20
Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…..

Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Embed Size (px)

Citation preview

Page 1: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Panel methods to Innovate a Turbine Blade -2

P M V SubbaraoProfessor

Mechanical Engineering Department

A Linear Mathematics for Invention of Blade Shape…..

Page 2: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Stream function of a Vortex Panel• Pay attention to the signs.• A counter-clockwise vortex is considered “positive”• In our case, the vortex of strength 0ds0 had been placed on a

panel with location (x0 and y0).• Then the stream function at a point (x, y) will be

20

20

00 ln2

yyxxrr

where

rrds

o

o

Panel whose center

point is (x0,y0)

Page 3: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Superposition of All Vortices on all Panels

• In the panel method we use here, ds0 is the length of a small segment of the airfoil, and 0 is the vortex strength per unit length.

• Then, the stream function due to all such infinitesimal vortices at the control point (located in the middle of each panel) may be written as the interval below, where the integral is done over all the vortex elements on the airfoil surface.

000 ln

2dsrr

Page 4: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Adding the free stream and vortex effects..

Cdsrrxvyu o 00 ln2

1

The unknowns are the vortex strength g0 on each panel, and the value of the Stream function C.

Before we go to the trouble of solving for g0, we ask what is the purpose..

Page 5: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Physical meaning of

Panel of length ds0 on the airfoil.

0

000

,

VOr

VdsdssdVnCirculatioContour

V = Velocity of the flow just outside the boundary layer

If we know 0 on each panel, then we know the velocity of the flow outside the boundary layer for that panel, and hence pressure over that panel.

Sides of our contourhave zero height.Bottom side has zero Tangential velocityBecause of viscosity

Page 6: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Pressure distribution and Loads

CVp

1 02

2

222

2

1

2

1:says Bernoulli Vpvup

Cp p

V

u v

V

V

Vp

1

2

1 12

2 2

2

2

2

Since V = -0

Page 7: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Kutta Condition

• Kutta condition states that the pressure above and below the airfoil trailing edge must be equal, and that the flow must smoothly leave the trailing edge in the same direction at the upper and lower edge.

Upper lower

2upper = V2

upper

2lower = V2

lower

From this sketch above, we see that pressure will be equal, and the flow will leave the trailing edge smoothly, only if the voritcity on each panel is equal in magnitude above and below, but spinning in opposite Directions relative to each other.

Page 8: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

The Closure

• We need to solve the integral equation derived earlier

• And, satisfy Kutta condition.

Cdsrrxvyu o 00 ln2

1

Upper lower

Page 9: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Numerical Procedure• We divide the airfoil into N panels. A typical panel is given the

number j, where J varies from 1 to N.• On each panel, we assume that 0 is a piecewise constant. Thus,

on a panel numbered j, the unknown strength is j

• We number the control points at the centers of each panel as well. Each control point is given the symbol “i”, where i varies from 1 to N.

• The integral equation becomes

u y v x r r ds Ci ij

i o

jj N

0

01 2

0,

..

ln

Page 10: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Numerical procedure

• Notice that we use two indices ‘i’ and ‘j’. The index ‘i’ refers to the control point where equation is applied.

• The index ‘j’ refers to the panel over which the line integral is evaluated.

• The integrals over the individual panels depends only on the panel shape (straight line segment), its end points and the control point í’.

• Therefore this integral may be computed analytically. • We refer to the resulting quantity as

00, ln2

1=iindex on j Panel of Influence

,

dsrrA

where

iji

u y v x A Ci i i j jj

N

, 01

0

Page 11: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Numerical procedure

• We thus have N+1 equations for the unknowns 0,j (j=1…N) and C.

• We assume that the first panel (j=1) and last panel (j=N) are on the lower and upper surface trailing edges.

N

N

jjjiii CAxvyu

,01,0

10, 0

This linear set of equations may be solved easily, and 0 found.Once go is known, we can find pressure, and pressure coefficient Cp.

Page 12: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

An Useful Aerofoil

Page 13: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

PABLO

• A powerful panel code is found on the web. • It is called PABLO: Potential flow around Airfoils

with Boundary Layer coupled One-way • See

http://www.nada.kth.se/~chris/pablo/pablo.html• It also computes the boundary layer growth on the

airfoil, and skin friction drag.• Learn to use it!• We will later on show how to compute the

boundary layer characteristics and drag.

Page 14: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Innovative Mathematics close to the Current Reality

• It is time to modify the theory to model advanced practice.

• The potential theory learnt during few past lectures, is it truly a realistic invention?

• Can we see another important positive characteristic of flow is being missed in developing the theory(earlier) of designing a lifting body ?!?!?!?

• Is it correct to assume 2=0 for all potential flows???

• The real behavior of flow in steam and gas turbines is consider compressible subsonic flow through flow path and hence past a blade.

Page 15: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Lifting Bodies in Subsonic Compressible Flows

• The Velocity Potential function is also valid for compressible isentropic subsonic flows.

V

From this velocity potential we can find the velocity components

yv

xu

&

Page 16: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

2-D Continuity Equation for Steady Compressible Flow

Page 17: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Bell The Cat : A Story for Kids

Page 18: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Engineering Understanding of Accoustics

• The fact that the engineer knows about the chocking is great but it is not enough for today's sophisticated industry.

• A cat is pursuing a mouse and the mouse escape and hide in the hole.

• Suddenly, the mouse hear a barking dog and a cat yelling.

• The mouse go out to investigate, and cat is catching the mouse.

• The mouse ask the cat I thought I hear a dog. • The cat reply, yes you right. • My teacher was right, one language is not enough

today.

Page 19: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Speed of Travel of A Disturbance

• The people had recognized for several hundred years that sound is a variation of pressure.

• The ears sense the variations by frequency and magnitude which are transferred to the brain which translates to voice.

• Thus, it raises the question: what is the speed of the small disturbance travel in a quiet medium.

• This velocity is referred to as the speed of sound.

• Let us generate and analyze a disturbance.

Page 20: Panel methods to Innovate a Turbine Blade -2 P M V Subbarao Professor Mechanical Engineering Department A Linear Mathematics for Invention of Blade Shape…

Mach Number

Velocity Sonic

flow ofVelocity NumberMach c

VM

Mach number of a flight

RT

V

c

VM acac

ac

For an ideal and calorically perfect gas:

RTd

dpc