alignment

• Positions at which a letter is paired with a null are called gaps.

• Gap scores are typically negative.

• Since a single mutational event may cause the insertion or deletion of more than one residue, the presence of a gap is ascribed more significance than the length of the gap. Thus there are separate penalties for gap creation and gap extension.

• In BLAST, it is rarely necessary to change gap values from the default.

Gaps

Page 37: Pairwise sequence  Alignment

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | . |. . . | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin

51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin

98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV...........QYSC 136 RBP || ||. | :.|||| | . .| 94 IPAVFKIDALNENKVL........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin

137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || . | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI....... 178 lactoglobulin

Pairwise alignment of retinol-binding protein and -lactoglobulin

Page 38: Pairwise sequence  Alignment

1 .MKWVWALLLLA.AWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP 48 :: || || || .||.||. .| :|||:.|:.| |||.||||| 1 MLRICVALCALATCWA...QDCQVSNIQVMQNFDRSRYTGRWYAVAKKDP 47 . . . . . 49 EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED 98 |||| ||:||:|||||.|.|.||| ||| :||||:.||.| ||| || | 48 VGLFLLDNVVAQFSVDESGKMTATAHGRVIILNNWEMCANMFGTFEDTPD 97 . . . . . 99 PAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADS 148 ||||||:||| ||:|| ||||||::||||| ||: |||| ..||||| | 98 PAKFKMRYWGAASYLQTGNDDHWVIDTDYDNYAIHYSCREVDLDGTCLDG 147 . . . . . 149 YSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNLL 199 |||:||| | || || |||| :..|:| .|| : | |:|: 148 YSFIFSRHPTGLRPEDQKIVTDKKKEICFLGKYRRVGHTGFCESS...... 192

Pairwise alignment of retinol-binding protein from human (top) and rainbow trout (O. mykiss)

Page 39: Pairwise sequence  Alignment

4 3 2 1 0

Pairwise sequence alignment allows usto look back billions of years ago (BYA)

Origin oflife

Origin ofeukaryotes insects

Fungi/animalPlant/animal

Earliestfossils

Eukaryote/archaea

Page 48

Page 40: Pairwise sequence  Alignment

fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA

fly KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST human KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST plant KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST yeast KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST archaeon KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST

fly GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK human GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV plant GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA yeast GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA

Multiple sequence alignment ofglyceraldehyde 3-phosphate dehydrogenases

Page 49

Page 41: Pairwise sequence  Alignment

~~~~~EIQDVSGTWYAMTVDREFPEMNLESVTPMTLTTL.GGNLEAKVTM lipocalin 1 LSFTLEEEDITGTWYAMVVDKDFPEDRRRKVSPVKVTALGGGNLEATFTF odorant-binding protein 2aTKQDLELPKLAGTWHSMAMATNNISLMATLKAPLRVHITSEDNLEIVLHR progestagen-assoc. endo.VQENFDVNKYLGRWYEIEKIPTTFENGRCIQANYSLMENGNQELRADGTV apolipoprotein DVKENFDKARFSGTWYAMAKDPEGLFLQDNIVAEFSVDETGNWDVCADGTF retinol-binding proteinLQQNFQDNQFQGKWYVVGLAGNAI.LREDKDPQKMYATIDKSYNVTSVLF neutrophil gelatinase-ass.VQPNFQQDKFLGRWFSAGLASNSSWLREKKAALSMCKSVDGGLNLTSTFL prostaglandin D2 synthaseVQENFNISRIYGKWYNLAIGSTCPWMDRMTVSTLVLGEGEAEISMTSTRW alpha-1-microglobulinPKANFDAQQFAGTWLLVAVGSACRFLQRAEATTLHVAPQGSTFRKLD... complement component 8

Multiple sequence alignment ofhuman lipocalin paralogs

Page 49

Page 42: Pairwise sequence  Alignment

General approach to pairwise alignment

• Choose two sequences• Select an algorithm that generates a score• Allow gaps (insertions, deletions)• Score reflects degree of similarity• Alignments can be global or local• Estimate probability that the alignment occurred by chance

Page 43: Pairwise sequence  Alignment

Calculation of an alignment score

Page 44: Pairwise sequence  Alignment

Where we’re heading in the next 10 minutes: creating a set of “scoring matrices” that let us assign scores for each aligned amino acid in a pairwise alignment.

What should the score be when a serine matches a serine, or a threonine, or a valine?

Can we devise “lenient” scoring systems to help us align distantly related proteins, and more conservative scoring systems to align closely related proteins?

Page 45: Pairwise sequence  Alignment

Page 80

Emile Zuckerkandl and Linus Pauling (1965) considered substitution frequencies in 18 globins(myoglobins and hemoglobins from human to lamprey).

Black: identityGray: very conservative substitutions (>40% occurrence)White: fairly conservative substitutions (>21% occurrence)Red: no substitutions observed

lys found at 58% of arg sites

Page 46: Pairwise sequence  Alignment

Page 80

Page 47: Pairwise sequence  Alignment

Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million yearsIg kappa chain 37Kappa casein 33Lactalbumin 27Hemoglobin 12Myoglobin 8.9Insulin 4.4Histone H4 0.10Ubiquitin 0.00

Page 50

400 fold

Accepted point mutations

From 1978

Page 48: Pairwise sequence  Alignment

Pairwise alignment of human (NP_005203) versus mouse (NP_031812) ubiquitin

Page 49: Pairwise sequence  Alignment

fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA

fly KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST human KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST plant KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST yeast KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST archaeon KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST

fly GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK human GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV plant GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA yeast GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA

Multiple sequence alignment ofglyceraldehyde 3-phosphate dehydrogenases

Page 50: Pairwise sequence  Alignment

AAla

RArg

NAsn

DAsp

CCys

QGln

EGlu

GGly

AR 30

N 109 17

D 154 0 532

C 33 10 0 0

Q 93 120 50 76 0

E 266 0 94 831 0 422

G 579 10 156 162 10 30 112

H 21 103 226 43 10 243 23 10

Dayhoff’s numbers of “accepted point mutations”:what amino acid substitutions occur in proteins?

Numbers of APM, multiplied by 10, in 1572 cases of amino acid substitutions from closely related sequences

From closely related protein sequences (at least 85% identity)

Page 51: Pairwise sequence  Alignment

The relative mutability of amino acids

Asn 134 His 66Ser 120 Arg 65Asp 106 Lys 56Glu 102 Pro 56Ala 100 Gly 49Thr 97 Tyr 41Ile 96 Phe 41Met 94 Leu 40Gln 93 Cys 20Val 74 Trp 18

Page 53

Describes how often each amino acid is likely to change over a short evolutionary period

Page 52: Pairwise sequence  Alignment

Normalized frequencies of amino acids

Gly 8.9% Arg 4.1%Ala 8.7% Asn 4.0%Leu 8.5% Phe 4.0%Lys 8.1% Gln 3.8%Ser 7.0% Ile 3.7%Val 6.5% His 3.4%Thr 5.8% Cys 3.3%Pro 5.1% Tyr 3.0%Glu 5.0% Met 1.5%Asp 4.7% Trp 1.0%

blue=6 codons; red=1 codon Page 53

Page 53: Pairwise sequence  Alignment

Page 54

Page 54: Pairwise sequence  Alignment

Dayhoff’s PAM1 mutation probability matrix

AAla

RArg

NAsn

DAsp

CCys

QGln

EGlu

GGly

HHis

IIle

A 9867 2 9 10 3 8 17 21 2 6

R 1 9913 1 0 1 10 0 0 10 3

N 4 1 9822 36 0 4 6 6 21 3

D 6 0 42 9859 0 6 53 6 4 1

C 1 1 0 0 9973 0 0 0 1 1

Q 3 9 4 5 0 9876 27 1 23 1

E 10 0 7 56 0 35 9865 4 2 3

G 21 1 12 11 1 3 7 9935 1 0

H 1 8 18 3 1 20 1 0 9912 0

I 2 2 3 1 2 1 2 0 0 9872

Original amino acid

Each element shows the probability that an original amino acid j (columns)will be replaced

byanother amino acid i (rows) for 1% sequence divergence

There is 98.67%chance that A will be replaced

by A over an evolutionary

distance of 1 PAM

Re

pla

ce

d a

min

o a

cid

Page 55: Pairwise sequence  Alignment

Dayhoff’s PAM1 mutation probability matrix

AAla

RArg

NAsn

DAsp

CCys

QGln

EGlu

GGly

HHis

IIle

A 9867 2 9 10 3 8 17 21 2 6

R 1 9913 1 0 1 10 0 0 10 3

N 4 1 9822 36 0 4 6 6 21 3

D 6 0 42 9859 0 6 53 6 4 1

C 1 1 0 0 9973 0 0 0 1 1

Q 3 9 4 5 0 9876 27 1 23 1

E 10 0 7 56 0 35 9865 4 2 3

G 21 1 12 11 1 3 7 9935 1 0

H 1 8 18 3 1 20 1 0 9912 0

I 2 2 3 1 2 1 2 0 0 9872

Each element of the matrix shows the probability that an originalamino acid (top) will be replaced by another amino acid (side)

Page 56: Pairwise sequence  Alignment

A substitution matrix contains values proportional to the probability that amino acid i mutates into amino acid j for all pairs of amino acids.

Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments(or multiple sequence alignments) of amino acids. Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution.

The two major types of substitution matrices arePAM and BLOSUM.

Substitution Matrix

Page 57: Pairwise sequence  Alignment

PAM matrices are based on global alignments of closely related proteins.

The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence.

Other PAM matrices are extrapolated from PAM1.

All the PAM data come from closely related proteins(>85% amino acid identity)

PAM matrices:Point-accepted mutations

Page 58: Pairwise sequence  Alignment

Dayhoff’s PAM1 mutation probability matrix

AAla

RArg

NAsn

DAsp

CCys

QGln

EGlu

GGly

HHis

IIle

A 9867 2 9 10 3 8 17 21 2 6

R 1 9913 1 0 1 10 0 0 10 3

N 4 1 9822 36 0 4 6 6 21 3

D 6 0 42 9859 0 6 53 6 4 1

C 1 1 0 0 9973 0 0 0 1 1

Q 3 9 4 5 0 9876 27 1 23 1

E 10 0 7 56 0 35 9865 4 2 3

G 21 1 12 11 1 3 7 9935 1 0

H 1 8 18 3 1 20 1 0 9912 0

I 2 2 3 1 2 1 2 0 0 9872

Page 55

Page 59: Pairwise sequence  Alignment

Dayhoff’s PAM0 mutation probability matrix:the rules for extremely slowly evolving proteins

PAM0 AAla

RArg

NAsn

DAsp

CCys

QGln

EGlu

GGly

A 100% 0% 0% 0% 0% 0% 0% 0%R 0% 100% 0% 0% 0% 0% 0% 0%N 0% 0% 100% 0% 0% 0% 0% 0%D 0% 0% 0% 100% 0% 0% 0% 0%C 0% 0% 0% 0% 100% 0% 0% 0%Q 0% 0% 0% 0% 0% 100% 0% 0%E 0% 0% 0% 0% 0% 0% 100% 0%G 0% 0% 0% 0% 0% 0% 0% 100%

Top: original amino acidSide: replacement amino acid Page 56

Page 60: Pairwise sequence  Alignment

Dayhoff’s PAM2000 mutation probability matrix:the rules for very distantly related proteins

PAM A

Ala

R

Arg

N

Asn

D

Asp

C

Cys

Q

Gln

E

Glu

G

Gly

A 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% 8.7%

R 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1%

N 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%

D 4.7% 4.7% 4.7% 4.7% 4.7% 4.7% 4.7% 4.7%

C 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3%

Q 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8%

E 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%

G 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9%

Top: original amino acidSide: replacement amino acid

PAM1 matrix is multiplied 2000 times by itself

Page 61: Pairwise sequence  Alignment

PAM250 mutation probability matrix A R N D C Q E G H I L K M F P S T W Y V A 13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9

R 3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2

N 4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3

D 5 4 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3

C 2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2

Q 3 5 5 6 1 10 7 3 7 2 3 5 3 1 4 3 3 1 2 3

E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3

G 12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7

H 2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2

I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9

L 6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13

K 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5

M 1 1 1 1 0 1 1 1 1 2 3 2 6 2 1 1 1 1 1 2

F 2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3

P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 4

S 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6

T 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6

W 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0

Y 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2

V 7 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 7 2 4 17

Top: original amino acidSide: replacement amino acid Page 57

Page 62: Pairwise sequence  Alignment

A 2 R -2 6 N 0 0 2 D 0 -1 2 4 C -2 -4 -4 -5 12 Q 0 1 1 2 -5 4 E 0 -1 1 3 -5 2 4 G 1 -3 0 1 -3 -1 0 5 H -1 2 2 1 -3 3 1 -2 6 I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 L -2 -3 -3 -4 -6 -2 -3 -4 -2 -2 6 K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4 A R N D C Q E G H I L K M F P S T W Y V

PAM250 log oddsscoring matrix

Page 58

S(a,b)= 10 log10 (Mab/Pb)

Page 63: Pairwise sequence  Alignment

Why do we go from a mutation probabilitymatrix to a log odds matrix?

• We want a scoring matrix so that when we do a pairwise alignment (or a BLAST search) we know what score to assign to two aligned amino acid residues.

• Logarithms are easier to use for a scoring system. They allow us to sum the scores of aligned residues (rather than having to multiply them).

Page 57

Page 64: Pairwise sequence  Alignment
Page 65: Pairwise sequence  Alignment
Page 66: Pairwise sequence  Alignment
Page 67: Pairwise sequence  Alignment
Page 68: Pairwise sequence  Alignment

How do we go from a mutation probabilitymatrix to a log odds matrix?

• The cells in a log odds matrix consist of an “odds ratio”:

the probability that an alignment is authenticthe probability that the alignment was random

The score S for an alignment of residues a,b is given by:

S(a,b) = 10 log10 (Mab/pb)

As an example, for tryptophan,

S(a,tryptophan) = 10 log10 (0.55/0.010) = 17.4

Normalized frequency of W is 0.01

Page 69: Pairwise sequence  Alignment

What do the numbers meanin a log odds matrix?

S(a,tryptophan) = 10 log10 (0.55/0.010) = 17.4

A score of +17 for tryptophan means that this alignmentis 50 times more likely than a chance alignment of twoTrp residues.

S(a,b) = 17Probability of replacement (Mab/pb) = xThen17 = 10 log10 x1.7 = log10 x101.7 = x = 50 Page 58

Page 70: Pairwise sequence  Alignment

What do the numbers meanin a log odds matrix?

A score of +2 indicates that the amino acid replacementoccurs 1.6 times as frequently as expected by chance.

A score of 0 is neutral.

A score of –10 indicates that the correspondence of two amino acids in an alignment that accurately representshomology (evolutionary descent) is one tenth as frequentas the chance alignment of these amino acids.

Page 58

Page 71: Pairwise sequence  Alignment

A 2 R -2 6 N 0 0 2 D 0 -1 2 4 C -2 -4 -4 -5 12 Q 0 1 1 2 -5 4 E 0 -1 1 3 -5 2 4 G 1 -3 0 1 -3 -1 0 5 H -1 2 2 1 -3 3 1 -2 6 I -1 -2 -2 -2 -2 -2 -2 -3 -2 5 L -2 -3 -3 -4 -6 -2 -3 -4 -2 -2 6 K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9 P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17 Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10 V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4 A R N D C Q E G H I L K M F P S T W Y V

PAM250 log oddsscoring matrix

Page 58

Page 72: Pairwise sequence  Alignment

PAM10 log oddsscoring matrix

Page 59

A 7

R -10 9

N -7 -9 9

D -6 -17 -1 8

C -10 -11 -17 -21 10

Q -7 -4 -7 -6 -20 9

E -5 -15 -5 0 -20 -1 8

G -4 -13 -6 -6 -13 -10 -7 7

H -11 -4 -2 -7 -10 -2 -9 -13 10

I -8 -8 -8 -11 -9 -11 -8 -17 -13 9

L -9 -12 -10 -19 -21 -8 -13 -14 -9 -4 7

K -10 -2 -4 -8 -20 -6 -7 -10 -10 -9 -11 7

M -8 -7 -15 -17 -20 -7 -10 -12 -17 -3 -2 -4 12

F -12 -12 -12 -21 -19 -19 -20 -12 -9 -5 -5 -20 -7 9

P -4 -7 -9 -12 -11 -6 -9 -10 -7 -12 -10 -10 -11 -13 8

S -3 -6 -2 -7 -6 -8 -7 -4 -9 -10 -12 -7 -8 -9 -4 7

T -3 -10 -5 -8 -11 -9 -9 -10 -11 -5 -10 -6 -7 -12 -7 -2 8

W -20 -5 -11 -21 -22 -19 -23 -21 -10 -20 -9 -18 -19 -7 -20 -8 -19 13

Y -11 -14 -7 -17 -7 -18 -11 -20 -6 -9 -10 -12 -17 -1 -20 -10 -9 -8 10

V -5 -11 -12 -11 -9 -10 -10 -9 -9 -1 -5 -13 -4 -12 -9 -10 -6 -22 -10 8

A R N D C Q E G H I L K M F P S T W Y V

Page 73: Pairwise sequence  Alignment

Rat versus mouse RBP

Rat versus bacteriallipocalin

Page 74: Pairwise sequence  Alignment

Comparing two proteins with a PAM1 matrixgives completely different results than PAM250!

Consider two distantly related proteins. A PAM40 matrixis not forgiving of mismatches, and penalizes themseverely. Using this matrix you can find almost no match.

A PAM250 matrix is very tolerant of mismatches.

hsrbp, 136 CRLLNLDGTC btlact, 3 CLLLALALTC * ** * **

24.7% identity in 81 residues overlap; Score: 77.0; Gap frequency: 3.7% hsrbp, 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDV btlact, 21 QTMKGLDIQKVAGTWYSLAMAASD-ISLLDAQSAPLRVYVEELKPTPEGDLEILLQKWEN * **** * * * * ** *

hsrbp, 86 --CADMVGTFTDTEDPAKFKM btlact, 80 GECAQKKIIAEKTKIPAVFKI ** * ** ** Page 60

Page 75: Pairwise sequence  Alignment

BLOSUM matrices are based on local alignments.

BLOSUM stands for blocks substitution matrix.

BLOSUM62 is a matrix calculated from comparisons of sequences with no less than 62% divergence.

BLOSUM Matrices

Page 60

Page 76: Pairwise sequence  Alignment

BLOSUM Matrices

100

62

30

Per

cent

am

ino

acid

iden

tity

BLOSUM62

colla

pse

Page 77: Pairwise sequence  Alignment

BLOSUM Matrices

100

62

30

Per

cent

am

ino

acid

iden

tity

BLOSUM62

100

62

30

BLOSUM30

100

62

30

BLOSUM80

colla

pse

colla

pse

colla

pse

Page 78: Pairwise sequence  Alignment

All BLOSUM matrices are based on observed alignments; they are not extrapolated from comparisons of closely related proteins.

The BLOCKS database contains thousands of groups ofmultiple sequence alignments.

BLOSUM62 is the default matrix in BLAST 2.0. Though it is tailored for comparisons of moderately distant proteins, it performs well in detecting closer relationships. A search for distant relatives may be more sensitive with a different matrix.

BLOSUM Matrices

Page 60

Page 79: Pairwise sequence  Alignment

BLOSUM Scoring Matrices

•In the Dayhoff model, the scoring values are derived fromprotein sequences with at least 85% identity

• Alignments are, however, most often performed onsequences of less similarity, and the scoring matrices foruse in these cases are calculated from the 1 PAM matrix

• Henikoff and Henikoff (1992) have therefore developedscoring matrices based on known alignments of morediverse sequences

Page 80: Pairwise sequence  Alignment

BLOSUM Scoring Matrices

• They take a group of related proteins and produce a setof blocks representing this group, where a block isdefined as an ungapped region of aligned amino acids• An example of two blocks is

G D E V KG D S K KG D P K AG D A E RG D A A K

K I F I M KN L F K T RK I F K T KK L F E S RK I F K G R

Page 81: Pairwise sequence  Alignment

• The Henikoffs used over 2000 blocks in order to derivetheir scoring matrices

• For each column in each block they counted the numberof occurrences of each pair of amino acids, when all pairsof segments were used

• Then the frequency distribution of all 210 different pairsof amino acids were found

• A block of length w from an alignment of m sequencesmakes (wm(m-1))/2 pairs of amino acids

Page 82: Pairwise sequence  Alignment

We define

• hab as the number of occurrences of the amino acid pair (ab)

(note that hab=hba)

• T as the total number of pairs in the alignment

where ≥ is interpreted as a total ordering over the amino

acids

• fab=hab/T (the frequency of observed pairs)

Page 83: Pairwise sequence  Alignment
Page 84: Pairwise sequence  Alignment
Page 85: Pairwise sequence  Alignment
Page 86: Pairwise sequence  Alignment

Developing Scoring Matrices forDifferent Evolutionary Distances

• The procedure for developing a BLOSUM X matrix1. Collect a set of multiple alignments2. Find the blocks3. Group the segments with an X% identity4. Count the occurrences of all pairs of amino acids5. Develop the matrix, as explained before• BLOSUM-62 is often used as the standard for ungapped alignments• For gapped alignments, BLOSUM-50 is more often used

Page 87: Pairwise sequence  Alignment

A 4R -1 5N -2 0 6D -2 -2 1 6C 0 -3 -3 -3 9Q -1 1 0 0 -3 5E -1 0 0 2 -4 2 5G 0 -2 0 -1 -3 -2 -2 6H -2 0 1 -1 -3 0 0 -2 8I -1 -3 -3 -3 -1 -3 -3 -4 -3 4L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4K -1 2 0 -1 -1 1 1 -2 -1 -3 -2 5M -1 -2 -2 -3 -1 0 -2 -3 -2 1 2 -1 5F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

A R N D C Q E G H I L K M F P S T W Y V

Blosum62 scoring matrix

Page 61

Page 88: Pairwise sequence  Alignment

Rat versus mouse RBP

Rat versus bacteriallipocalin

Page 61

By use of relative entropy, it can be found that PAM250 corresponds to BLOSUM-45 and PAM160 corresponds to BLOSUM-62, and PAM120 corresponds to BLOSUM-80

Page 89: Pairwise sequence  Alignment

PAM BLOSUM

Built from global alignments Built from local alignments

Built from small amout of Data Built from vast amout of Data

Counting is based on minimum replacement or maximum parsimony

Counting based on groups of related sequences counted as one

Perform better for finding global alignments and remote homologs

Better for finding local alignments

Higher PAM series means more divergence

Lower BLOSUM series means more divergence

Major Differences between PAM and BLOSUM

Page 90: Pairwise sequence  Alignment

PAM matrices are based on global alignments of closely related proteins.

The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence.

Other PAM matrices are extrapolated from PAM1.

All the PAM data come from closely related proteins(>85% amino acid identity)

PAM matrices:Point-accepted mutations

Page 91: Pairwise sequence  Alignment

Pe

rce

nt

ide

nti

ty

Evolutionary distance in PAMs

Two randomly diverging protein sequences changein a negatively exponential fashion

“twilight zone”

Page 62

Page 92: Pairwise sequence  Alignment

At PAM1, two proteins are 99% identicalAt PAM10.7, there are 10 differences per 100 residuesAt PAM80, there are 50 differences per 100 residues

At PAM250, there are 80 differences per 100 residues

Pe

rce

nt

ide

nti

ty

Differences per 100 residues

“twilight zone”

Page 62PAM250

PAM matrices reflect different degrees of divergence

Page 93: Pairwise sequence  Alignment

PAM: “Accepted point mutation”

• Two proteins with 50% identity may have 80 changesper 100 residues. (Why? Because any residue can besubject to back mutations.)

• Proteins with 20% to 25% identity are in the “twilight zone”and may be statistically significantly related.

• PAM or “accepted point mutation” refers to the “hits” or matches between two sequences (Dayhoff & Eck, 1968)

Page 62

Page 94: Pairwise sequence  Alignment

Ancestral sequence

Sequence 1 Sequence 2

A no change AC single substitution C --> AC multiple substitutions C --> A --> TC --> G coincidental substitutions C --> AT --> A parallel substitutions T --> AA --> C --> T convergent substitutions A --> TC back substitution C --> T --> C

ACCCTAC

Li (1997) p.70

Page 95: Pairwise sequence  Alignment
Page 96: Pairwise sequence  Alignment
Page 97: Pairwise sequence  Alignment

Percent identity between two proteins:What percent is significant?

100%80%65%30%23%19%

Page 98: Pairwise sequence  Alignment

An alignment scoring system is required to evaluate how good an alignment is

• positive and negative values assigned

• gap creation and extension penalties

• positive score for identities

• some partial positive score for conservative substitutions

• global versus local alignment

• use of a substitution matrix