68
Parity-Violation and Strange Quarks: Theoretical Perspectives M.J. Ramsey- Musolf Hall A Collaboration Meeting: December ‘05

Parity-Violation and Strange Quarks: Theoretical Perspectives

  • Upload
    kuniko

  • View
    37

  • Download
    1

Embed Size (px)

DESCRIPTION

Parity-Violation and Strange Quarks: Theoretical Perspectives. M.J. Ramsey-Musolf. Hall A Collaboration Meeting: December ‘05. Outline. Historical Context Strange quarks: what havewe learned? Other aspects of parity-violationand QCD: radiative corr,N to D , gg. - PowerPoint PPT Presentation

Citation preview

Page 1: Parity-Violation and Strange Quarks: Theoretical Perspectives

Parity-Violation and Strange Quarks: Theoretical Perspectives

M.J. Ramsey-Musolf

Hall A Collaboration Meeting: December ‘05

Page 2: Parity-Violation and Strange Quarks: Theoretical Perspectives

Outline

• Historical Context

• Strange quarks: what havewe learned?

• Other aspects of parity-violationand QCD: radiative corr,N to ,

Page 3: Parity-Violation and Strange Quarks: Theoretical Perspectives

PV: Past, Present, & Future

1970’s SLAC DIS Standard ModelAtomic PV sin2W ~ 10%

1980’s Mainz 8Be PV eq couplingsMIT 12C ~ 10%

Prehistory

Page 4: Parity-Violation and Strange Quarks: Theoretical Perspectives

PV: Past, Present, & Future

2000’s SLAC Moller Standard Model & beyondJLab QWeak sin2W < 1%APV Anapole moment

JLab GAN

Mainz HWI (S=0): dA

VVCS: An

1990’s MIT GsE,M ~ few %

JLab GA & rad correctionsMainz n(r)APV sin2W ~ 1%

Anapole moment

Modern Era

Page 5: Parity-Violation and Strange Quarks: Theoretical Perspectives

2010’s JLab DIS-Parity Standard Model & beyondMoller (2) sin2W < 1%

2020’s NLC Moller (3) sin2W < 0.1%

Future

PV: Past, Present, & Future

Page 6: Parity-Violation and Strange Quarks: Theoretical Perspectives

Quarks, Gluons, & the Light Elements

How does QCD make hadronic matter?

1.0

1.5

2.0

2.5

qq Mesons

L = 01 2 3 4H

ybrids

exoticnonets

PV & strange quarks

Gluonic effects

GPD’s: “Wigner Distributions” (X. Ji)

Pentaquark,

mq-dependence of nuclear properties

Lattice QCD

• What is the internal landscape of the nucleon?

• What does QCD predict for the properties of nuclear matter?

• Where is the glue that binds quarks into strongly-interactingparticles and what are its properties?

Tribble Report

Page 7: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon:What have we learned?

Effects in are much less pronounced than in ,

N s γ μ s N

N s s N

N s γ μγ 5s N

Jaffe ‘89

Hammer, Meissner, Drechsel ‘95

• Dispersion Relations• Narrow Resonances• High Q2 ansatz

OZI violation

gφNN

gωNN

≈1

2

Page 8: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon:What have we learned?

Effects in are much less pronounced than in ,

N s γ μ s N

N s s N

N s γ μγ 5s N

HAPPEX

SAMPLE

MAINZ

G0

K. Aniol et al, nucl-ex/0506011

Page 9: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Strange quarks don’t appear in the conventional Quark Model picture of the nucleon

• Perturbation theory is limited

QCD / ms ~ 1 No HQET

mK / ~ 1/2 PT ?

• Symmetry is impotent

Js = JB - 2 JEM, I=0 Unknown constants

Theory: how do we understand dynamics of small ss effects in vector current channel ?

Challenge to understand QCD at deep, detailed level

Page 10: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange magnetismIto & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M

The SU(3) chiral expansion for B :

O (p2)

mq -independent

Page 11: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange magnetismIto & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M

The SU(3) chiral expansion for B :

O (p3)

non-analytic in mq

unique to loops leading SU(3)

Page 12: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange magnetismIto & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M

The SU(3) chiral expansion for B :

O (p4)

non-analytic in mq (logs)

Page 13: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange magnetismIto & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M

The SU(3) chiral expansion for B :

SU(3) Sym breaking

O (p4)

Two-deriv operators

+ 1/mN terms

M = diag (0,0,1)

Page 14: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange magnetismIto & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M

The SU(3) chiral expansion for B :

O (p2) O (p3) O (p4)• converges as (mK / )n

• good description of SU(3) SB

Page 15: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange magnetismIto & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M

Implications fors :

O (p2) singlet

O (p3,p4) loop only

O (p2,p4) octet

• Near cancellation of O (p2,p4) octet & loop terms• Exp’t: b0 + 0.6 b8 terms slightly > 0• Models: different assumptions for b0 + 0.6 b8 terms

O (p4) octet only

O (p4) singlet

Page 16: Parity-Violation and Strange Quarks: Theoretical Perspectives

Q2 -dependenceof Gs

M

G0 projected

Dispersion theory

Chiral perturbation theory “reasonable range” for slope

SAMPLE 2003

Happex projected

Lattice QCD theory

Page 17: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange magnetism

GMs (qs) = μs + 1

6 q2 rs,M2 +L

O (p4), unknown LEC

O (p3), parameter free O (p4) , cancellation

O (p4), octet

Page 18: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange magnetism

GMs (qs) = μs + 1

6 q2 rs,M2 +L

O (p3,p4), loops O (p4), octet

O (p4), unknown LEC

Page 19: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange electricityIto & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M

The SU(3) chiral expansion for s :

O (p3): non-analytic in mq (loops) + mq -independent cts

Page 20: Parity-Violation and Strange Quarks: Theoretical Perspectives

What PT can (cannot) say

Strange electricityIto & R-M; Hemmert, Meissner, Kubis; Hammer, Zhu, Puglia, R-M

The SU(3) chiral expansion for s :

O (p3), octet

O (p3), unknown LEC

O (p3), loops

Page 21: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

K +s s

Loops “vs” poles

No dichotomy: kaon cloud is resonant

Page 22: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

K +s s

Kaon cloud

Not sufficient to explain Gs

E,M

Page 23: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

K +

Kaon cloud models

Not reliable guide to sign or magnitude of Gs

E,M

Page 24: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

K +

Chiral models

Implicit assumptions about b0 , c0 , b0

r , …

Page 25: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

K +

Disconnected Insertions

~ +…

Still a challenge

s s

Page 26: Parity-Violation and Strange Quarks: Theoretical Perspectives

Dispersion theoryJaffe Hammer, Drechsel, R-M

Ms = −

4mN2

πdt

ImGMs (t)

t 29mπ

2

Strong interaction scattering amplitudese+ e- K+ K-, etc.

Contributing States

Page 27: Parity-Violation and Strange Quarks: Theoretical Perspectives

Dispersion theoryJaffe Hammer, Drechsel, R-M

Ms = −

4mN2

πdt

ImGMs (t)

t 29mπ

2

Strong interaction scattering amplitudese+ e- K+ K-, etc.

Page 28: Parity-Violation and Strange Quarks: Theoretical Perspectives

Dispersion theoryJaffe Hammer, Drechsel, R-M

Ms = −

4mN2

πdt

ImGMs (t)

t 29mπ

2

Strong interaction scattering amplitudese+ e- K+ K-, etc.

Page 29: Parity-Violation and Strange Quarks: Theoretical Perspectives

Hammer & R-MDispersion theory

Ms = −

4mN2

πdt

ImGMs (t)

t 29mπ

2

∫All orders

K +

• Naïve pert th’y O (g2)• Kaon cloud models• Unitarity violating

Unitarity

Page 30: Parity-Violation and Strange Quarks: Theoretical Perspectives

Hammer & R-MDispersion theory

Ms = −

4mN2

πdt

ImGMs (t)

t 29mπ

2

∫All orders

Unitarity

s s res

• S-quarks are not inert

• Non-perturbative effects dominate (LEC’s)

• Kaon cloud is resonant

Page 31: Parity-Violation and Strange Quarks: Theoretical Perspectives

Hammer & R-MDispersion theory

Ms = −

4mN2

πdt

ImGMs (t)

t 29mπ

2

• Kaon cloud not dominant

• Not sufficient data to includeother states

Kaon cloud

Page 32: Parity-Violation and Strange Quarks: Theoretical Perspectives

Lattice Computations

Dong, Liu, & Williams (1998) Lewis, Wilcox, Woloshyn (2003)

• Quenched QCD

• Wilson fermions

• 2000 gauge configurations

• 60-noise estimate/config

• Quenched QCD

• Wilson fermions

• 100 gauge configurations

• 300-noise estimate/config

See also Leinweber et al

Page 33: Parity-Violation and Strange Quarks: Theoretical Perspectives

Lattice ComputationsLeinweber et al

Disconn s/d

Charge Sym

B exp’t

Page 34: Parity-Violation and Strange Quarks: Theoretical Perspectives

Lattice Computations

s = Fμ p

u

μ Σu , μ s

μ dloop( )

s ≈ −0.05 ± 0.02

Leinweber et al

s μdloop

dloop: Lattice

s: kaon loops

Charge Symmetry

s/d loop ratio

• Charge symmetry• Measured octet m.m.’s• Lattice d

loop

• Kaon loops

Page 35: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

K +

Disconnected Insertions

~ +…

Still a challenge

s s

Page 36: Parity-Violation and Strange Quarks: Theoretical Perspectives

CombiningPT, dispersion theory, & lattice QCD

GM(s)(Q2 = 0.1) = 0.37 ± 0.20 ± 0.26 ± 0.07

s = GM(s)(Q2 = 0.1) − 0.13bs

r

=0.37 ± 0.20 ± 0.26 ± 0.15

RA

“Reasonable range”: lattice & disp rel

SAMPLE

Page 37: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

K +

Chiral models

Implicit assumptions about b0 , c0 , b0

r , …

Page 38: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

Jido & Weise

Implicit assumptions about b0 , c0 , b0

r , …

No

b0,8=0

Page 39: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

Implicit assumptions about b0 , c0 , b0

r , … s > 0

Jido & Weise

Page 40: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

Implicit assumptions about b0 , c0 , b0

r , …

Zou & Riska (QM)

K +Give wrong sign ???

~ s in g.s. s in excited state (p wave)

Page 41: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

Implicit assumptions about b0 , c0 , b0

r , …€

(1405)

K +Give right sign ???~ s in g.s., (s wave) s in excited state

Zou & Riska (QM)

s > 0

Page 42: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

Implicit assumptions about b0 , c0 , b0

r , …

Zou & Riska (QM)

s s

s < 0

t-channel resonances?

Page 43: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

Implicit assumptions about b0 , c0 , b0

r , …

Chiral Quark Soliton

s > 0

Implicit kaon cloud + b3-7…

qqq bag

K +s s

resonances ?

Page 44: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

• Dispersion Theory

• Models

• Lattice QCD

Js = JB - 2 JEM, I=0 Unknown constants

It’s all in the low energy constants

Implicit assumptions about b0 , c0 , b0

r , …

Chiral Quark Soliton

s < 0

Implicit kaon cloud + b3-7…

qqq bag

K +s s

resonances ?

Page 45: Parity-Violation and Strange Quarks: Theoretical Perspectives

Strange Quarks in the Nucleon: What have we learned?

Js = JB - 2 JEM, I=0 Unknown constants

New puzzles: higher Q2-dependence

Page 46: Parity-Violation and Strange Quarks: Theoretical Perspectives

Radiative Corrections & the Hadronic Weak Interaction

• GAe

• N !

• PV photo- and electro-production (threshold)

• Vector analyzing power ()

Page 47: Parity-Violation and Strange Quarks: Theoretical Perspectives

at Q2=0.1 (GeV/c)2

( ) 39.045.022.01

31.029.014.0

±±==

±±=

TG

GeA

sM

R. Hasty et al., Science 290, 2117 (2000).

• s-quarks contribute less than 5% (1) to the proton’s magnetic form factor.

• proton’s axial structure is complicated!

Models for s

Radiative corrections

Page 48: Parity-Violation and Strange Quarks: Theoretical Perspectives

Axial Radiative Corrections

e

r e p

p

+⋅⋅⋅γ

“Anapole” effects : Hadronic Weak Interaction

γ

ZZ

γ+

Nucleon Green’s Fn : Analogous effects in neutron -decay, PC electron scattering…

Page 49: Parity-Violation and Strange Quarks: Theoretical Perspectives

“Anapole” Effects

+

p

+L

Zhu, Puglia, Holstein, R-M (PT) Maekawa & van Kolck (PT) Riska (Model)

Zhu et al.

Hadronic PV

Can’t account for a large reduction in GeA

Page 50: Parity-Violation and Strange Quarks: Theoretical Perspectives

Nuclear PV Effects

PV NN interaction

Carlson, Paris, Schiavilla Liu, Prezeau, Ramsey-Musolf

Suppressed by ~ 1000

Page 51: Parity-Violation and Strange Quarks: Theoretical Perspectives

at Q2=0.1 (GeV/c)2

125 MeV:no backgroundsimilar sensitivity to GA

e(T=1)

SAMPLE Results R. Hasty et al., Science 290, 2117 (2000).

200 MeV update 2003:Improved EM radiative corr.Improved acceptance modelCorrection for background

• s-quarks contribute less than 5% (1) to the proton’s magnetic moment.

200 MeV dataMar 2003

D2

H2

Zhu

, et

al.

E. Beise, U MarylandRadiative corrections

Page 52: Parity-Violation and Strange Quarks: Theoretical Perspectives

Transition Axial Form Factor

GANΔ (0) =

2

3

gπNΔFπ

mN

1− Δπ( )

GANΔ,e (0) = GA

NΔ (0) 1+ RAΔ

( )

Off Diagonal Goldberger-Treiman Relation Zhu, R-M

O(p2) chiral corrections ~ few %N!N ~ 5%

Rad corrections, “anapole” ~ 25%Study GA

N(Q2)/ GAN(0)

Page 53: Parity-Violation and Strange Quarks: Theoretical Perspectives

Measuring GAN(Q2)

GAN & “d”””

Axial response , GAN only

ALR ~ Q2 (1-2sin2W) Zhu, Maekawa, Sacco, Holstein, R-M

Nonzero ALR(Q2= 0)

Page 54: Parity-Violation and Strange Quarks: Theoretical Perspectives

Weak interactions of s-quarks are puzzling

Hyperon weak decays

Σ+ → nπ + Σ+ → pπ 0 Σ− → nπ −

Λ → pπ − Λ → nπ 0 Ξ− → Λπ 0 Ξ0 → Λπ 0

MB → ′ B π = U B A + Bγ 5[ ]UB

S-Wave: Parity-violating

P-Wave: Parity-conserving

symmetry not sufficient

Page 55: Parity-Violation and Strange Quarks: Theoretical Perspectives

Weak interactions of s-quarks are puzzling

rΣ+ → pγ ,

r Λ → nγ ,K

MB → ′ B λ = −i

MB + M ′ B

U σ μν A + Bγ 5( )U F μν

M1 (PC)

E1 (PV)

αB ′ B =2Re A B*

A2

+ B2

αB ′ B ~ ms Λχ ~ 0.15

αΣ+ p

~ − 0.76 ± 0.08

αΞ 0Σ0 ~ − 0.63± 0.09

Th’y

Exp’t

Page 56: Parity-Violation and Strange Quarks: Theoretical Perspectives

Weak interactions of s-quarks are puzzlingResonance saturation

B

′B

′′B

B

′B

′′B

+Holstein & Borasoy

S11

Roper

S-Wave

P-Wave

12

+ 12

− 12

+

12

+ 12

+ 12

+

12

+ 12

− 12

+

12

+ 12

+ 12

+

Fit matrix elements

Page 57: Parity-Violation and Strange Quarks: Theoretical Perspectives

Weak interactions of s-quarks are puzzlingResonance saturation

B

′B

′′B

B

′B

′′B

+Holstein & Borasoy

S11

Roper

S-Wave

P-Wave

12

+ 12

− 12

+

12

+ 12

+ 12

+

12

+ 12

− 12

+

12

+ 12

+ 12

+

Fit matrix elements

B

′B

′′B

B

′B

′′B

+

B( ) = −π ′ ′ B ( ) = π ′ B ( ) S/P wave fit Close gap with αBB’

Page 58: Parity-Violation and Strange Quarks: Theoretical Perspectives

Weak interactions of s-quarks are puzzling

WB ′ ′ B ~ Λχ gπ

WB ′ ′ B ~ 5 Λχ gπ

Natural

Fit

~GF Fπ

2

2 2~ 3.8 ×10−8

Is deviation from QCD-based expectations due to presence of s-quarks or more fundamental dynamics?

Page 59: Parity-Violation and Strange Quarks: Theoretical Perspectives

We have a S=0 probe

N

Use PV to filter out EM transition

Zhu, Maekawa, Holstein, MR-M

L = ie

Λχ

dΔ Δ μ+ γ λ pF μλ + h.c.PV, E1

Amplitude

Aγ = 0

Aγ = 2dΔ

C3V

mN

Λχ

+LPV Asymmetry

Large NC , spin-flavor SU(4) Finite NC

Low energy constant

Page 60: Parity-Violation and Strange Quarks: Theoretical Perspectives

We have a S=0 probe

N

L = ie

Λχ

dΔ Δ μ+ γ λ pF μλ + h.c.

Naïve dimensional analysis (NDA)

Resonance saturation

N

12

N

32

+

HWΔS= 0

Aγ ~ 5 ×10−8

d~ g

Aγ ~ 1×10−6 d~ 25g

Page 61: Parity-Violation and Strange Quarks: Theoretical Perspectives

Measuring d

d = 100 genhanced HW

S=0

d = 0 , GAN only

ALR ~ Q2 (1-2sin2W) Zhu, Maekawa, Sacco, Holstein, R-M

Page 62: Parity-Violation and Strange Quarks: Theoretical Perspectives

N! Transition

Measure Q2-dependence of ALR to learn

• d

• GANQ2)/ GA

N0)

• RA

Page 63: Parity-Violation and Strange Quarks: Theoretical Perspectives

Radiative Corrections & the Hadronic Weak Interaction

• GAe

• N !

• PV photo- and electro-production (threshold)

• Vector analyzing power ()

Theory for RA good to ~ 25%

Further test of RAd & HW

qq

EFT for low energy good to ~ 25%; more tests!

New window on electroweak VVCS: -decay, sin2W,…

Page 64: Parity-Violation and Strange Quarks: Theoretical Perspectives

Vector Analyzing Power

An ~r S ⋅

r K × ′

r K

• T-odd, P-even correlation

• Doubly virtual compton scattering (VVCS):new probe of nucleon structure

• Implications for radiative corrections in other processes: GE

p/GMp, -decay…

• SAMPLE, Mainz, JLab experiments

What specifically could we learn?

Vud

Page 65: Parity-Violation and Strange Quarks: Theoretical Perspectives

Vector Analyzing Power

γ€

V

V

γ+

V=: VVCS

Re M(M

boxMcross) Rosenbluth

Im MM

box VAP

V=W,Z: Electroweak VVCS

Re MV(MV

boxMVcross) -decay, RA,…

Im MVMV

box -decay T-violation

Direct probe

Page 66: Parity-Violation and Strange Quarks: Theoretical Perspectives

Vector Analyzing Power

Mott: MN!1

SAMPLE

EFT to O(p2)

Diaconescu, R-M

I=1, r2

O(p0)

O(p4)

1460

Page 67: Parity-Violation and Strange Quarks: Theoretical Perspectives

Vector Analyzing Power

Constrained by SAMPLE

300

Dynamical ’s?

Page 68: Parity-Violation and Strange Quarks: Theoretical Perspectives

Conclusions• Measurements of neutral weak form factors

have challenged QCD theory:

• PV program has stimulated a variety of other developments at the interface of QCD and weak interactions:

• Powerful new probes of SM & beyond: Qwe,p , DIS

• Kaon cloud is resonant, but not dominant• Loop calculations are unreliable guide• Symmetry limited by presence of unknown constants

• Models remain interesting, but ad hoc (implicit LECs)• Lattice challenged to obtain disconn insertions

• Axial radiative corrections consistent with experiment• Axial N to new QCD testing ground: GA

N, d• Electroweak box graphs: new insights from ?