153
Part 2.7: Orbital Diagrams 1

Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

Embed Size (px)

Citation preview

Page 1: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

1

Part 2.7: Orbital Diagrams

Page 2: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

2

Orbital Diagrams• Orbital Interactions• Molecular Orbital Theory• Orbital Energies• MO Diagrams

– HF, H2O, CO2, C2H4, NH3, Benzene

• SALC• Hybridization• Symmetry and Reactivity

Page 3: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

3

Atomic Orbital- is a mathematical function (Y) that describes the wave-like behavior of electrons in an atom.Used to calculate the probability (Y2 ) of finding any electron of an atom in any specific region around the atom's nucleus.

Atomic Orbitals

1s orbital

2p orbital

Page 4: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

4

Atomic Orbital- is a mathematical function (Y) that describes the wave-like behavior of electrons in an atom.Used to calculate the probability (Y2 ) of finding any electron of an atom in any specific region around the atom's nucleus.

Atomic Orbitals

1s orbital

2p orbital

Page 5: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

5

Atomic Orbitals

constructively = bonding destructively = antibonding

not at all = non-bonding

Waves can interact-

Atomic Orbital- is a mathematical function (Y) that describes the wave-like behavior of electrons in an atom.Used to calculate the probability (Y2 ) of finding any electron of an atom in any specific region around the atom's nucleus.

Page 6: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

6

1. ATOMIC ORBITALS of different atoms combine to create MOLECULAR ORBITALS 2. The number of ATOMIC ORBITALS = the number of MOLECULAR ORBITALS

3. Electrons in these MOLECULAR ORBITALS are shared by the molecule as whole

4. MOLECULAR ORBITALS can be constructed from Linear Combination of Atomic Orbitals (LCAO)

Molecular Orbital Theory

Y = caya + cbyb (for diatomic molecules)LCAO

BONDING Orbitals have most of the electron density between the two nuclei

ANTI-BONDING Orbitals have a node between the two nuclei

NONBONDING Orbitals are essentially the same as if it was only one nuclei

Page 7: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

7

Combining Atomic Orbitals

Bonding:Ψ(σ) or Ψ+ = (1/√2 ) [φ(1sa) + φ(1sb) ]

Antibonding:

Ψ(σ*) or Ψ- = (1/√2 ) [φ(1sa) - φ(1sb) ]

Page 8: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

8

Combining Atomic Orbitals (H2)Antibonding

Bonding

Page 9: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

9

Combining Atomic OrbitalsH2 Fe(C5H5)2

•2 atoms•Only s orbitals•Linear interaction•Same energy•Uniform symmetry

•11 relevant atoms•s, p, and d orbitals•various interactions•different energies

Page 10: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

10

Degree of orbital overlap/mixing depends on: 1) Energy of the orbitals

The closer the energy, the more mixing.

2) Spatial proximityThe atoms must be close enough that there is

reasonable orbital overlap.

3) SymmetryAtomic orbitals mix if they have similar symmetries.

Combining Atomic Orbitals

Strength of the bond depends upon the degree of orbital overlap.

Y = caya + cbyb … cnyn

Page 11: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

11

For heteronuclear molecules:

1. The bonding orbital(s) will reside predominantly on the atom of lower orbital energy (the more electronegative atom).

2. The anti-bonding orbital(s) will reside predominantly on the atom with greater orbital energy (the less electronegative atom).

Energy of the Orbitals

How do we determine orbital energies?

Page 12: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

12

Energy of Orbitals1) Theoretical calculations

2) Photoelectron spectroscopy

3) Tabulated dataOther peoples UPS/XPS data

Page 13: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

13

Photoelectron Spectroscopy

Ionization occurs when matter interacts with light of sufficient energy (Heinrich Hertz, 1886) (Einstein, A. Ann. Phys. Leipzig 1905, 17, 132-148.)

Page 14: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

14

Photo-ionization and energy-dispersive analysis of the emitted photoelectrons to study the composition and electronic state of the sample.

X-ray Photoelectron Spectroscopy(XPS)

- using soft (200-2000 eV) x-ray excitation to examine core-levels.

Ultraviolet Photoelectron Spectroscopy(UPS)

- using vacuum UV (10-45 eV) radiation from discharge lamps to examine valence levels.

Photoelectron Spectroscopy

hνo = I(BE) + Ekinetic

Page 15: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

15

X-Ray source

Ion source

Axial Electron Gun

Detector

CMAsample

SIMS Analyzer

Sample introduction Chamber

Sample Holder

Ion PumpRoughing Pump Slits

Photoelectron Spectrometer

Page 16: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

16

Photoelectron Spectrometer

Page 17: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

17

Photoelectron Spectroscopy

Counts

Page 18: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

18

Photoelectron Spectroscopy

Counts

Page 19: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

19

Page 20: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

20

Miessler and Tarr, Inorganic Chemistry

Tabulated Data

Diagram for methane

(CH4)?

Page 21: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

21http://en.wikipedia.org/wiki/Ionization_energy

Tabulated Data

Page 22: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

22

Degree of orbital overlap/mixing depends on: 1) Energy of the orbitals

The closer the energy, the more mixing.

2) Spatial proximityThe atoms must be close enough that there is

reasonable orbital overlap.

3) SymmetryAtomic orbitals mix if they have similar symmetries.

Combining Atomic Orbitals

Strength of the bond depends upon the degree of orbital overlap.

Y = caya + cbyb … cnyn

Page 23: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

23

Symmetry and Orbital Diagrams

J. Chem. Edu. 2004, 81, 997.

1. Number of MOs = number of incipient orbitals. This rule could be

referred to as “the conservation of orbitals.” 2. Orbitals of the same symmetry mix.

3. Orbital interactions can be bonding, nonbonding or antibonding.

4. There are three basic types of orbital overlap: s (end on interaction), p (side by side approach) and d (off-axis approach).

5. Orbitals with the correct symmetry and most similar energy mix to the greatest extent.

Page 24: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

24

Constructing MOs

• From inspection

• From Group Theory

Page 25: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

25

Constructing MOss bond (s, p and d)

d d

p bond (p and d)

p p p d

d bond (d)

Page 26: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

26

Constructing MOs (s-s)

Page 27: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

27

Constructing MOs (p-p)

Page 28: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

28

Constructing MOs (d-d)

Page 29: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

29

Simple Diatomics

Page 30: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

30

MO Diagrams from Group Theory1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to Irreducible Representation6. Combine central and peripheral orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

Page 31: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

31

MO Diagrams from Group Theory• H-F

– diatomic, H = 1s; F = 2s, 3 x 2p

• H2O– triatomic, H = 2 x 1s; O = 2s, 3 x 2p

• CO2

– p bonding, O = 2s, 3 x 2p; C = 2s, 3 x 2p

• C2H4

– Fragmentation method• Benzene

– Real + Imaginary SALC

Page 32: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

32

HF Orbital Diagram1. Assign a point group

C2vC∞v

H-FC2v

Page 33: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

33

HF Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

F

H

z

xy

GH 1 1 1 1

H s orbitalF s, px, py and pz orbitals

H-FC2v

A1

Page 34: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

34

HF Orbital DiagramH-F1. Assign a point group

2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

C2v

F

H

z

xy

GFs 1 1 1 1

H s orbitalF s, px, py and pz orbitals

A1

A1

Page 35: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

35

H s orbitalF s, px, py and pz orbitals

HF Orbital DiagramH-F1. Assign a point group

2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

C2v

F

H

z

xy

GFpz 1 1 1 1

A1

A1 A1

Page 36: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

36

H s orbitalF s, px, py and pz orbitals

HF Orbital DiagramH-F1. Assign a point group

2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

C2v

F

H

z

xy

GFpx 1 -1 1 -1

A1

A1 A1B1

Page 37: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

37

H s orbitalF s, px, py and pz orbitals

HF Orbital DiagramH-F1. Assign a point group

2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

C2v

F

H

z

xy

GFp

y

1 -1 -1 1

A1

A1 A1B1 B2

Page 38: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

38

HF Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry

H s orbitalF s, px, py and pz orbitals

H-FC2v

A1

A1 A1B1 B2

Page 39: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

39

HF Orbital Diagram6. Combine orbitals by their symmetry

H s orbitalF s, px, py and pz orbitals

Page 40: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

40

HF Orbital Diagram6. Combine orbitals by their symmetry

H F

2s (A1)

H s orbitalF s, px, py and pz orbitals

A1

A1 A1B1 B2

pz (A1)py (B2)

px (B1)1s (A1)

H-F

Page 41: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

41

HF Orbital Diagram6. Combine orbitals by their symmetry

H F

2s (A1)

pz (A1)py (B2)

px (B1)1s (A1)

A1

A1

A1

py (B2) px (B1)

H-F

Page 42: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

42

HF Orbital Diagram7. Fill MOs with e-

H F

2s (A1)

pz (A1)py (B2)

px (B1)1s (A1)

A1

A1

py (B2) px (B1)

1 e- 7 e-

A1

H-F

Page 43: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

43

e- in MOs1. Electrons preferentially occupy molecular

orbitals that are lower in energy. (Aufbau Principle)

2. If two electrons occupy the same molecular orbital, they must be spin paired. (Pauli Exclusion Principle)

3. When occupying degenerate molecular orbitals, electrons occupy separate orbitals with parallel spins before pairing. (Hund’s Rule)

Page 44: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

44

HF Orbital Diagram7. Fill MOs with e-

H F

2s (A1)

pz (A1)py (B2)

px (B1)1s (A1)

A1

A1

py (B2) px (B1)

H-F

A1

Page 45: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

45

1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

2s (A1)

HF Orbital Diagram

H F

pz (A1)

py (B2)

px (B1)1s (A1)

A1

A1

A1

py (B2) px (B1)

H-F

Page 46: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

46

HF Orbital Diagram8. Draw orbitals

2s (A1)

pz py px

1s (A1)

A1

A1

B2 B1

F

H

z

xy

F

F

H

F

F

FF

H F

F

F

H

A1

H-F

Page 47: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

47

• H-F– diatomic, H = 1s; F = 2s, 3 x 2p

• H2O– triatomic, H = 2 x 1s; O = 2s, 3 x 2p

• CO2

– p bonding, O = 2s, 3 x 2p; C = 2s, 3 x 2p

• C2H4

– Fragmentation method

• NH3/Benzene– Real + Imaginary SALC

MO Diagrams from Group Theory

Page 48: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

48

H2O Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

OH

z

xy

GH 2 0 2 0

H s orbitalsO s, px, py and pz orbitals

H2OC2v

H

A1 + B1GH

A1 + B1

Page 49: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

49

H2O Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

OH

z

xy

H s orbitalsO s, px, py and pz orbitals

H2OC2v

H

A1 + B1

A1 A1B1 B2

Page 50: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

50

H2O Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry

H s orbitalsO s, px, py and pz orbitals

H2OC2v

A1 + B1

Page 51: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

51

HF Orbital Diagram6. Combine orbitals by their symmetry

H s orbitalO s, px, py and pz orbitals

Page 52: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

52

H2O Orbital Diagram6. Combine orbitals by their symmetry

2 x H O

2s (A1) H s orbitalO s, px, py and pz orbitals

A1 + B1

A1 A1B1 B2

pz (A1)py (B2)

px (B1)A1 B1

Page 53: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

53

H2O Orbital Diagram6. Combine orbitals by their symmetry

2 x H O

2s (A1)

pz (A1)py (B2)

px (B1)A1 B1

H2OA1

A1

A1

B1

B1

py (B2)

Page 54: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

H2O Orbital Diagram7. Fill MOs with e-

2 x H O

2s (A1)

pz (A1)py (B2)

px (B1)A1 B1

H2OA1

A1

A1

B1

B1

py (B2)

2 e- 6 e- 54

Page 55: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

55

H2O Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

2s (A1)

pz (A1)

py (B2)

px (B1)A1 B1

A1

A1

B1

B1

py (B1)

A1

Page 56: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

56

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

• Use projection operator to generate SALC.

• Projection operators constitute a method of generating the symmetry allowed combinations.

• Taking one AO and projecting it out using symmetry.

Symmetry adapted linear combination of atomic orbitals (SALC)

Pi is the projection operatorli is the dimension of Gi

h is the order of the groupi is an irreducible representation of the groupR is an operation of the groupχi (R) is the character of R in the ith irreducible representation(R) non-symmetry-adapted basis

Page 57: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

57

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the atomic orbitals in the molecule into sets which are equivalent by symmetry

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

Page 58: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

58

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

OH

z

xy

Hf1 f2

A1 + B1GH =

PA1 = 1/4 [((1) E f1 ) + ((1) C2 f1 ) + ((1) sxz f1 ) + ((1) syz f1 )]

Page 59: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

59

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

OH

z

xy

Hf1 f2

A1 + B1GH =

PA1 = 1/4 [((1) E f1 ) + ((1) C2 f1 ) + ((1) sxz f1 ) + ((1) syz f1 )]

Page 60: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

60

PA1 = 1/4 [((1) E f1 ) + ((1) C2 f1 ) + ((1) sxz f1 ) + ((1) syz f1 )]

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

OH

z

xy

Hf1 f2

A1 + B1GH =

Page 61: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

61

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

OH

z

xy

Hf1 f2

A1 + B1GH =

PA1 = 1/4 [((1) E f1 ) + ((1) C2 f1 ) + ((1) sxz f1 ) + ((1) syz f1 )]

f1 f2 f1 f2

PA1 = 1/4 [f1 + f2 + f1 + f2]

PA1 = 1/4 [2f1 + 2f2]

PA1 = 1/2 [f1 + f2]

HO

H

A1 H1s orbitals

Page 62: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

62

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

OH

z

xy

Hf1 f2

A1 + B1GH =

PB1 = 1/4 [((1) E f1 ) + ((-1) C2 f1 ) + ((1) sxz f1 ) + ((-1) syz f1 )]

Page 63: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

63

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

OH

z

xy

Hf1 f2

A1 + B1GH =

PB1 = 1/4 [((1) E f1 ) + ((-1) C2 f1 ) + ((1) sxz f1 ) + ((-1) syz f1 )]

Page 64: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

64

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

OH

z

xy

Hf1 f2

A1 + B1GH =

PB1 = 1/4 [((1) E f1 ) + ((-1) C2 f1 ) + ((1) sxz f1 ) + ((-1) syz f1 )]

Page 65: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

65

H2O Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

OH

z

xy

Hf1 f2

A1 + B1GH =

f1 f2 f1 f2

PB1 = 1/4 [f1 - f2 + f1 - f2]

PB1 = 1/4 [2f1 - 2f2]

PB1 = 1/2 [f1 - f2]

HO

H

B1 H1s orbitals

PB1 = 1/4 [((1) E f1 ) + ((-1) C2 f1 ) + ((1) sxz f1 ) + ((-1) syz f1 )]

Page 66: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

66

H2O Orbital Diagram9. Draw SALC with central atom.

2s (A1)

pz (A1)py (B2)

px (B1)A1 B1

H2OA1

A1

A1

B1

B1

py (B2)

OH

z

y

H

x

Page 67: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

67

H2O Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

2s (A1)

pz (A1)

py (B2)px (B1)

A1 B1

A1

A1

A1

B1

B1

py (B2)

Page 68: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

68

Sidenote: Many Electron States

H2OA1

A1

A1

B1

B1

B2

• Determining the symmetry of many electron states from the symmetry of the individual one electron wavefunctions.

• Important for formulating spectroscopic selection rules between orbitals or electronic states.

• State symmetry found from the direct product of all electron symmetries.

Page 69: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

69H2OA1

A1

A1

B1

B1

B2

• Determining the symmetry of many electron states from the symmetry of the individual one electron wavefunctions.

• Important for formulating spectroscopic selection rules between orbitals or electronic states.

• State symmetry found from the direct product of all electron symmetries.

Sidenote: Many Electron States

Page 70: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

70H2OA1

A1

A1

B1

B1

B2

H2O: A1 A1 B2 B2 A1 A1 =

A1 B2 B2 A1 A1

B2 …etc.

or closed shell configurations cancel!

A1 A1 A1

A1 B2 B2

= A1 B2 B2

H2O: A1 A1 B2 B2 A1 A1 = A1 B2 B2

A1

Sidenote: Many Electron States

Page 71: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

71H2OA1

A1

A1

B1

B1

B2

H2O: A1 A1 B2 B2 A1 A1 = A1 B2 B2

Sidenote: Many Electron States

Page 72: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

72H2O+

A1

A1

A1

B1

B1

B2

H2O: A1 A1 B2 B2 A1 A1 = A1 B2 B2

H2O+: A1 A1 B2 B2 A1 A1 =B2 B2

Sidenote: Many Electron States

Page 73: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

73H2O-

A1

A1

A1

B1

B1

B2

H2O: A1 A1 B2 B2 A1 A1 = A1 B2 B2

H2O+: A1 A1 B2 B2 A1 A1 =B2 B2

H2O- = A1

Sidenote: Many Electron States

Page 74: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

74H2O*

A1

A1

A1

B1

B1

B2

H2O: A1 A1 B2 B2 A1 A1 = A1 B2 B2

H2O+: A1 A1 B2 B2 A1 A1 =B2 B2

H2O- = A1

Sidenote: Many Electron States

H2O* = B2

Page 75: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

75

(2s+1)G1 or 2

A1

A1

B2

H2O

A1

H2O+

B2

H2O-

A1

Sidenote: Spin MultiplicityH2O*

B2

A1

A1

B2

A1

A1

B2

A1

A1

B2

Spin Multiplicity:

s = 0

1A1

s = 1/2

2B2

s = 1/2

2A1

s = 0

1B2

A1

A1

B2

or

s = 1

3B2

Page 76: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

76

H2O Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

2s (A1)

pz (A1)

py (B2)px (B1)

A1 B1

A1

A1

A1

B1

B1

py (B2)

Ground State Symmetry of H2O is 1A1

Page 77: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

77

MO Diagrams from Group Theory• H-F

– diatomic, H = 1s; F = 2s, 3 x 2p

• H2O– triatomic, H = 2 x 1s; O = 2s, 3 x 2p

• CO2

– p bonding, O = 2s, 3 x 2p; C = 2s, 3 x 2p

• C2H4

– Fragmentation method

• NH3/Benzene– Real + Imaginary SALC

Page 78: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

78

CO2 Orbital Diagram1. Assign a point group

D2hD∞h

CO2D2h

Page 79: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

79

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)

C s, px, py and pz orbitalsO px, py and pz orbitals

CO2D2h

Page 80: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

80

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

z

C s, px, py and pz orbitalsO px, py and pz orbitals

CO2D2h

Page 81: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

81

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

Ag

z

C s, px, py and pz orbitalsO px, py and pz orbitals

CO2D2h

B3u B2u B1u

Page 82: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

82

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

Ag

z

C s, px, py and pz orbitalsO px, py and pz orbitals

CO2D2h

B3u B2u B1u

GOpz 2 2 0 00 0 2 2

GOpz Ag + B1u

Page 83: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

83

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

Ag

z

C s, px, py and pz orbitalsO px, py and pz orbitals

CO2D2h

B3u B2u B1u

GOpx 2 -2 0 00 0 2 -2

GOpx B3u + B2g

Page 84: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

84

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

Ag

z

C s, px, py and pz orbitalsO px, py and pz orbitals

CO2D2h

B3u B2u B1u

GOpy 2 -2 0 00 0 -2 2

GOpy B2u + B3g

Page 85: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

85

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry

Ag

C s, px, py and pz orbitals

CO2D2h

B3u B2u B1u

O px

py pz

B2u + B3g

B3u + B2g

Ag + B1u

Page 86: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

86

CO2 Orbital Diagram6. Combine orbitals by their symmetry

C s, px, py and pz orbitalsO px, py and pz orbitals

Page 87: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

87

Ag

CO2 Orbital Diagram6. Combine orbitals by their symmetry

C 2 x O

Ag

B3u B2u B1u

2s

2p

2pB2g

B3u

px py pz

B2u

B3g

Ag

B1u

px py pz

B2g B3g

OCO

Ag

B1u

B1u

B3u B2u

B3u B2u

Page 88: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

88

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

C 2 x O

Ag

B3u B2u B1u

2s

2p

2pB2g

B3u

px py pz

B2u

B3g

Ag

B1u

px py pz

B2g B3g

OCO

Ag

Ag

B1u

B1u

B3u B2u

B3u B2u

Page 89: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

89

CO2 Orbital Diagram7. Fill MOs with e-

C 2 x O

Ag

B3u B2u B1u

2s

2p

2pB2g

B3u

px py pz

B2u

B3g

Ag

B1u

px py pz

B2g B3g

OCO

Ag

Ag

B1u

B1u

B3u B2u

B3u B2u

4 e- 8 e-

Page 90: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

90

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

C 2 x O

Ag

B3u B2u B1u

2s

2p

2pB2g

B3u

px py pz

B2u

B3g

Ag

B1u

px py pz

B2g B3g

OCO

Ag

Ag

B1u

B1u

B3u B2u

B3u B2u

Page 91: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

91

CO2 Orbital Diagram8. Generate SALCs of peripheral atoms

z

GOpz Ag + B1u

f1f2

PAg = 1/8 [((1) E f1 ) + ((1) C2 f1 ) + ((1) C2 f1 ) … etc.]

PAg = 1/8 [4f1 + 4f2]

Page 92: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

92

CO2 Orbital Diagram8. Generate SALCs of peripheral atoms

z

Page 93: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

93

CO2 Orbital Diagram9. Draw SALC with central atom.

C 2 x OOCO

Page 94: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

94

CO2 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

Page 95: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

95

• H-F– diatomic, H = 1s; F = 2s, 3 x 2p

• H2O– triatomic, H = 2 x 1s; O = 2s, 3 x 2p

• CO2

– p bonding, O = 2s, 3 x 2p; C = 2s, 3 x 2p

• C2H4

– Fragmentation method

• NH3/Benzene– Real + Imaginary SALC

MO Diagrams from Group Theory

Page 96: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

96

Two different approaches (D2h)

Ethene Orbital Diagram

C1 + C2

H1-4

then combine

CH2

then combine

C CH

HH

H

z

y

x

C CH

HH

HC C

H

HH

H

J. Chem. Edu. 2004, 81, 997

Page 97: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

97

C CH

HH

H

Ethene Orbital Diagram

Page 98: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

98

Ethene Orbital Diagram

C CH

HH

H

Page 99: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

99

C CH

HH

H

Ethene Orbital Diagram

Page 100: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

100

• H-F– diatomic, H = 1s; F = 2s, 3 x 2p

• H2O– triatomic, H = 2 x 1s; O = 2s, 3 x 2p

• CO2

– p bonding, O = 2s, 3 x 2p; C = 2s, 3 x 2p

• C2H4

– Fragmentation method

• NH3/Benzene– Real + Imaginary SALC

MO Diagrams from Group Theory

Page 101: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

101

N

HH

H

NH3 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

z

x

y

GH 3 0 1

H s orbitalsN s, px, py and pz orbitals

NH2C3v

A1 + EGH

A1 + E

Page 102: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

102

N

HH

H

NH3 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

z

x

y

H s orbitalsN s, px, py and pz orbitals

NH2C3v

A1 + E

A1 E A1

Page 103: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

103

NH3 Orbital Diagram6. Combine orbitals by their symmetry

H s orbitalN s, px, py and pz orbitals

Page 104: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

104

E

A1

NH3 Orbital Diagram6. Combine orbitals by their symmetry

3 x H N

s (A1)

pz (A1) py, px (E)EA1

NH3

A1

A1

E

Page 105: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

105

E

A1

NH3 Orbital Diagram

3 x H N

s (A1)

pz (A1) py, px (E)EA1

NH3

A1

A1

E

7. Fill MOs with e-

3 e- 5 e-

Page 106: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

106

NH3 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

E

A1

s (A1)

pz (A1)

py, px (E)EA1

A1

A1

E

Page 107: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

107

NH3 Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the atomic orbitals in the molecule into sets which are equivalent by symmetry

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

f1f2

A1 + EGH =

N

HH

H

z

x

y

f3

Page 108: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

108

8. Generate SALCs of peripheral atoms

NH3 Orbital Diagram

Separate classes

Page 109: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

109

8. Generate SALCs of peripheral atoms

NH3 Orbital Diagram

f1f2

N

HH

H

z

x

y

f3

Page 110: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

110

8. Generate SALCs of peripheral atoms

NH3 Orbital Diagram

PA1 ≈ ((1) E f1 ) + ((1) C3+f1 ) + ((1) C3

-f1 ) + ((1) s1 f1 ) + ((1) s2 f1 ) + ((1) s2 f1 )

f1 f2 f3

PA1 ≈ [f1 + f2 + f3 + f1 + f3 + f2 ]

PA1 ≈ [ 2f1 + 2f2 + 2f3]A1 H1s orbitals

f1 f3 f2

PA1 ≈ [ f1 + f2 + f3] f1f2

HH

Hf3

Page 111: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

111

8. Generate SALCs of peripheral atoms

NH3 Orbital Diagram

PE ≈ ((2) E f1 ) + ((-1) C3+f1 ) + ((-1) C3

-f1 ) + ((0) s1 f1 ) + ((0) s2 f1 ) + ((0) s2 f1 )

f1 f2 f3

PA1 ≈ [2f1 - f2 - f3] One of the E orbitals

0 0 0

f1f2

HH

Hf3

What about the other E orbital?

Page 112: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

112

8. Generate SALCs of peripheral atoms

NH3 Orbital Diagram

Page 113: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

113

8. Generate SALCs of peripheral atoms

NH3 Orbital Diagram

f1f2

HH

Hf3

3 different E SALCS have been generated but they are all similar.

Use subtraction or addition to generate new SALC.

f1f2

HH

Hf3

Page 114: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

114

E

A1

NH3 Orbital Diagram

3 x H N

s (A1)

pz (A1) py, px (E)EA1

NH3

A1

A1

E

9. Draw SALC with central atom.

HH

HH

HH

HH

H

Page 115: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

115

NH3 Orbital Diagram9. Draw SALC with central atom.

3 x HN

HH

HH

HH

HH

H

Page 116: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

116

NH3 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

Page 117: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

117

• H-F– diatomic, H = 1s; F = 2s, 3 x 2p

• H2O– triatomic, H = 2 x 1s; O = 2s, 3 x 2p

• CO2

– p bonding, O = 2s, 3 x 2p; C = 2s, 3 x 2p

• C2H4

– Fragmentation method

• NH3/Benzene– Real + Imaginary SALC

MO Diagrams from Group Theory

Page 118: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

118

Benzene MOs and SALC

0 nodes

1 node

2 nodes

3 nodes

Page 119: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

119

C6H6 Orbital Diagram1. Assign a point group2. Choose basis function (orbitals)

C6H6D6h

only p bondingC pz orbitals

Page 120: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

120

C6H6 Orbital DiagramC6H6D6h

only p bondingC pz orbitals

1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

D6h E 2C6 2C3 C2 3C′2 3C″2 i 2S3 2S6 σh 3 σd 3 σv

Гπ

z axis

C′2C″2

C6

6 0 0 0 -2 0 0 0 0 -6 0 2

Page 121: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

121

C6H6 Orbital DiagramC6H6D6h

only p bondingC pz orbitals

D6h E 2C6 2C3 C2 3C′2 3C″2 i 2S3 2S6 σh 3 σd 3 σv

Гπ

z axis

Gp: B2g + E1g + A2u + E2u

C′2C″2

C6

1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation

6 0 0 0 -2 0 0 0 0 -6 0 2

Page 122: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

122

C6H6 Orbital DiagramC6H6D6h

only p bondingC pz orbitals

D6h E 2C6 2C3 C2 3C′2 3C″2 i 2S3 2S6 σh 3 σd 3 σv

Гπ 6 0 0 0 -2 0 0 0 0 -6 0 2

C′2C″2

C6

Gp: B2g + E1g + A2u + E2u

1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry

Page 123: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

123

C6H6 Orbital Diagram6. Combine orbitals by their symmetry

E1g

B2g

A2u

E2u

Page 124: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

124

C6H6 Orbital Diagram

E1g

B2g

A2u

E2u

7. Fill MOs with e-

6 pz orbitals = 6 e-

Page 125: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

125

1. Assign a point group2. Choose basis function (orbitals)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Combine orbitals by their symmetry7. Fill MOs with e-

8. Generate SALCs of peripheral atoms9. Draw peripheral atoms SALC with central atom orbital to

generate bonding/antibonding MOs.

C6H6 Orbital DiagramC6H6D6h

only p bondingC pz orbitals

Gp: B2g + E1g + A2u + E2u

Page 126: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

126

Simplify usingC6!

C6H6 Orbital Diagram8. Generate SALCs of peripheral atoms

C6D6h

Page 127: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

127

Simplify usingC6!

C6

D6h

C6H6 Orbital Diagram8. Generate SALCs of peripheral atoms

Page 128: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

128

C6H6 Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

A orbital

Page 129: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

129

C6H6 Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

Page 130: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

130

C6H6 Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

B orbital

Page 131: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

131

C6H6 Orbital Diagram

E1

B

A

E2

8. Generate SALCs of peripheral atoms

B ≈ B2g

A ≈ A2u

Page 132: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

132

C6H6 Orbital Diagram8. Generate SALCs of peripheral atoms

To generate SALCs, the steps are:

1) group the similar AOs

2) generate the rep. then irr. rep. for each set

3) Use projection operator for one basis

ok

ok

What?

Page 133: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

Contain imaginary components; the real component of the linear combination may be realized by taking ± linear combinations:

C6H6 Orbital Diagram

133

Page 134: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

134

Contain imaginary components; the real component of the linear combination may be realized by taking ± linear combinations:

For C6 point group:

or from Euler’s formula

C6H6 Orbital Diagram

Page 135: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

135

Contain imaginary components; the real component of the linear combination may be realized by taking ± linear combinations:

divide out and remove prefactor constant (-i√3)

C6H6 Orbital Diagram

Page 136: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

136

What are the pictorial representation of the SALC’s?

C6H6 Orbital Diagram

Page 137: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

137

What are the pictorial representation of the SALC’s?

C6H6 Orbital Diagram

Page 138: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

138

Projection Operator: BenzeneWhat are the pictorial representation of the SALC’s?

0 nodes

1 node

2 nodes

3 nodes

Page 139: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

139

Orbital Diagrams• Orbital Interactions• Molecular Orbital Theory• Orbital Energies• MO Diagrams

– HF, H2O, CO2, C2H4, NH3, Benzene

• SALC• Hybridization• Symmetry and Reactivity

Page 140: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

140

• H-F– diatomic, H = 1s; F = 2s, 3 x 2p

• H2O– triatomic, H = 2 x 1s; O = 2s, 3 x 2p

• CO2

– p bonding, O = 2s, 3 x 2p; C = 2s, 3 x 2p

• C2H4

– Fragmentation method

• NH3/Benzene– Real + Imaginary SALC

MO Diagrams from Group Theory

Page 141: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

141

Side Note: Orbital HybridizationIn chemistry, hybridization is the concept of mixing atomic orbitals into new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds.

CH

Page 142: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

142

Miessler and Tarr, Inorganic Chemistry

s + p Hybrid Orbitals

Page 143: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

143

s + p + d Hybrid Orbitals

Page 144: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

144

1. Assign a point group2. Choose basis function (s bonds)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

BF3 HybridizationSteps to determine the hybridization of a bond.

BF3D3h

s bonds

D3h

Гs 3 0 1 3 0 1

Page 145: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

145

4. Reduce to irreducible representation

BF3 HybridizationSteps to determine the hybridization of a bond.

BF3D3h

s bonds

Гs 3 0 1 3 0 1

Gs: A1’ + E’

Page 146: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

146

6. Compare symmetry of irr. rep. to central atom MOs

BF3 HybridizationSteps to determine the hybridization of a bond.

BF3D3h

Gs: A1’ + E’

B (s) = A1’

B (px)= E’

B (py)= E’

B (pz)= A2”

Page 147: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

147

6. Compare symmetry of irr. rep. to central atom MOs

BF3 HybridizationSteps to determine the hybridization of a bond.

Gs: A1’ + E’ s = A1

z

y

x

z

y

x

z

y

x

px = E’ py = E’

z

y

x

y

z

y

x

pz = A2”

sp2 hybridization (s, px, py)

Page 148: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

148

Orbital Diagrams• Orbital Interactions• Molecular Orbital Theory• Orbital Energies• MO Diagrams

– HF, H2O, CO2, C2H4, NH3, Benzene

• SALC• Hybridization• Symmetry and Reactivity

Page 149: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

149

Hybridization

1. Assign a point group2. Choose basis function (s bonds)3. Apply operations

-if the basis stays the same = +1-if the basis is reversed = -1-if it is a more complicated change = 0

4. Generate a reducible representation5. Reduce to irreducible representation6. Compare symmetry of irr. rep. to central atom MOs

Steps to determine the hybridization of a bond.

Page 150: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

150

(2 + 2) cycloaddition

Symmetry and Reactivity

p orbitals2 x ethylene cyclobutane

s bonds

Orbital symmetry is retained during the reaction!

Page 151: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

151

(2 + 2) cycloaddition

Symmetry and Reactivity

Page 152: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

Symmetry and Reactivity

2 bonding + 2 antibonding e-

Thermally Forbidden(~115 kcal/mol)

3 bonding + 1 antibonding e-

Photochemically Allowed

Thermal Reaction

Photo Reaction

Page 153: Part 2.7: Orbital Diagrams 1. Orbital Diagrams Orbital Interactions Molecular Orbital Theory Orbital Energies MO Diagrams – HF, H 2 O, CO 2, C 2 H 4,

153

Orbital Diagrams• Orbital Interactions• Molecular Orbital Theory• Orbital Energies• MO Diagrams

– HF, H2O, CO2, C2H4, NH3, Benzene

• SALC• Hybridization• Symmetry and Reactivity