27
P RT I H T TR NSF R FOULING

Part I Heat Transfer Fouling

Embed Size (px)

Citation preview

Page 1: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 1/27

P RT

I

H T

TR NSF R

FOULING

Page 2: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 2/27

Page 3: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 3/27

— —

pr

es

su

re dro

ps m

ay

in

cr

eas

gr

ea

ter t

empe

ratu

re

d

if

fer

en

ce

s

m

ay b

e

re

qu

ir

ed

to

main

tain

the s

ame

d

uty

shu

t—d

own

an

d

cl

e ni

ng

co

sts be

come

ex

ces

si

ve

 

Hea

t

t

ran

sf

er

f

ou

lin

g

invo

lves

si

mult

aneo

us

h

ea

t  m

ass

a

nd

m

ome

ntum

tra

ns

fe

r

with

che

mica

l

and

bi

olo

g

ica

l pro

cesse

s

a

lso

ta

king

pla

ce

 

A

lthou

gh

the

litera ture

on

fouling

is

found

in a

wide

variety

of

journals

the

subject

ap

pears

to fa

ll

int

o

t

he

d

is

ci

pli

ne o

f ch

emic

al

e

ng

in

ee

rin

et

iled

re

view

s of

h

e t

t

ran

sf

er

fo

ul

in

g  r

e

few an

d

far

be

twee

n

In

 

9 8

Bad

ger

an

d

B

an

ch

er

o

3

r

evie

wed

sca

li

ng

in

d

es

ali

na

tio

In

 96

8 W

a

tk

in

son

 

e

view

ed

t

he

su

bj

ec

t

of

fo

uli

ng

b

rie

fly

 

I

n

 9

69  

ot

t5

re

view

ed

in d

et

ail

t

he

fo

u

lin

g of

h

eat

ex

chan

ge

e

quipm

ent

with

sp

ec

ia

l r

ef

ere

nc

e

t

o

co

olin

g

wa

ter

syst

ems

In  9

t

t

6

al

so

rev

iew

ed

ga

s

side

fo

uli

ng

in

h

e t exc

han

ge

s

ystem

s; air

—co

oled

h

eat

ex

changers

and

oil—fired

heaters

In

 97 Bott

and

W

al

ke

r

d

iscus

sed

f

ou

lin

g

in

heat

t

ra

nsf

er equi

pme

nt

in

g

en

era

l

In  97

Ta

borek

e

t

 

l

 

c

onsi

dere

d

f

ou

lin

g

i

n

coo

ling

wa

ter

syst

ems and

men

tion

ed

the

othe

r mai

n

ty

pes

of

fo

uli

ng

 

In  973

 

o

pk

in

s

7

and

W

alk

er

O

rev

iewe

d

fo

uling

in g

en

er

al

In

 975

 

ot

tO

 

s

urve

yed

he t

tra

ns

fer f

ou

lin

g  In

 

976

S

ui

to

r et  

l

revi

ewed

the

his

to

ry

a

nd

sta

tu

s

o

f

rese 

rch

in

fou

li

ng

of he

at

e

xcha

nger

s

in

co

oling

wat

er

s

erv

ic

e

Page 4: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 4/27

 

C

LAS

SIFiC

AT

ION

2

 1

I

ntr

od

uc

tio

n

M

ost

he

at

t

ran

sf

er

pr

oc

es

ses

at s

ol

id

su

rf

ac

es

a

re

su

bje

ct

ed

to

fou

li

ng

i

n o

ne

w

ay

o

r a

no

th

er. M

o

re

ov

er

  num

erous

pro

ce

ss

es

res

ul

t

in

th

e

ac

cu

m

ul

ati

on and

fo

rm

a

tio

n of

m

at

eri

als

a

t

su

rfa

ce

s  w

ith

o

ut

h

ea

t

tr

an

sfe

r ev

en

ta

ki

ng

p

lac

e.

Fo

r e

xa

m

ple

 

pa

rti

cle

su

sp

en

sio

ns an

d s

up

er

sat

ur

ate

ds

ol

uti

on

s

m

ay

r

es

ul

t

in

de

po

si

tio

n

o

n

un

he

at

ed

su

rf

ac

es.

The

te

rm

s

f

ou

lin

g

and

de

po

si

tio

n a

re

the

re

fo

re

us

ed in

te

rc

ha

ng

ab

ly in

man

y in

sta

nc

es

.

Fo

ul

ing

  a

s d

ef

in

ed

ab

ov

r

efe

rs t

o

th

e

acc

um

u

la

tio

n

an

d

fo

rm

a

tio

n

o

f

su

b

sta

nc

es

th

at

a

ff

ec

t

t

he

t

he

rm

al

p

erf

or

m

an

ce of

s

ur

fa

ces

.

A

lt

ho

ug

h t

he de

po

si

tio

n

of

m

at

er

ial

s a

t

u

nh

ea

ted s

urf

ac

es do

es

no

t

st

ri c

tly

c

on

sti

tut

e

fo

uli

ng

  th

e

ba

sic a

cc

um

u

la

tio

n

p

ro

ce

ss

es

in man

y

c

as

es

 

m

us

t

be

es

se

nti

al

ly the

sam

e

Be

ca

us

e

f

ou

lin

g

i

s

su

ch

a

co

m

pl

ex p

heno

meno

it

m

ust

be

w

or

th

w

h

ile

t

o at

tem

p

t

som

e c

las

si

fic

at i

on

  to

id

en

tif

y a

re

as

o

f

co

nc

er

n and

s

tim

u

lat

e

fur

th

er

e

xp

er

im

en

ta

l

s

tud

ie

s.

T

hi

s w

as

rec

o

gn

ise

d

by

Bo

tt

an

d

W

a

lke

r

and T

ab

or

ek e

t

 

l

th

at l

ist

ed

s

ome b

ro

ad

ca

teg

o

rie

s

o

f

f

ou

lin

g

an

d m

e

nt

ion

ed

th

e m

a

in

va

ria

bl

es

.

  im

p

ort

an

t co

ns

ide

ra

tio

n m

us

t

a

ls

o be

t

he fi

eld

o

f

a

ct

ivi

ty

or

in

du

str

y

w

he

re de

po

sit

io

n

a

nd

fo

uli

ng

o

cc

ur

 

2 2

Type

s

o

f

F

ou

li

ng

On

e

fa

ct

or

t

ha

t

is

i

mp

or

ta

nt

i

n fou

li

ng

  is

th

e

m

ode

o

f

h

ea

t

tra

ns

fe

r;

in

vo

lvi

ng

se

ns

ibl

e

or

1

at

er

t he

ats

.

F

ou

lin

g

by a s

in

gle

ph

as

e

flu

id i

s

l

ike

ly

to dif

fe

r

fro

m th

at

of a

bo

ilin

g o

ne

  H

owe

ver

f

or

th

e

pr

es

en

t p

urp

o

ses

 

f

ou

li

ng

at

b

oi

lin

g

and

n

on

 b

oi

lin

g s

ur

fac

es

w

il

l

be

co

ns

id

ere

d

to

ge

th

er. I

t

sh

ou

ld

be

ap

pr

ec

iat

ed

t

ha

t m

o

st r

ea

l

de

po

si

ts c

on

ta

in

fou

la

nt

s a

ris

in

g

fro

m s

ev

er

al

s

ou

rc

es

; so

lub

il

ity

 

p

art

icu

la

te

  re

ac

ti

on

e

tc

. N

ev

ert

he

le

ss 

it

is

c

o

nv

en

ien

t

to d

is

tin

gu

ish b

et

we

en

th

e f

oll

ow

in

g mai

n

t

yp

es

:

So

lu

bil

ity f

ou

iin

c

o

cc

ur

s

w

hen a

su

bs

ta

nc

e co

mes

ou

t

o

f

s

olu

ti

on

d

ue to

he

at

ing

or

co

oli

ng

.

Th

e d

ep

os

iti

on

o

f

i

nv

er

se

s

ol

ub

ili

ty

ino

rg

an

ic s

al

ts

on

he

at

ed

sur

fa

ce

s

us

ua

lly

ca

fle

d

s

ca

lin

g’

 

be

lon

g

s

to

t

his

ty

pe

of

fo

u

lin

g.

S

ca

lin

g

is

cc

m

on

i

n b

oi

le

r

l

 c

o

oli

ng

w

at

er s

y

s

t

 

m

s

 

0

 

7

8

 

de

sa

lin

at

io

n

p

r

o

ce

s

se

s

 

8

 

7

an

d

oil

w

ell

op

e

ra

t

io

n

9

 

S

u

bs

tan

ce

s

inv

es

tig

at

ed

i

nc

lud

e

cal

ci

um

c

 

r

b

o

n

 

t

e

 

5

4

8

 

c

alc

iu

m

su

l

ph

a

te

 

9

 

an

d

mag

nesiu

m

h

ro

xi

e

 

In

or

ga

ni

c

s

ub

st

an

ces

wi

th

norm

 l

s

olu

bi

lit

y

de

po

si

t

on

c

oo

le

d

s

ur

fac

es

; s

ili

ca

in

g

eo

the

rm

al

waters

is

such

a

syst m 

a

ra

ffi

n

waxe

s

in c

ru

de

oil

s

and

h

y

dro

ca

rb

on so

lv

en

ts

als

o

dis

pl

ay

n

orm

al

Page 5: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 5/27

—4

solub

ility

 

nd

give rise

to

b

oth

d

epos

ition and

fou li

ng

p

robl

ems

8

9

.

eth

ods

to

red

uce fou

ling are both

che

mica

l

a

nd me

chan

ical

in

n  tu

re

8

 

Pa

rticu

late

fou

ling

i

s

wher

e

par

tic le

s

susp

ende

d

i

n liqu

ids

or g

ases d

epos

it

out

a

nd

adh

ere

to

surf

aces. Co

nside

rable wo

rk ha

s been don

e

on

aero

sol

deposition on

unheated

surf  ces

8

Studies

at

heated

surfaces

have

also

b

een

p

erfo

rmed

 

678

.

The de

posit

ion and

fou

ling

of

partic

ulat

e

cor

rosio

n

pro

duct

s in b

oile

r w

aters

and

reac

tor

c

oolan

ts

h

ave

been

exten

sive

ly

studi

ed

9

Pa

rticu

late

foul

ing syst

ems stu

died

inc

lude

s

and-

wate

r

susp

 nsio

ns5

 

part

icles

in

gas

o l

s46 

h

ema

tite in

w  te

r77

 

an

d

s

ome

d

esali

natio

n

s

ys

te

ms

 

2

8

.

P

articu

late

de

posit

ion

inc lu

des

se

di m

enta

tion

.

Reaction

fouling

occurs

when

 

chemical

reaction  transformation 

occurs

at

he

at

tra

nsfe

r su

rfac

es

a

nd fo

rm dep

osits

. C

okin

g

the ther

mal

deco

mpo

sition

of

heav

y

hydr

ocar

bons

 

occ

urs

wi

dely

in in

dust

ry 

0

 6

 

R

eact

ion f

oulin

g i

s

co

rmo

n

in

th

e p

etro

leum in

 u

st

ry 

l’

0

 

8

 

9

 

Freo

ns are k

now

n

to form

de

posi

ts

b

y

therm

al

de

com

posit

ion

i

n

poo l

  o

iling

 

.

Biolo

gica

l

fou

ling is w

hen or

gani

sms

grow

n

at

hea

t

tra

nsfe

r

surf

aces.

Thi

s

type

of

foul

ing is

co

niiio

n

i

n coo

ling

wa

ter

syst

erns

 m.

Co

rros

ion fo

uling

o

ccurs

wh

en

heat tr

ansfe

r s

urfac

es

corro

de

and

chan

ge th

ei r

th

erm

al

c

hara

cteri st

ic s.

2

.3

V

aria

bles

T

he

m

ain var

iable

s t

ha t a

ffec

t

d

eposi

tion and

f

oulin

g have

been d

iscu

ssed

by

seve

ral

 u

tho

rs

 

7

80 

The

mos

t

ge

neral

obs

ervat

ion

is tha

t

fo

ulin

g of

h

eat

e

xcha

nger

s

incr

ease

s with ti

me  us

ually in a

n

a

sym

ptoti

c fash

ion.

 n

c.s t

of

the

ob iished

studies

 

fouling

is

d

irect

ly

proportiona

l

to

fou

lant

c

once

ntra

tion.  ow

ever

the

str

ength

of co

olin

g

w

ater depo

sits

has be

en

s

hown

t

o de

c’ees

e with

de

creas

ing depo

sit puri

ty

The

effe

cts of

t

emp

eratu

re

in

d

ecsit

ioc an

d

fou

ling

de

pend grea

tly

o the typ

e

of foul

ing oc

curin

g.

In

s

u  ty

fo ul

in g fo

r exam

ple

 

th

e

te

mpe

ratur

e

dif f

erenc

e

be

twee

n

b

ulk

 n

d

su rfa

ce

resu

lt

in

th

e co

ncen

tratio

n

d

rivin

g

f

orce

c

aus i

ng   e

posi

tion

emp

erat

ure

ofte

n

en te

rs d

ep os

ition

rate

s

in

 n  

rrhe

nius—

typ

e

ex

pres

sion

 6 7

1

4 27

 95 

Flui

d

v

eloci

ty

i

s

pro

bably th

e

most

imp

ortan

t

var

iable

when s

tudy

ing depo

sitio

n

Page 6: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 6/27

and

f

ou

lin

g

.

It

eff

ec

ts

bo

th

the

con

vect

ive

tra

ns

po

rt

of

fou

la

nt

s

t

owar

d

s

ur

fa

ces

an

d

the

she

ar

st

res

se

s

w

hich

d

ep

os

its

are

s

ubje

cted

t

o.

The

ov

era

ll

ef

fec

t is th

ere

fo

re co

mple

x a

s

w

ill be

in

dic

at

ed in S

ectio

n

 

belo

w.

O

ther

v

ar

ia

ble

s

of in

ter

es

t in

clud

e

hea

t

fl

ux

  tub

e

dia

mete

r

and

sur

fa

ce

rou

ghne

ss 

p

ar

tic

le di

am

e

ter

 

flu

id and

fo

ul

an

t

ch

emi

stry

an

d

th

e us

ual

ph

ysica

l

p

ro

pe

rti

es

.

2.4

I

nd

us

tri

es of I

nte

re

st

Sinc

e

f

ou

li

ng oc

curs

in so

m

any

in

du

str

ie

s  p

roba

bly

all

pro

cess

in

du

st

rie

s it

is

p

erhap

s

re

le

va

nt to co

nside

r

the

main

fi

eld

s

of

ac

tiv

ity whe

re th

e

phe

nom

ena

may

a

ct a

s

a c

on

st

ra

int

on t

he

ce

ntr

al

pr

oc

ess

. D

epo

sition

a

nd

fo

uli

ng

occu

r

in

the

foll

owin

g main

f

ie

lds

  Po

wer

gene

ratio

n

whe

re

high

qu

ali

ty feed

w

ater

s

giv

e

ris

e to

fo

uli

ng

w

hen s

ubje

cted to

hi

gh t

empe

ratu

re

c

o

nd

itio

n

s.

C

omb

ustio

n

products may

also

cause

fouling

. D

es

ali

na

tio

n wher

e

r

aw

or tr

ea

ted

sea

—w

aters

giv

e

ri

se

to

fo

ul

ing at mo

st

co

nd

iti

on

s.

Pet

roleu

m

in

du

st

ry

 

wher

e d

ep

os

iti

on

occ

urs in

flo

w

lin

es

and

f

oulin

g

in th

e

vari

ous hy

droc

arbo

n

p

ro

ces

se

s.

Coo

ling

s

er

vic

as

p

ra

cti

ce

d

in

almo

st e

very

i

nd

us

try

.

Raw an

d tr

ea

ted

cool

ing

w

ater

s

are use

d e

xt

en

siv

el

y and

giv

e

r

ise

to

fo

u

lin

g

a

t n

orm

al

o

pera

ting

co

nd

it

ion

s.

Air cool

ed

ex

chan

gers

m

ay

giv

e

ris

e

to

p

ar

tic

ul

ate fo

ul

ing

.

In r

ec

en

t ye

ars ener

gy

cons

erva

tion

h

as

be

come

m

ore

and

mo

re

im

por

tant

in

industry 

One

way

of

conserving

ener

gy

is

to exc

hang

e h

eat

b

etwe

en

pro

cess

str

ea

is ; hot r

ej

ec

t

h

eats

cold

in

le

t Va

riou

s

w

aste

s m

ay

also

be

comb

uste

d to ex

tr

ac

t e

nerg

y.

  o

wev

er

m

any

en

ergy

c

onse

rvati

on meas

ures

m

ay

be

s

ub

je

ct

to

fo

uli

ng

.

F

ouli

ng m

ay a

lso

put

a

c

on

st

rai

nt

on

alt

er

na

tiv

e en

ergy

s

ourc

es. G

eothe

rma

l flu

id

s c

onta

in

c

on

si

de

ra

ble amo

unts of

si l

ica

t

ha

t d

ep

o

sit

on c

old

s

urf

ac

es durin

g

he

at ex

tr

ct

io

The e

xtr

ac

tio

n

of

energ

y

f

rom

ocea

n

th

erma

l g

ra

di

en

ts

c

ould

b

e

li

m

ite

d

by

sea

 wat

er

f

ou

l

in

g

 

Th

e

m

ain

foul

ing

ef

fe

cts in

i

nd

us

try

; pres

sure

drop

i

nc

rea

se

s

and

g

re

at

er

te

mper

ature

differences required for some

duty

will

in

some

cases

also

result

in

increased

u

se o

f en

ergy

.

T

here

fore

f

ou

lin

g

mu st

be

an

i

mpo

rtant

co

ns

tra

in

t

o

n

en

ergy

c

on

se

rva

tio

n

.

 n

t

he

da

iry i

nd

us

try

f

oulin

g

in

m

ilk

trea

tmen

t

pro

cess

es i

s of

g

re

at

p

rac

ti

cal

im

p

ort

  n

ce

 l

 

Page 7: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 7/27

 

PRE

VIO

US STU

DIES

3

I

nt

rod

u

cti

on

I

n the p

re

se

nt s

ec

tio

n,

only

th

ose s

tu

die

s

deali

ng

sp

ec

ifi

c l

ly

with h

ea

t

tr

  n

sfe

r

f

ou

lin

g

wil

l be

co

nside

red

Non

-foul

ing

stu

di

es

suc

h

as

ae

rosol

d

ep

os

iti

on

, are

b

et

ter

c

onsi

dere

d

s

ep

ar

ate

ly

. Pre

viou

s s

tud

ie

s

on hea t

t

r

ns

fer

f

ou

lin

g

wi

ll be

co

nsid

ered

i

n two

gro

ups;

d

ep

os

iti

on

-r

ele

as

e

st

ud

ies

and

gene

ral

s

tu

die

s.

Th

e fo

rme

r

gr

oup

dea

ls

with he

at

t

nsf

er

fo

ul

ing w

here

th

e

fo

ul

an

t bu

ild u

p

m

ay b

e re

pr

es

en

ted b

y

a

simp

le m

ass

b

alanc

e

in

th

e

fo

rm

of

two

fu

nc

ti

on

s; d

ep

os

itio

n and

r

ele

as

e.

Th

e

gene

ral

s

tud

ie

s

gr

oup

d

eals

with

the

rem

ainin

g

s

itu

  t

io

ns

 

The

d

ep

o

sit

ion

-r

ele

as

e

app

roac

h

h

as

m

et

w

ith

so

me

succ

ess

in pr

ed

ict

in

g

h

ea

t

t

r n

sf

er

fo

ul

ing

.

This

su

ccess

see

ms

t

o ar

gue

f

or

fu

rth

er

d

evelo

pme

nts

o

f

sui

ta

ble

mo

dels.

3.

2

D

e

po

sit

io

n-r

el

ea

se

Kern

and

S

ea

to

2

 

o

bser

ved

th

at

the f

ou

lin

g

r

esi

sta

nc

e

of

man

y he

at

exc

hang

ers

in

oi

l

re

fin

er

ies a

ppea

red

t

o

inc

re

as

e

as

ym

pt

ot

ica

lly

w

ith

tim

e.

Th

ey

su

gges

ted

th

t t

he

tim

e d

epen

denc

e

of

the

f

ou

lin

g

re

si

sta

nc

e co

uld

be

appr

oxim

ated

by

th

e e

mpir

ical

ex

pres

sion

:

Rf

 

[

ex

p -

St

)]

  2

wh

ere

Rf

a

nd

  w

ere

the fo

ul

in

g r

es

ist

an

ce

s  

t

an

y t

ime t a

nd

a

t

a

sym

ptoti

c

co

nditi

ons

r

es

pe

cti

ve

ly

,

a

nd

 

a

c

on

st

an

t.

  o

exp

erim

ental

data

we

re

p

resen

ted

but

it

was

sta

te

d

t

h

t t

he

flu

id

v

el

oc

ity

was

an

i

mpor

tant

va

ria

bl

e

eff

ec

tin

g

fo

u

lin

g.

Kern  n

Seato n 

proposed

a

theoretical

fouling

model

where

the

net

rate

of

 

as

e

xpre

ssed

as

th

e

d

if

fer

en

ce

betw

een

the

r  t

e

o

f

de

po

sit

io

n and

th

e

rat

e

o

r

 e

as

e.

Th

e mo

del

was es

sen

ti

  ll

y

a

m

ass b

alan

ce

e

xp

res

si

on

:

 

k

 

k

 

wher

e:

 

de

po

si

tio

n

c

oe

ffi

cie

nt

k

 

release

coefficient

x

 

d

ep

os

it

thi

ckne

ss

Page 8: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 8/27

 —

c

fo

ulan

t

conc

entra

tion

 

m

ass fl

ow ra

te

r

  sh

ear stre

ss

a

t

wall

By

ass

umin

g

c and

 

cons

tant

an

d

x<<

d

 tub

e

d

iam

eter 

, K

ern and

Seat

on w

ere

able

to

in

tegra

te

E

quat

ion 3 a

nd ob

tained

a

n

expression

tha t

gave

the

deposit

thi

ckne

ss

as a fun

ctio

n of

tim

e:

k

c

 

x

  [

exp

-

k  

4

k

 

Th

is

exp

ress

ion is of t

he

sam e ge

nera

l

fo

rm

a

s

Equ

ation

i.

T

he

i

nit ia

l

ra

te o

f dep

ositi

on

and

the

asym

pto

tic fou

ling

resi

stanc

e we

re

obtained

by putting

x

 

and

 dx/dt

in Equation

3,

respectively.

  ‘

 

....

5

\d

tj

 

k

c  

6

K

ern

and Se

aton

 l

 

sho

wed

that

w

hen

th

e

dep

osit

thi

ckne

ss

x w

as

signi

fican

t

in rela

tio n

to tube

di

amet

er

d,

Equ

ation 3

is no

t

d

irect

ly

inte

grab

le.

Ke

rnl

has

d

erive

d the

appr

opri

ate solu

tion

of

th

e

dep

osit

ion-r

eleas

e

ex

pres

sion for

the

ca

se o

f co

nstan

t

pr

essu

re

drop

an

d c

once

ntrat

ion

bu

t

v

ariab

le

ma

ss

fl

owra

te.

W

atk

inson

C

 

stud

ied the fou

ling

o

f

a

heate

d

stai

nless

ste

el tub

e

by

a

h

eavy

ga

s

oi 9

6

a

nd a sa

nd-w

ater

s

usp 

nsion

 

Th

e

ma

in

pu

rpos

e of t

he

e

xper

imen

ts

was

to

inve

stiga

te

the

eff

ec t

o

f mas

s

flo

wra

te

 

on

f

oulin

g. W

atk

inso

n

oun

d th

at,

at

the

ex

perim

ent

al

c

ondi

tions

g

iven

in

Tabl

e 1,

the h

eated

tub

e

f

ouled

in a

n asym

ptot

ic fash

ion.

 he

f

oulin

g resi

stanc

e

was

c

orrel

ated

to

Eq

uatio

n

2,

an

d

in Tabl

e

 

the mai

n relat

ionsh

ips

are gi

ven.

T

he

h

eat fl

ux was

no

t speci

fied.

Add

ition

al

exp

erim

ents

w

ere c

arrie

d ou

t

to

inv

estig

ate

t

he

effec

t

of tube

wa

ll temp

eratu

re

on

g

as

o

il f

oulin

g a

t co

nsta

nt

m

ass

flow

c

ondi

tions

. T

he in i

tial

rat

e of depo

sitio

n wa

s

c

orrel

ated

to

t

empe

ratu

re

by

an

Arr

heni

.s-typ

e

exp

ress

ion.

Th

e eff

ec t

of f

lowr

ate on san

d-wa

ter

foul

ing w

as

fo

und

to b

e mor

e

c

omp

lex

th

an in

dica

ted

i

n

T

able

 

When  

0.1

36

kg

/s,

bo

th

S

and

 dR

f/dt

to

we

re

fo

und to decrease

d

rastic

ally wit

h flow

rate.

This

criti

cal

i

o;ira

te

was

eq

uiva

lent

to

bulk

velo

city

2.

29

rn s

and m

ass

flu

x

Page 9: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 9/27

 8

2341 kg/m  However,

R showed the

same

flowrate

dependence

at al l values.

TABLE

 

Experimental

Conditions l 

roperty

Gas Oi l

Sand-water

c

 mg/kg

15

T

 °C 100

60

Tw

 °C 146

77

 

kg/s 0.081  

0.353

0.067

 

0.248

tmax

 h

390

132

d mm 8.6

8.6

d  pm 5O 15

TABLE

 

Experimental

RelationshipsO 

erm

Gas

Oil

Sand—water

 

wi.

/dR

\

i—-I

W’

\dt

/t=o

R

W

W ’

Watkinson4 developed

a

new deposition—release model

in

an attempt to

ratizna]ize the experimental results

The

following model

was

proposed:

=

k

N

  k r

  7

where

the

deposition

function

includes particle

stickability

sand

mass flux

towards the wall

N. Other

symbols as before.

The

release

funct ion is that

of Kern and Seaton l l

 

The

terms

in

the

deposition function

were

expressed

by:

Page 10: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 10/27

 9

k

exp -E/R

T

s=

g

f u

N

=

h

 Cb

  c

9

h=

12 Sc

where:

k

= constant

E

= activation

energy

Rg

=

universal

gas

constant

T

=

tube wall

temperature

f = friction factor

u = fluid

bulk

velocity

h

=

mass

transfer coefficient

Cb

=

foulant

bulk concentration

c = foulant wall

concentration

w

Sc

=

foulant

Schmidt

number

WatkinsonC

assumed

x<<d

and

derived

a

general

expression

that

gave

the

deposit

thickness

x as

a function

of

time. Tw o limiting

cases

were considered;

mass transfer controlled

and

adhesion

controlled.

In the

former

s ‘  

and

c,   such that:

= k

u

Cb

  exp -k 

f

U2t

11

12 Sc f u

where

 

in the

release function has

been

replaced by

k

f

u

 

the latter,

the

deDos-ition

process was controlled

by

the

chemistry

of adhesion

and:

k exp -E/R

T

 

 

k

f

w

 

exp -k f

u

t

12

where K

is a

concentration

dependent

coefficient. Table

3

shows how the main

Page 11: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 11/27

 

relationships

depend

on the

fluid

bulk

velocity. The

corresponding

relationships

from the Kern-Seaton

model

are

also

given. The

sand-water

fouling

was

therefore mass

transfer

controlled

and

the

gas

oil

fouling

more

adhesion

controlled.

Watkinson l

has

also developed deposition—release

expressions

where

deposit

thickness

was

sufficient

to affect

fouling.

TABLE  

Model

RelationshipsO

 

22

erm

Kern—Seaton

Mass transfer Adhesion

fu

fu fu

/dR\

 _i

U

 U

 

\dt

/

t=o

R

 fu ’

 /fu ’

 fu2 1

Char1esworth

  studied

the

deposition

of

particulate corrosion products

in

a boiling water

reactor.

It

was suggested

that

a

modified Kern-Seaton

expression

might

describe

the

build-up

of

corrosion

products

on

heated

and

unheated surfaces.

k c-k

w

dt

where

w

was

the weight

of

deposit

per

unit

area

and

other

symbols

as before.

In

this

model

fluid

velocity does not

affect

the deposit build-up.

TaDrek

e:

 

performed extensive

and

systematic experimental work

on

pure

ir’;erse solbility

salt

solutions

and

a

variety

of

cooling waters. A

desi:n —

release model was

developed

for

fouling by treated cooling

tower

water with

low

suspended

solids

content.

The

model

described mixed

crystallisation

fouling of inverse

solubility

salts. The main solid depositing

was calcium

carbonate. The following deposition-release

expression was

proposed:

dR

=

 

A exp -E/R T

 

k

xm

 

14

dt

gs

 

Page 12: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 12/27

 

whe

re:

s

 

st ic

kabil

ity

 

t r chara

cter

izatio

n fac

tor

 

exp

onen

t

T

 

de

posit

surf

ace tem

perat

ure

 

deposit

characterization factor

m

 

exp

onen

t

No

prac

tical e

xper

imen

tal da

ta

were

give

n

nor

a

ny

valu

es

of

the va

riou

s

te

rms

in

volv

ed

i

n

the

depo

sitio

n and rele

ase

fun

ction

s  T

he fou

lant

conc

entr

ation

w

as

c

hara

cteris

ed

by  

the

Lan

geli

er

satu

ratio

n

inde

x

a

nd

the

s

ticka

bility

wa

s

de

term

ined

em

piric

ally

as:

s

 

k

e

xp

u

 

1

The depo

sit struc

ture

w

as as

sum

ed

to d

epen

d

on

th

e

fluid v

eloc

ity

s

uch

tha t

:

 

k

Ua

 

16

w

here th

e e

xpo

nent a

 

2

.

Th

e fouli

ng

resi

stanc

e again

st

time

was

g

iven b

y:

 

k k

A

exp  

Rf

 

k

 

xp

 k

 

t

 

1

w

here

th

e expo

nent

b

  2. A

cco

rding to

this

mo

del

the

de

pend

ence

of

d

Rf/d

t to

and

R

f

on

fluid

velo

city ar

e mo

re

com

plex

than

in

prev

ious

mo

dels.

The

expo

nen

t

in

wa

s

assum

ed

u

nity

when corr

elatin

g

the

mod

el

to expe

rime

ntal

data

 

Watk

inso

n and  r

tin

 z

 

hav

e

stud

ied

the

fou

ling

o

f

a

cons

tant

wall

te

mpe

ratur

e

e

xcha

nger b

y a sy

nthet

ic

calc

ium

ca

rbon

ate sol

ution

.

T

he

va r

iable

s

in

vest

igate

d we

re fl

uid v

eloc

ity,

bu

lk

tem

per

ature

a

nd tube

d

iame

ter.

T

he

w

ater

con

taine

d

3Q00

mg

 kg diss

olved

s

olid

s a

nd 4 

m

g kg

parti

culat

e matte

r

I

t was

estab

lishe

d tha

t ca

lcium

ca

rbon

ate d

epos

ited

fr

om solu

tion

.

I

n the

e

xpe

rimen

ts

inv

estig

ating

th

e

eff

ec ts o

f

velo

city

and

di

ame

ter,

the bulk

inle

t te

mpe

ratur

e

wa

s

57°

C

and

the

t

ube

wa

ll temp

erat

ure 10

3°C

.

A

sym

ptoti

c co

ndit

ions were

reac

heá

in

less

t

han

 

ho

urs,

duri

ng

wh

ich

the d

epo

sit su

rface

te

mpe

ratur

e

  2

Page 13: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 13/27

decreased

  5°C

typically.

Experimental

data

at

constant

bulk

and wall

temperature

for Re

<

 2 were correlated

to the asymptotic

fouling

resistance

by:

R

ci d°3

u’3 ..

..  18

Watkinson

and

M artinez7 developed

a

deposition—release

model

where the

deposition function

was written in terms

of

inverse

solubil ity salt

crystalli

zation

while

the

release

function was

as in

the

Kern—Seaton

model.

dx

n

  kl cb

 

c

 

k

x T

 

19

dt

S

The constant k

was

a

crystallization

rate

constant

and n

an

exponent. Foulant

concentration in

bulk and

at

deposit surface

were

given

by

cb

and

respectively.

It was assumed

that the

solubility

of

calcium

carbonate

was

linear

with

temperature:

cb

 

c

= k

 T

  Tb

20

and the

heat

transfer

situation

that

of a steam condenser

such that:

R

>>R R

 

21

This meant

that:

 

-T

T T

=

w

b

s

b

1 Rf/R

wnere

T ,

Tb

and

T

refer

to

the temperature

at deposit surface,

fluid

bulk

and

tube Eetai

wall,

respectively.

ne

crysta1Hzaton rate

constant

was

given

by:

k

= k exp  _E/Rg

23

The following

deposition—release model

resulted.

 

/

-E/R\

=

k

k

 

exp

 

kT

  24

dt

\Tb c/

 

13

 

Page 14: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 14/27

where:

 

T

w

b

1 R

f/R .

The

depo

sitio

n-rel

ease

model

was not

in

tegrated,

but

an expression for the

asym

pto

tic

f

ouli

ng

re

sista

nce

was

given and

used

to

compare

the

e

xper

imen

tal

data

to

the

model.

It

was

found

that the model

corr

ela te

d

th

e data

well

when

n

2.

 

General

Experimental

s

tudi

es into hea

t

tr

ansfe

r

fo

ulin

g no

t

spe

cific

ally

d

ealt

with

el

sewh

ere in

the

Th

esis, w

ill

be

co

nsid

ered b

rie fly

in

th

e

p

rese

nt sec

tion.

McCabe and

R

obins

on 

proposed

tha

t th

e

amount

of

scal

e

formed

in

ev

apor

ators

was

prop

ortio

nal

to

the

amount

of

l

iquid

eva

pora

ted

It

was

assumed

that

the

te

mper

ature

d

iffer

ence

 

T

 

b

remained

co

nsta

nt with

time

 

The

fo

llow

ing

eq

uatio

n give

s

the ov

erall he

at tra

nsfe

r

resis

tanc

e

w

ith

tim

e:

R

2

 

+ k

 

t

  26

where

Rc

is

the

overall heat

transfer

resis tance at

clean

conditions and

k

a

co

nstan

t.

This equ

ation

has

been v

erifi

ed

f

or ev

apor

ator sc

alin

g.

I

 l as s

onO

 

has developed

an

expr

essio

n

for

heat exchanger

sca

ling

. The

e

xpre

ssion corre

lated calcium

c

arbo

nate

d

epo

sition da

ta

at low f

luid

v

eloc

ities

where

no

dep

osit re

lease

oc

curre

d.

Reit

zer H

S

has d

erive

d

a

simi

lar

e

xpre

ssio

n.

Reitzer assumed

tha t

heat

exchanger

scaling

depended

on the

foulant

su

persa

tura

tion,

raise

d

to

th

e

power

n.

At

cons

tant

 

T5

  Tb

the

over

all

hea

t t

ransf

er

res

istan

ce was

given

by:

ik \

 k

AT \

 

+

 n + 1

  ç

 

t

 

27

h

and

a

t

c

onsta

nt

heat

flux

co

ndit

ions:

  14  

Page 15: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 15/27

k

k

 

R +  

t

  28

k

where:

k  

d

iffus

ion—

rea

ction coef

ficie

nt

k

 

deposit

thermal

conductivety

k  

co

nsta

nt

p

= depo

sit den

sity

h   ins

ide h

eat trans

fer c

oeffi

cient

Gonionskiy

et

  4

have discu

ssed the

 bove

relat

ions

hips

and

developed

an

exp

ress

ion

for th

e ove

rall hea

t tran

sfer

re

sistan

ce

wi

th time

. The scal

ing

process

was

 ssumed

to

depend

on

the average

fluid

temperature

in

the

boundary

l

ayer

  Calcium

s

ulph

ate

d

epos

ition

d

ata

was

co

rrela

ted by the de

rive

d ex

pres

sion

 

Hasson

et

al

5

 

stud

ied

the

for

mati

on of calcium

c

arbo

nate

s

cales

in

a

c

onst

ant hea

t flux exch

ange

r.

Experiments

were

performed

at

Reynolds number

13000

to

42000.

D

eposi

tion inc

rease

d

li

neari

ly with

ti

me. It

was

found

that

the

rat

e

of depo

sit io

n

was

d

iffus

ion

c

ontro

lled

and

t

hat:

  °

8

 

29

dt

  sson

and

Za

havi

 

s

tudie

d

th

e dep

osit

ion

of ca

lcium

sul

phate on he

ated

su

rface

s

I

t was found that

dep

ositi

on was

g

reat

es t

a

t the downstream

end

of

the

ex

chan

ger

d

ecrea

sing

rap

idly

toward

the

upstream

regio

n

Palen

and

W

est

wate

r  stu

died

calcium

sulph

ate

d

epos

ition

in

a

pool

b

oile

r

and

found

it

proportional

to

the

heat

flux

squared.

Galloway 

has

studied

tne

forna

tion

o

f

ino

rgani

c

sc

ales

by an e

lect

roche

mica

l

method and

obtai

ned

an

exp

ress

ion

fo

r

the

d

ime

nsion

less

dep

osit th

ickn

ess w

ith

tim

e. Walker

and

Bo

ttO 

a.

e

e:D

Hed

curve

fitt

ing

methods

to

foul

ing

data

K

onak

 

26

has d

iscu

ssed the

pre

di io

n

of fou

ling

curv

es in

hea

t

tra

ns fe

r

equipment.

Fis

her

et

a

l7

have

disc

usse

d some

tec

hniq

ues

used

t

o

measure

foul

ing

Morse

and

Knud

sen

stud

ied

th

e e

ffect

o

f

alk

alin

ity on

t

he sca

ling

of sim

ula

ted

co

oling

tower

wa

ter

Fou

ling

i

ncre

ased

as

ymp

totic

ally with

time

and

was g

reate

r

a

t

high

alka

linit

y

val

ues

D

epo

sit

s

tren

gth

was found

to be

a funct

ion

of

t

he

non

calci

um

carb

onat

e

components.

  15

 

Page 16: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 16/27

Hopkins

 

and

Hopkins

and

  pstein

investigated

the

fouling

of

heated

stainless

steel

tubes

by ferric

oxide

in

water.

The

experimental

conditions

were as follows:

concentration 15-3750

mg kg

Reynolds

number 10100 — 37600

heat

flux

0—292

kw/m

average bulk temperature

60°C

tube

wall

temperature

60-90°C

tube

internal diameter

8.71

mm

p 6.2

The

ferric

oxide

 hematite

consisted

of”.’0.2 pm fundamental

particles

that

agglomerated

into particles

>

10 pm

in diameter. No measurable

fouling

occurred

at

concentrations

c<750 mg kg and

reproducable

results

were

obtained only

if

c>1750

mg/kg.

Most runs were

performed

at a

standard

concentration

of

2130

mg/kg.

Fouling

increased with

concentration.

The

build-up of deposits was

asymptotic

and

reached steady conditions

in

2-4

hours. The

following relationships

were

derived:

R f

a

  30

dR

 _Z

a

  31

dt

It

was

found that deposition

decreased

with

heat

flux;

deposition was

greatest

at zero heat f lux conditions. It

was

suggested

that thermophoresis

might

play

an important

role

in the deposition

process.

 

hypothesis

was

presented

according

to

w i

the fouling behaviour

is

controlled

by the rate

at

which

crevice corrosion

of

the

stainless

steel

occurs.

  16

Page 17: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 17/27

NOMENCLATURE

A  

Heat

transfer

area

 m

 

a   Exponent

b

Exponent

c

Foulant

concentration  mg/kg

D

Diffusivity

of

particulate

foulant

 s

 

d

 

Tube

diameter

 m or

mm

d Particle diameter

 m

or

pm

E

Activation

energy

 kJ

f  

Friction

factor

 =

  pu

h

Heat

transfer coefficient

 kW/m2OC

k

Constants

and

coefficients

m

  Exponent

N

n   Exponent

 

Rate

of

heat

transfer

 kW

q

 

Heat

flux  kW/m

 

R

Heat transfer

resistance

 kW m

OC _1

Rf  

Fouling

resistance

 kW m

°C ’

Universal

gas

constant

 =

8.3143

J/mole

°K

Re  

Reynolds

number

 

=

ud/’

s

 

Stickability

Sc

Schmidt number of

particulate foulant

 =

/D

Teerature

 °C

or

°K

e

 s

Temperature difference

 °C

u   Fluid

bulk velocity

 m/s

W

  Mass flowrate

 kg/s

w

  Weight

of

deposit mg/cm

x  

Deposit

thickness

 mm

or pm

—  

Page 18: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 18/27

 

Heat transfer

factor

 °C

onstant

 

Deposit

characterization

factor

 

Water characterization factor

Kinematic

viscosity

 rn

s

p

 

Fluid density

 kg/rn

 

Shear

stress at

wall

 N/rn 

Subscripts

b

 

Bulk

c

  lean

i

Inside

o

  Outside

s

 

Surface

w

 

Wall

Superscript

 

symptotic

 

It:S

 

Page 19: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 19/27

REFERENC

ES

 

Nelson,

 

L “Fouling

of

Heat Exchangers”,

Refiner and

Natural

Gasoline

Manufacturers,

Part

I  

13 7 ,

271—276

July 1934 ,

Part

II

13 8 ,

292—298 August 1934 .

2.

Bott,

T

R

“Industrial

Fellow Report

on Heat Transfer”, Chem

Engr,

CE126

 

June 1969 .

3.

Bott, T

R

Walker,

R A “Fouling in

Heat

Transfer Equipment”,

Chem

Engr.

No 251, 391—395 November

1971 .

4.

Sabersky,

R

H

“Heat

Transfer

in

the Seventies”, mt

J Heat

Mass Transfer,

14,

1927—1949

1971 .

5.

Sabersky,

 

H

“Further

Comments on

Heat

Transfer

Research,

mt J Heat

Mass Transfer,

18, 1223—1227

1975 .

6. Taborek,

J,

Aoki,

T Ritter

R

B Palen, J

W

Knudsen, J

G

“Fouling

 

The

Major

Unresolved

Problem

in

Heat

Transfer”,

Chem Eng Prog,

68 2 ,

59-67,

 Feb

1972 .

7

Taborek, J, Aoki, T

Ritter

R B

Palen,

J

W Knudsen, J

G

“Predictive

Methods

for

Fouling

Behaviour”,

Chem

Eng

Prog,

68 7 , 69—78

July 1972 .

8. Taborek,

J, Knudsen,  

G Aoki,

T Ritter

B

Palen,

 

W

“Fouling

— The

Major Unresolved

Problem

in

Heat

Transfer”,

AIChE

Symp

Ser

68

 118 , 45—49 1972 .

9. Standards

of

the

Tabular

Exchanger

Manufacturers

Association,

5th Edition,

New

York,

 1968 .

10 .

Boyen

L

“Practical

Heat

Recovery”,

Wiley, 1975 .

11 .

Galloway,

T

R

“Heat Transfer Fouling

Through

Growth

of

Calcareous

Film

Deposits”,

Tn t

J

Heat

Mass

Transfer,

16,

446-460,

 1973 .

12. Cooper, A

“Recover

More Heat

with

Plate Heat

Exchangers”, Chem

Engr,

No 285, 280-285,

 May 1974 .

13. Badger,

W

L Banchero,

 

T “Research

and

Development of Scale

Prevention

in

the United States”,

National Academy

of

Science Research

  o ji

Report

558,

44-50,

 1958 .

14. Watkirsan,

A

P

“Particulate Fouling

of Sensible Heat Exchangers”,

PhD

Thesis, University

of British

Columbia,

 Sept

1968 .

15.

  ott T

R

“Fouling in

Heat Exchange

Equipment with

Special Reference

to

Cooling

Water Systems”, AERE-R 6191,

 Nov.1969 .

16.

Bott,

T

R “Gas

Side Fouling

in

Heat

Exchange

Systems”,

AERE—R

6453

 Jan

1971 .

17.

Hopkins,

R M

“Fouling

of

Heated

Stainless Steel

Tubes

with

Ferric

Oxide

from

Flowing

Water

Suspensions”, PhD

Thesis,

University

of

British

Columbia,

 July

1973 .

  19

 

Page 20: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 20/27

18. Walker,

R

A

“F

ouli

ng

o

f Heat Exchanger

Tubes”,

PhD

T

hesi

s,

Un

iver

sity

of

Birmingham,

 19

73 .

19.

B

ott,

T

R

“Un

ders

tand

ing

F

oulin

g and Keeping

Down Heat

Exchanger

Cost

s”,

Heat Tr

ansfe

r

Survey

1975,

Process

Eng

inee

ring,

 Nov

1975 .

20. Su

itor

,

J W Marner, W

R

itter  R

B

“The

H

isto

ry

and

St

atus

o

f Research

in

Fouling o

f Heat

Exchangers

in

Cooling

Water

Se

rvic

e”,

Paper

No 76 CSME/CSChE l9

16th N

atio

nal

Heat

Tr

ansfer

Conference,

St Lewis,

Mo August 8—11

1976 .

21.

Shitsman,

M

E

Egorov,

E

D

“Growth

of

Depo

sits

of

Hardness

S

alt s

in

Inte

nsi

v

ely

Heated

Lower R

adia

nt Sec

tion

Tubes

of

a

Sup

ercr

itica

l

Boil

er

in a

300

MW

U

nit”,

Thermal

En

gine

ering

,

16 4

 ,

13-18,

 1

969

 .

22. M

cAll

ister

, R

A Eastham,

D H

Dougharty,

N

A

“A

Study

of

Sc

aling and

Co

rrosi

on

in

Condenser

Tubes

Exposed

to

River

W

ater’

,

C

orro

sion,

17 1

2 ,

579t

-588t

,

 1961 .

23. Howland,

A H

Simmonds

W

A

“The

Formation

of S

cale

from

Hard

Waters

at

Temperatures

Below

the Boiling

Point”, J

Appl

Chem

1

 7 ,

320-328,

 Ju

ly

1951 .

 

24.

P

uck

orius

,

P

R

“C

ontr

olling Dep

osits

in

Cooling

Water

De

posi

ts”, M

ateri

als

Prot

ectio

n

and

Performance,

11

11 , 19—22

Nov 1972 .

25.

Weber

J

 

“Cor

rosio

n

and

Dep

osits

in Cooling

Systems

  Th

eir

Causes

and

Prev

enti

on”, Combustion,

45

 6 ,

31-34,

 Dec

1973 .

26. Capper,

 

B “F

oulin

g of Heat

Exchangers

from

Cooling

Water

and P

roces

s

M

ater

ials”

,

E

fflue

nt

and

Water

Treatment

14 

6 ,

309-314,

 June

1974 .

27. Morse,

R

W Knudsen,

J

G

“E

ffec

t of Alk

alini

ty on

t

he S

calin

g

o

f

Sim

ulate

d

Cooling

Tower Water”,

Paper 76—CSME/CSChE—24

16th

Nat

Heat Tra

nsfer

Conf, St

Lou

is,

Mo

August

8-1

1,

1976 .

28. Banchero,

  T

Gordon, K

F, “Scale

De

posit

ion

on a

Heated

Surf

ace”,

Am

Chem

Soc, Advances

in Chemistry

S

eries

, No 27,

105-114,

 19

60 .

29.

St

andi

ford, F

C

Sink

et,

 

R

“Stop

Sca

le

in Sea

Water

Eva

pora

tors”

,

Chem Eng

Prog 57

 1 ,

58-63,

 Jan

1961 .

30.

York, J L

Scho

rie,

 

3,

“Sc

ale

Formation

and

P

reven

tion

”, Pri

ncipl

es

of

Desalination, edited by

K

S

Spiegler,

Ch

10, 497-514,

Academic

P

ress

,

 1

966

.

31.  

lliot

 

M

N

“The

Pres

ent Stat

e

of S

cale

Control

in

Sea

Water

E

vapo

rator

s”,

AERE—R

5280,

 19

68 .

32.

Dooly,

R Glate

r,

J,

Alka

line Scale

Formation

in

B

oili

ng

Sea Water

Bri

nes”

,

Des

alina

tion

,

11,

1—16

1972 .

33.

Rankin,

 

H

Adamson

W

L

“Scale

Formation

as Re

lated

to

Eva

porat

or

Surfa

ce Con

ditio

ns”,

D

esali

natio

n,

13,

63—87 1973 .

34. Sexsmith,

D R

Petney,

E

 

“The Use of

Polyelectrolytes for

Scale Control

in

Sea

Water Ev

apor

ators

”, D

esa li

natio

n,

13, 87—90

1973 .

 2

Page 21: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 21/27

35. Ga

zit, E

Hasson,

D

“Scale

De

posit

ion

from

an

E

vapo

ratin

g

Fa

lling

F

ilm”

,

D

esal

inatio

n,

17 3

 ,

339-351,

 Dec

1975 .

36. Hodgson,

T

D Smith

5,

“The Appr

aisa

l of

A

dditi

ves fo

r

S

cale In

hibit

ion

During

Sea

Water

Disti

llatio

n” 

5th

Tn t

Symp

Fresh Water

Sea,

1,

305—318

A

ighe

ro,

 1976 .

37.

Hodgson, T

D J

orda

n,

T W J 

“S

ealin

g in

Ve

rtical

Tube,

Fa

lling Film

Evaporators”,

5th

Tn t

Symp Fresh

Water

Sea, 1, 295-303,

Alghero,

 19

76 .

38.

Cap

pelin

e,

G A

Townsend,

J

R

“Cooling

Water Systems   M

ainta

ining

Optimum

Eff

icien

cy”,

Power

Eng

ineer

ing,

80 9

 ,

60—63 Sep

t,

1976 .

39.

Per

ry, R 0, “In

hibi

tion of

Scal

es in Oil Fi

eld Br

ines”

,

Producers

Mon

Penn

Oil Prod

Ass, 31 1

0 ,

6

,  Oct 1967 .

40.

Fulfo

rd,

R

S

“E

ffects of

Brine

C

once

ntra

tion

and

Press

ure

Drop

on

Scal

ing

in

Oi l

W

ells

”,

J

Pet Tech,

559-564,

 June 1968 .

41.

V

ette

r,

0

J

G P

hill

ips

R

C

“Pr

edict

ion

of

th

e D

epo

sition

of

Calcium

Sulp

hate

Scale

Under Downhole

C

ond

ition

s”, J Pet

Tech,

1299—1308

Oct

1970 .

42. Bezemer,

C Bauer,

K A “Pre

vent

ion

of

Carbonate

Sca

le

Dep

ositi

on

 

Well—Packing

Technique

with

C

ontr

olled S

olub

ility

Phos

phat

es”,

J

Pet

Tech,

505-514,

 Ap

ril 1969 .

43.

Cha

rlest

on,

J

“Scale

Removal

in

the Virden

Manitoba Area

”,

J Pet

Techn,

701-704,

 June

1970 .

44.

Spri

ggs,

D

M

Hover,

G

W

“F

ield

Performance

o

f

a

Liquid

Sc

ale Inh

ibito

r

Squeeze

Program”,

J

Pet Tech, 812-816,

 July

1972 .

45.

Hasson, D

A

vriel

,

M Res

nick,

W Rosenman, T

Windreich,

S,

“Mechanism

of Calcium

Carbonate

Scale De

posi

tion

on

Heat—Transfer

S

urfa

ces”

,

md

Eng

Chem

Fundamentals,

7 1 ,

59-

65,

 Feb

1968 .

46.

Watkinson,

 

P

L

ouis,

L

Br

ent, R

“Sca

ling

o

f

Enhanced

Heat Exchanger

Tubes”,

Can J Chem

  ng 52,

558—562

Oct 1974 .

47.

Watkinson,

 

P, M

artin

ez, 0, “

Scal

ing

of Heat

Exchanger

Tubes

by

Calcium

C

arbo

nate

”, J Heat Tr

ansfe

r,

97

 4 ,

504-508,

 Nov

1975 .

48.

Watkinson,

 

P.

Ma

rtine

z,

0, “S

cali

ng

of

S

piral

ly

In

dente

d Heat

Exchanger

Tubes”,

J

Heat

Transfer, 97 3 , 490—492

August 1975 .

49.  

hikh

aze  N

M Neu

strue

va, E I

, “The

Prin

ciple

s o

f

Calcium

Su

lpha

te

De

posi

tion on sea

ting Surfa

ces

at Low

Thermal

Loads”,

Thermal

Eng

ineer

ing,

1

5 9 ,

1l4-l

17,

 1968 .

50.

Martynova,

0

I, Ro

gatsk

in,

 

S,

“Calcium

S

ulph

ate Depo

sits

in Sup

ercrit

ical

Boi

ler

 

ircui

ts” 

Thermal

Eng

inee

ring, 16

8 ,

99—102

196

9 .

51.

Hasson,

0, Zahavi,

J, “Mechanism

of

Calcium

S

ulph

ate Scale

D

epos

ition

on Heat

-Tran

sfer

S

urfa

ces”

,

md

Eng Chem

Fundamentals,

9

1 ,

1—10

Feb

1970 .

 

52.

Lamners, 3, “Verkrustung

von

Heiz

flche

n durch

Cal

cium

sulfa

t”,

V

erfah

rens

techn

ick,

7 4  

, 114-118,

 1973 .

 

2

Page 22: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 22/27

53.

Palen, J

W

Westwater,

J W “Heat

Transfer

and

Fouling

Rates During

Pool

Boiling

of Calcium

Sulphate

Solutions”,

Chem Eng

Prog

Symp

Ser,

62 64 ,

77—86 1966 .

54.

Schmid—Schnbein,

K

J “Konvektive

Wrme

  und

StoffLbertragung

bei

Kristalliner

Verkrustung

von

Heizflachen”,

Chern—Ing—Tech

48 12 , 1205,

 December

1976 .

55.

Lombard

G

L

“Test

and

Evaluation of

a Geothermal Heat Exchanger”,

NTIS

Report

No PB-247-218,

 Sept 1975 .

56.

Wahl

E Yen

“Scale

Deposition

and

Control Research

for Geothermal

Utilisation”

2nd UN Symp Development

Use Geothermal

Resources,

San Francisco,

 1975 .

57. Gudmundsson,

J

S,

“Utilisation

of

Geothermal

Energy in

Iceland”,

Applied

Energy,

2 2 .

127-140,

 1976 .

58. Gudmundsson,

J

S,

Bott, T R

“Deposition

  The

Geothermal

Constraint”,

I Chern

E

Symp Ser

No

48,

27.1—27.20,  1977 .

59.

Shock, 0

A

Sudbury,

J

D Crockett, J J,

“Studies

of

the Mechanism

of

Paraffin

Deposition

and

it s

Control”,

J Pet

Tech,

23-28,

 Sept,

1955 .

60.

Jenssen, F

W

Howell,

J

N

“Effect

of Flow

Rate on

Paraffin

Accumulation

in

Plastic

Steel

and

Coated

Pipe”,

Pet Trans

AIME

213,

80-87,

 1958 .

61.

Cole,

R

d, Jessen,

F

W

“Paraffin

Deposition”,

Oil

Gas J

58 38 ,

87—91

Sept

1960 .

 

62.

Hunt,

E

 

“Laboratory

Study

of

Paraffin

Deposition”,

J Pet Tech,

1259-

1269,

 Nov 1962 .

63.

Patton,

  C Jessen, F W

“The

Effect

of

Petroleum

Residual

on

Paraffin

Deposition

from

a Heptane—Refined

Wax

System”,

Soc

Pet Engrs

J

333-340,  De c 1965 .

64.

Jorda,

R N

“Paraffin

Deposition and

Prevention in Oi l

Wells”,

J

Pet

Tech,

1605-1619,  Dec

1966 .

65.

Bilderbank,  

A

McDougall,

L A

“Complete

Paraffin

Control

in

Petroleum

Production’, J

Pet

Tech,

1151,

 Septercber

1969 .

66.

Patton,

  C

Casad,

 

N

“Paraffin Deposition from

Refined

Wax   Solvent

Systems”,

Soc

Pet

Engrs

3,

17—24

March

1970 .

67.

Inst

Pet

SyEp

“Waxy Crudes

in Relation

to Pipeline

Operations”,

3

Inst Pet,

57,

63-128

 March 1971 ,

57, 131—183

May

1971 .

68.

Bott, T R

“Fouling

in

Shell—and—Tube Heat

Exchangers”,

Proc Symp

Advances

in Thermal

and Mechanical

Design of

Shell-and-Tube

Heat

Exchangers,

NEL

Glasgow,

 Nov

1973 .

69.

Bott, T

R

Walker, R A

“Fouling

in

Heat

Exchanger

Tubes  

Some

Observations”,

DSIR-SAIChE-SAIMechE

Symp

Heat Transfer

Design

Operation

Heat

Exchangers,

Johannesburg,  April

1974 .

 

22

 

Page 23: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 23/27

70.

Bott,

T

R

Gudmundsson,

J

5,

‘Wax Deposition

from

Hydrocarbons

on

Cooled Surfaces”,

AERE—M

2768,  1976 .

71. Bott, I

R Gudmundsson,

J 5,

“Deposition

of

Paraffin Wax

from

Kerosene

in

Cooled Heat

Exchanger

Tubes”,

Paper

No

76 CSME/CSChE—2l

16th Na t

Heat Transfer Conf,

St Louis,

Mo

8-11 August, 1976 .

72.

Eaton,

P

E

Weeler,

G Y

“Paraffin

Deposition

in Flow

Lines”, Paper

No 76—CSME/CSChE—22 16th Nat Heat

Transfer Conf,

St

Louis,

Mo

8-11

August,

1976 .

73.

Powley, C “Sponge Rubber Balls

Rub

Away Hard Deposits

in

Cooling

Water Tubes”,

Process

Engineering,

81,

 July

1973 .

74. Butler,

P “The

Big

Switch—Over to High—pH

Programmes”,

Process

Engineering,

62—63

April

1974 .

75.

McDonald

0 P “No

Slowdown

in

Descaling

Innovation Despite

Water

Treatment

Advances”,

Process

Engineering,

Heat

Transfer

Survey

1973, 24—29 September

1973 .

76. Powley,

C

Butler,

P.

“New Chemicals

Point

the Way to

Improved

Cooling

Water

Treatment”, Process

Engineering,

74—75

April,

1973 .

77

Perugini,

J J, “More

About Antifoulants”,

Hydrocarbon Processing,

55

 7 ,

161-162,

 July 1976 .

78. Sang,

S

Kahana,

F,

Leshem

R

“Selection

of

Threshold

Agents

for

Calcium Sulphate

Scale

Control

on

The Basis

of

Chemical

Structure”,

Desalination, 17,

215—229

1975 .

79.

Haluska,

J

L “What

to Follow

if

your

Goal is Effective

Fouling

Control”,

Hydrocarbon

Processing,

55

 7 ,

153-156,

 July

1976 .

80. Association of

Shell

Boilermakers, “The Treatment

of Water

from

Shell

Boilers”,

2nd

edition

1976 .

81. Friedlander,

S

K Johnstone,

H F, “Deposition

of

Suspended Particles

from Turbulent

Gas Streams”, md

Eng

Chem 49

 7 , 1151—1156

July

1957 .

82. Davies,

 

N

“Aerosol Science”, Academic

Press,  1966 .

83. Beal

 

S

K

“Deposition

of

Particles

in

Turbulent

Flow on

Channel or

Pioe

Walls”,

Nuci

Sd

Eng

40, 1—11

1970 .

84. Lu

Y H

lIon

T

A “Aerosol

Deposition

in Turbulent Pipe

Flow”,

Environmenai Sci

Tech,

8

 4 ,

351-356,

 April

1974 .

85.

G sson

J S

Bott, T

R

“Particle

Eddy

  iffusivity

in

Turbulent

Pipe

Flow”,

to

be published

in

Aerosol

Science.

86.

Petrov,

V

A

“Fouling

of Air

Heater Tubes

on

the

Air

Side”,

Thermal

Engineering,

15  3 ,

21—23

1968 .

87. Leontev,

A

I,

Tsalko,

 

A

“Heat

and

Mass

Transfer

During

the

Formation

of

Deposits on

a Heating

Surface”,

High

Temperature,

 

2 ,

289-296,

 April

1971 .

 

 

23

 

Page 24: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 24/27

88.

Nishio,

G

Kitani,

5,

Takahashi, K “Thermophoretic

Deposition

of

Aerosol

Particles

in

Heat—Exchanger

Pipe”,

md Eng

Chem

Process

Des Develop,

13

 4 ,

408-415,

 1974 .

89. Charlesworth,

  H “The

Deposition

of

Corrosion

Products

in

Boiling

Water

Systems”, Chem

Eng Prog Symp

Ser,

66  104 , 21—30

1970 .

90.

Tomlinson,

N “Transport

of Corrosion Products”, Tn t Conf High

Temperature

High

Pressure

Electrochemistry in

Aqueous

Solutions, University of

Surrey,

 Jan

1973 .

91. Kabanov,

L

“Heat

and

Mass

Transfer

as

Related

to

Corrosion

Product

Deposition”, Energia Nucleare, 18

 5 ,

285—294

1971

92.

Thomas

D

Grigull

U

“Experimental Investigation

of

the

Deposition

of

Suspended

Magnetite

from

the Fluid Flow

in

Steam Generating

Boiler Tubes”,

Brennst-Wrme-Kraft,

26  3 , 109-115,  1974 ,

AERE Translation LB/G/407/21,

 AugusEl974 .

93. Gudmundsson, J

S,

Review

of Rippled Magnetite Deposits

in

Supercriticai

Once-Through

Boilers”,

AERE-R 8738,

 April,

1977 .

94.   urrill

K

A “Corrosion

Product

Transport in

Water-Cooled

Nuclear

Reactors”,

Can

J

Chem Eng

55, 54-61,

 Feb 1977 .

95. Watkinson,  

P

Epstein,

N

“Particulate

Fouling of Sensible Heat

Exchangers”,

4th Tn t

Heat

Transfer

Conf,

Versailles

Sept,

1970 .

96. Watkinson,  

P Epstein, N “Gas Oil Fouling in

a

Sensible

Heat

Exchanger”,

Chem Eng

Prog

Symp Ser, 65  92 , 84-90,

 1969 .

97. Hopkins,

R

N

Epstein,

N “Fouling

of

Heated

Stainless

Steel

Tubes by

a Flowing

Suspension of

Ferric

Oxide

in

Water”, 5th

mt

Heat

Transfer Conf,

2,

180-184, Tokyo,

 1974 .

98. Hakuta,

T

et al

“Sludge

Deposition

in

a

Long Tube   High Flow NSF

Test

Plant”,

Desalination, 17  1 ,

87—95

August

1975 .

99. Hung

C lien

C “Effect

of Particle Deposition

on

the Reduction

of

Water Flux

in

Reverse

Osmosis”, Desalination, 18  2 ,

173—187

April

1976 .  

100.

Carter,

J

W

Hoyland,

G

“The

Build

Up

of

Rust Fouling Layers

on

Membranes

in Reverse

Osmosis Flow

Systems and

its

Calculation”,

5th Tn t

Symp

Fresh Water Sea, 4, 21-29, Alghero,

 1976 .

101.

Chen,

J,

Vocal, W

“Fouling of

Transfer Line

Exchanger in

Ethylene

Se’vice”,

Paper No

87-B,

AIChE

74th National Meeting,

New

Orleans,

Louisiana,

 March 11-15, 1973 .

102. Hausler,

R

H

“New

Test

will Show Fouling Tendency of

Process

Streams”,

Oi l

Gas

J,

56—63

June 4,

1973 .

103.

Hausler,

R

H

Thalmayer,

  E

“Fouling and

Corrosion

in Feed

Effluent

Exchangers

Discussion

of

a New

Test

Method”,

Proc   m

Pet

Inst

Sect

III

Refining

  tg

Chicago,

163—184

May 12—15

1975 .

 

24

 

Page 25: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 25/27

104.

Braun, R

Ha

usle

r,

R

H “C

ontr

ibuti

on to

the Und

ersta

ndin

g

o

f

F

ouli

ng

Phenomena

in

the

Petroleum

Ind

ustry

”,

Paper No

76-CSME/CSChE—23

16th

Nat Heat

T

rans

fer

Conf, St

Lo

uis,

Mo August

8

-11,

1976 .

105.

P

erera

, W G Ra

fique

, K “Coking

in a

Fired

Hea

ter”, Chem

Engr,

No

306,

107—111 eb 1976 .

106.

Shah, Y T

Stua

rt E B

S

heth

,

 

D

“Coke

Formation During

Thermal

Cracking

of n-Octane”,

md

Eng

Chem

Process

Des

Dev

15  

4 ,

518-524,

 197

6 .

107.

O

’Nei

ll,

J 0

, “The

Tendency

of

Cracked

Fuel

Oi l

t

o Form

D

epos

its

in

Fuel

Oil He

aters

”,

J  m

Soc

Naval

Engrs, 46,

186-198,

 193

4 .

108.

Canapory,

R

C

“How

t

o

Control R

efine

ry Foul

ing”

,

Oi l

Gas J, 114,

 Oct

9, 1961 .

109.

Nelson,

W L

“Petroleum

Refin

ing

Engi

neeri

ng”,

McGraw

H

ill

4th

e

ditio

n

1958 .

110.

Akagaura,

K Sakaguchi,

T

u

jii

T

Influ

ence

s

of F

ouli

ng

on

B

oilin

g

Heat Tra

nsfe

r to

Organic

C

oola

nts”, 5th

 

Heat

Tra

nsfe

r

Conf,

4,

25-29,

Tokyo,

 Sep

t 1974 .

111. St

einer

, U

“Eff

ects

of Nu

trien

t Accumulation

on

Heat

Exchanger

F

ouli

ng”,

Chem

Process Engng,

52,

60-6

1,

 Dec

1971 .

112.

Walko J F, “Co

ntro

lling

B

iolog

ical

Fouling

in

Cooling

Systems”,

Chemical

En

gine

ering

,

Part

1

128-132,  Oct

1972 ,

P

art

I

I

104—108 Nov 1972 .

113.

Connolly,

B

“In-Situ

Hypochiorite

Combats

Marine

Growths

in

Blocked

Pipework”,

Process

Eng

ineer

ing,

96,  October 1973 .

114.

Bo

tt,

T

R Pin

heir

o, M M

P

S,

“Bi

olog

ical

Fouling

 

Vel

ocity

and

Temperature

Ef

fects

”, Paper

No

76-CSME/CSChE-25

16th

Nat

Heat

Tran

sfer Conf,

St

Loui

s,

Mo

 August

8-1

1, 1976 .

115. Rei

tzer,

 

J

,

“Rate

of

Scale Formation

in

Tub

ular

Heat Exchangers”,

md

Eng Chem Process Design

Development,

3

 4 ,

345-348,

 Oct

1964 .

 

115.

‘H

ea

T

rans

fer

in

Energy

Con

serv

ation

”,

I Chem

E

Symp

Birmingham,

 March

1975 .

i17.

rv in the

80s

”,

I

Chem

E

Symp Ser No

48,

T

ees

side,

 April 1977 .

113. aber

,

0,

‘S

olar

Pccer

from

the

Oceans”,

New

Sc

ient i

st 

73

 1042

 ,

576—578

1arch

1977 .

119.

Burton,

H

“D

eposi

tion from Whole Milk in

Heat

Treatment

Plan

t

 

Review

and

Disc

ussio

n”,

J

Dairy

Res,

35,

317-330,

 196

8 ,

and

NIRD

Paper

No

3299.

120.

Kern,  

Se

aton,

R

E “

The

oreti

cal A

nalys

is of Thermal

Sur

face

Fouling”,

Brit

Chem

Eng

4

 5 ,

258,

 195

9 ,

and

“Su

rfac

e

Fou

ling

.

How

to

Cal

culat

e

Li

mits”

,

Chem

Eng

Prog

r,

55  

6 ,

71,

 1959 .

 

25

 

Page 26: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 26/27

121.

Kern

D

 

“Heat

Exchanger

Design fo

r

Fou

ling

Serv

ices”

, Proc

3rd

 

Heat

T

rans

fer Conf

170-178

Chicago

196

6 ,

and

Chern

Eng

Prog

r, 62  7

,

51-56

Ju

ly

1966 .

122.

McCabe

W

L

Robinson

C S. “

Evap

orat

or Scale

Fo

rma

tion”

,

md Eng

Chem

16 478-479 1

924 

.

123. Hasson

D

“Rate

of

Decrease

of Heat

Tr

ansfe

r

Due to Scale

De

posit

ion”

,

Dechema-Monographien

47

233-252

1962

 .

124. Gonionskiy

V

  Golub S

  Rozen A M

“Ca

lcula

tion

o

f

Heat

T

ran

sfer Co

effic

ient

s

During

Scale

Fo

rmati

on”,

Heat

Tran

sfer

 

S

ovie

t

Re

sear

ch, 2

 3

 ,

116-121

May

1970 .

125.

Walker

R A

Bo

tt,

T

R “An

Approach

t

o the P

redic

tion o

f

Fouling

in

Heat

Exchanger

Tubes from

Exis

ting D

ata”

, Trans

I

Chem

E

5

2

 ,

165—167

A

pril

1973 .

126.

Konak

A

R

“Pr

edic

tion o

f Fouling

Curves

in Heat

T

rans

fer Equipment”

Trans

I

Chem E

51

377-378

1973

 .

127.

Fischer, P Suitor, J

W

Ritter 

R

3

“Fouling

Measurement

Techniques”,

Chem

Eng Pr

ogr,

7

7 ,

66-72

July 1975 .

128.

  utman R

G

“The Design o

f

Membrane

S

epara

tion

P

lan t

  P

art

  Design

of

Reverse

Osmosis Modules

;

P

art

2

  Fou

ling

of RO

Membranes”

Chem Engr

No 322 510—513

521—523

Ju

ly

1977 .

Page 27: Part I Heat Transfer Fouling

8/17/2019 Part I Heat Transfer Fouling

http://slidepdf.com/reader/full/part-i-heat-transfer-fouling 27/27

P RT

 

P R FFIN

W X

 EPOSITION

 N

FOULING