23
9/5/2013 1 The Asphalt Pavement Alliance Presents: A FivePart Webinar Series On Mechanistic Empirical Pavement Design Guide (MEPDG) Implementation Specific to Asphalt Pavements The Asphalt Pavement Alliance Presents: A FivePart Webinar Series On Mechanistic Empirical Pavement Design Guide (MEPDG) Implementation Specific to Asphalt Pavements Today’s Webinar: Part1 Pavement Design, Where We’ve Come From and What We’re Trying to Accomplish Speaker: David Newcomb, Ph.D., P.E. Senior Research Scientist with the Texas Transportation Institute Moderator: Mike Kvach, APA Webinar Protocol: Audio Quality Headset Recommended External Speakers May Cause an Echo / Feedback Questions & Answers Chat Box – Make sure to change the dropdown menu to “Organizer Only” Recorded Webinars www.AsphaltFacts.com/webinars/ Click on: “FivePart Series on MEPDG Implementation Specific to Asphalt Pavements”

Part 1 Pavement Design - Asphalt Facts

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

9/5/2013

1

The Asphalt Pavement Alliance Presents:A Five‐Part Webinar Series On Mechanistic Empirical Pavement Design Guide (MEPDG) Implementation Specific to Asphalt Pavements

The Asphalt Pavement Alliance Presents:A Five‐Part Webinar Series On Mechanistic Empirical Pavement Design Guide (MEPDG) Implementation Specific to Asphalt Pavements

• Today’s Webinar: Part‐1Pavement Design, Where We’ve Come From and What We’re Trying to Accomplish

•Speaker:David Newcomb, Ph.D., P.E.Senior Research Scientist with the Texas Transportation Institute

•Moderator:Mike Kvach, APA

Webinar Protocol:

• Audio Quality

• Headset Recommended

• External Speakers May Cause an Echo / Feedback

• Questions & Answers• Chat Box – Make sure to change the drop‐down 

menu to “Organizer Only”

•Recorded Webinars• www.AsphaltFacts.com/webinars/• Click on:  “Five‐Part Series on MEPDG 

Implementation Specific to Asphalt Pavements”

9/5/2013

2

The Asphalt Pavement Alliance Presents:A Five‐Part Webinar Series On Mechanistic Empirical Pavement Design Guide (MEPDG) Implementation Specific to Asphalt Pavements

Part 1: Pavement Design, Where We’ve Come From and What We’re Trying to Accomplish

Part 2: Local Calibration

Part 3: Individual Distress Models

Part 4: Major Inputs – Where Do They Come From & How Do We Get Them?

Part 5: Moving Beyond Data Input (Advanced)

• Speaker:David Newcomb, Ph.D., P.E.Senior Research Scientist with the Texas Transportation Institute

Pavement Design, Where We’ve Come From and What We’re Trying to Accomplish:

Kevin D. Hall, Ph.D., P.E.Professor and Head, Dept. of Civil Engineering

21st Century Leadership Chair in Civil Engineering

Dave Newcomb, Ph.D., P.E.Senior Research Engineer

TTI / Texas A&M University

Asphalt Pavement AllianceSeptember 2013

9/5/2013

3

Pavement Design: Where We’ve Come From and Where We Are Going

Overview of Pavement‐ME™Sensitivity of Models to Design InputsLocal Calibration:  Pavement‐ME™Case Study: New Pavement DesignGetting the Most From Pavement‐ME™

Final Thoughts and Discussion

Dave NewcombTexas A&M Transportation Institute

Asphalt Pavement AllianceAASHTO Pavement M-E Webinar

2013

Pre-20th Century20th Century

• Early Patents• Early Design Approaches• AASHO Road Test

9/5/2013

4

9/5/2013

5

No Escalation Clause for Labor Rates!

Layered Pavement with Drainage

9/5/2013

6

9/5/2013

7

9/5/2013

8

50 mm (typical) Wearing Course Placed in One Lift (Coarse aggregate 50 to 80% between the ¼” and 3”)

Various Types of Base and Old Pavements

• First successful, reproducible asphalt concrete surfaces

• Maximum aggregate size 75 mm graded down to dust

• F.J. Warren patent issued 1903 (Patent No. 757505)

Warren’s primary patent of 1903—Patent No. 727505 which had the simple title of “Pavement”

9/5/2013

9

9/5/2013

10

Soil is the important thing.Weather is handled according to local

observations.Pavements are designed for the loads

anticipated.• Airfields• Roads

Most asphalt pavements are:• 2 to 6 inches asphalt• 4 to 8 inches of granular base

29

AASHO Road Test

Trucks

9/5/2013

11

LOOP

3 4 12 12

4 6 18 18

5 6 22 22

6 9 30 30

LANE 2

6 24 24

9 32 32

9 40 40

12 48 48

2 Years = 1.1 Million Applications

LANE 1

0

10”

20”ASPHALT surface

CRUSHED STONE base

SANDY GRAVEL subbase

2 3 4 5 6

0 3 6 9

0 4 8 12 16

MATERIAL THICKNESS

3

6

8

.44

.14

.11

4”

9”

16”

= 1.76

= 1.26

= 1.76

= 4.78

9/5/2013

12

LOOP 3 4 5 6

AC .44 .44 .47 .33

STONE .16 .14 .14 .11

GRAVEL .11 .11 .11 .11

34

07.8log32.2

1

10944.0

5.12.4log

20.01log36.9log

19.5

018

RR M

SN

PSI

SNSZW

36

•One Set of Materials

•Two Years of Weathering

•1.1 Million Axles

•Totally Empirical

9/5/2013

13

0

5

10

15

20

25

0.1 1 10 100 1000

HM

A T

hic

kn

ess

, in

.

Traffic, MESAL

AASHTO

PerRoad

Using 1960s performance equations1950s type of loadThin pavement structures (Max. 6” HMA)Meaning of structural coefficientsLimited reliability analysisSome movement to M-E

9/5/2013

14

Use stresses and strains to design roads, just like buildings.

Beam

Load

Deflection

Strain

Have to know loads, material properties, how pavement responses relate to failure• Loads Same as now – just stop short of ESAL calculation

• Material Properties Need modulus values How modulus changes with season/time

• Pavement responses Requires a model – layered elastic (for now)

• How pavement responses relate to failure Transfer function

Pavement

Beam

Load

Deflection

Strain

Asphalt

Base or Soil

9/5/2013

15

M-E Design Framework

Model ,

Transfer Function(s)

f

Materials, Layers

Loads

i

i

Nf

nDn

D>1?

D<<1?

Final Design

Traffic Load Spectra

No. Heavy Axles

Data from Traffic

W4 Tables

9/5/2013

16

Figure 1. Definitions of E and .

D

D/2

l

l

l = l/l

t = D/D

E =

= t / l

• bitumen viscosity (dynamic shear rheometer)

• loading frequency

• air voids

• effective bitumen content

• cum. % retained on 19-mm sieve

• cum. % retained on 9.5-mm sieve

• cum. % retained on 4.76-mm sieve

• % passing the 0.075-mm sieve

log . . . ( ) . .

.. . . . ( ) .

( . ` . log( ) . log( ))

E V

V

V V e

a

beff

beff af

1249937 0 29232 0 001767 0 002841 0 058097

08022083871977 0 0021 0 003958 0 000017 0 005470

1

200 2002

4

4 38 382

340 6033 3 0 313351 0 393532

9/5/2013

17

9/5/2013

18

Flexible pavements consist of multiple layers Using physical principles, we can calculate stresses

beneath loads

Pa

H1, E1, 1

H2, E2, 2

En, n

zr

t

Horizontal Shear Stress, rz/p

De

pth

, z/a

1.0

Layer 1

Layer 2

0.0

x

Dep

th, z

Tension Compression

Layer 1

Layer 2

9/5/2013

19

Layer 1HMA

E1

Layer 3Subgrade Soil

E3

h1

h2

No bottom boundary, assume soil goes on infinitely.

Nohorizontalboundary, assumelayersextendinfinitely.

Tire has a total load P, spread over a circulararea with a radius of a, resulting in a contactpressure of p.

PavementReactions

Deflection ()

Tensile Strain (t)

Compressive Strain (v)

Layered Elastic Model Representation of a Pavement.

Layer 2Granular Base

E2

Ho

rizo

nta

l Te

nsi

le S

tra

in (

in./

in.1

0

)

Load Applications (N )f

3

10 10 10 10 10 103 4 5 6 7 8

10

100

1,000

10,000

log N = 15.947 - 3.291 log (––––– ) - 0.854 log (–––– )f t

10-6

E

10

-6

E = 200,000 psi(1,380 MPa)

E = 500,000 psi(3,450 MPa)

9/5/2013

20

Ver

tical

Co

mp

ress

ive

Str

ain

( in

./in.

10

)

N = 1.077 x 10 (–––)

10 10 10 10 10 103 4 5 6 7 8100

1,000

10,00

100,00

f

-6

4.484310 v

Load Applications (N )

18

f

-6

Asphalt Pavement Alliance - 2001 Design must be done by M-E

• Limiting strains – define criteria for perpetual design• Load spectrum – design for heaviest loads• Material properties – seasonal and long-term changes

M-E based design procedures for Perpetual Pavements• PerRoad• Illinois• Texas FPS-19W• Washington DOT – catalog• AASHTO Pavement M-E (formerly Darwin M-E) (formerly

MEPDG)• CalME?

9/5/2013

21

Normal Fatigue Testing Results VersusEndurance Limit Testing

0

200

400

600

800

1000

1200

1000 100000 10000000 1.1E+08

Number of Loads to Failure

Stra

in, (

10E

-06)

Endurance Limit

Normal Range forFatigue Testing

0

200

400

600

800

1000

1200

1000 100000 10000000 1.1E+08

Number of Loads to Failure

Stra

in, (

10E

-06)

Endurance Limit

0

200

400

600

800

1000

1200

1000 100000 10000000 1.1E+08

Number of Loads to Failure

Stra

in, (

10E

-06)

Endurance Limit

Normal Range forFatigue Testing

Resources• APA IM-40 – Perpetual Pavements: A Synthesis• TRB: Circular Number 503• SHRP 2: R-23 – Using Existing Pavement In-Place

and Achieving Long Life – Newt Jackson• International Conferences on Perpetual

Pavements

9/5/2013

22

Inputs – Use Average Inputs – Not Conservative!• Climate – Integrated Climate Model• Traffic - Load Spectrum• Materials – Modulus & Poisson’s Ratio• Reliability – This is the Conservatism

Models - Must Be Calibrated!• Cracking Bottom-Up Top-Down Thermal

• Rutting Any Layer

• Roughness

Output• Distress Development with Time – Example:

Alberta

Modern Materials• Polymer Modifiers• More RAP/RAS• New Mixes

More Efficient Designs• Stop Over-Design (Perpetual Pavement)• Engineer Materials for Pavement Layer

Greater Flexibility to Change• Adjust Models• Heavier Loads

9/5/2013

23

Thank You!

Part 2:  Local Calibration

Next Webinar: Thursday, September 5th

Register at:  AsphaltFACTS.com/webinars