19
International Journal of Food Properties, 9: 877–888, 2006 CopyrighTaylor & Francis Group, LLC ISSN: 1094-2912 print / 1532-2386 online DOI: 10.1080/10942910600744098 SECADO CON AIRE FRESCO Y COMPORTAMIENTO DE LAS REBANADAS DE CEBOLLA DESHIDRATAS OSMÓTICAMENTE (Allium cepa) Y los frutos de tomate (Lycopersicon esculentum) Claudine Valérie Passo Tsamo, Anny-Flore Bilame and Robert Ndjouenkeu Department of Food Science and Nutrition, University of Ngaoundéré, Ngaoundéré, Cameroon. Rebanadas de la cebolla ( 0,5 cm de grosor) y frutos de tomate , fresco y osmóticamente deshidratadas en azúcar( 600 g / l ) , sal ( 300 g / l) o sal mixta y el azúcar ( 45/15 , w / w ) soluciones , se secaron al aire a 60 ° C y de secado constantes determinadas . El secado al aire se produjo en dos tasas de periodos de caída, caracterizado cada uno por una constante de secado. La velocidad de secado y la difusividad de humedad de osmotizada muestras fueron mayores que la de las muestras frescas. El comportamiento general de secado de rodajas de cebolla osmotizada no fue influenciada por las condiciones osmóticas (solución y tiempo), mientras que el comportamiento de secado de muestras de tomate osmotizada dependía de solución osmótica y el tiempo de pre - tratamiento. 15 minutos y 20 horas de osmosis pre parecían más conveniente antes del secado de rodajas de cebolla y tomate , respectivamente . A este respecto, la modificación estructural de las células de la membrana de tomate durante el tratamiento previo prolongado parecía explicar la variación en el comportamiento de secado. Palabras clave: deshidratación osmótica , rodajas de cebolla, tomate, secado constante de velocidad , difusividad aparente . INTRODUCCIÓN El secado al sol es una de las técnicas más asequibles que usan los agricultores para extender la vida útil de los alimentos. El principio de la técnica se basa en la eliminación de agua libre de

Passo-Secado en Aire Tomate Fresco y Osmotico

Embed Size (px)

DESCRIPTION

Secado en aire del tomate

Citation preview

LJFP.book(LJFP_A_174372.fm)

International Journal of Food Properties, 9: 877888, 2006

Copyright Taylor & Francis Group, LLC ISSN: 1094-2912 print / 1532-2386 online DOI: 10.1080/10942910600744098

SECADO CON AIRE FRESCO Y COMPORTAMIENTO DE LAS REBANADAS DE CEBOLLA DESHIDRATAS OSMTICAMENTE (Allium cepa) Y los frutos de tomate (Lycopersicon esculentum) Claudine Valrie Passo Tsamo, Anny-Flore Bilame andRobert NdjouenkeuDepartment of Food Science and Nutrition, University of Ngaoundr, Ngaoundr, Cameroon.Rebanadas de la cebolla ( 0,5 cm de grosor) y frutos de tomate , fresco y osmticamente deshidratadas en azcar( 600 g / l ) , sal ( 300 g / l) o sal mixta y el azcar ( 45/15 , w / w ) soluciones , se secaron al aire a 60 C y de secado constantes determinadas . El secado al aire se produjo en dos tasas de periodos de cada, caracterizado cada uno por una constante de secado. La velocidad de secado y la difusividad de humedad de osmotizada muestras fueron mayores que la de las muestras frescas. El comportamiento general de secado de rodajas de cebolla osmotizada no fue influenciada por las condiciones osmticas (solucin y tiempo), mientras que el comportamiento de secado de muestras de tomate osmotizada dependa de solucin osmtica y el tiempo de pre - tratamiento. 15 minutos y 20 horas de osmosis pre parecan ms conveniente antes del secado de rodajas de cebolla y tomate , respectivamente . A este respecto, la modificacin estructural de las clulas de la membrana de tomate durante el tratamiento previo prolongado pareca explicar la variacin en el comportamiento de secado.Palabras clave: deshidratacin osmtica , rodajas de cebolla, tomate, secado constante de velocidad , difusividad aparente .INTRODUCCIN

El secado al sol es una de las tcnicas ms asequibles que usan los agricultores para extender la vida til de los alimentos. El principio de la tcnica se basa en la eliminacin de agua libre de los alimentos , con el fin de evitar tanto la degradacin enzimtica y microbiana . Puesto que los componentes biolgicos de los alimentos son susceptibles a la degradacin de calor , muchos alimentos secos presente desnaturalizacin fsica y organolptica , lo que resulta en la reduccin de la de su valor de mercado . A este respecto, diferentes tcnicas de secado se han desarrollado hacia la eliminacin de agua con cuidado para preservar la integridad qumica y fsica de los alimentos.Muchos trabajos cientficos han demostrado el inters de la deshidratacin osmtica de alimentos antes de secar [1,2,3,4,5]El tratamiento osmtico tiene la ventaja de mantener organolpticas - tic (color , textura , aroma ) y nutricionales (vitaminas, minerales ) caractersticas de los alimentos . El tratamiento consiste en sumergir el producto en una solucin concentrada , que absorbe el agua del producto por smosis . La transferencia de agua va acompaada de intercambio de solubles entre el producto y la solucin . Despus de este paso osmtica inicial , el producto osmotizada por lo tanto, puede ser secado utilizando un mtodo de secado convencional, tal como secado por aire caliente , para producir un estante estable , comida seca .Proceso osmtica es un pre-tratamiento muy adecuado antes de su secado al aire de frutas y verduras, ya que inhibe la polifenol oxidasa y prevenir el pardeamiento oxidativo..[6] El intercambio material simultnea entre el producto alimenticio y la solucin osmtica est acompaada por una importante reduccin, la deformacin y la interaccin de flujo. [7,8,9,10] Estos cambios en la composicin y la estructura de la comida du-rante el paso osmtica puede influir en el comportamiento de secado de aire ms tarde. Diferentes estudios han informado de una reduccin de la velocidad de secado despus de la deshidratacin osmtica de los alimentos utilizando la solucin de sacarosa, y han atribuido la disminucin de la velocidad de secado a la presencia de sacarosa infusa. [2,11]Un estudio previo de transferencia de material durante la deshidratacin osmtica de rodajas de cebolla y frutos de tomate en diferentes soluciones osmticos (cloruro sdico, sacarosa y mezcla de cloruro de sodio y sacarosa) mostr un predominio de ganancia solubles sobre solubles, con un mejor control de la penetracin de soluto cuando se mezcla osmtica se utiliz solucin. Adems, el tratamiento extendido, ms all de 15 minutos y 20 horas, respectivamente, para rodajas de cebolla y tomate, dio lugar a alteracin estructural de las clulas, y la perturbacin de los intercambios de material..[10]El presente estudio tiene como objetivo examinar el comportamiento de secado al aire de las rodajas de cebolla por encima de la presin osmtica, sed y frutos de tomate. Los agricultores de la regin del Lago Chad en frica Central han desarrollado la produccin local de las rebanadas de cebolla seca y polvo de tomate, pero la calidad de mercado de estos productos desecados se reduce por su color oscuro.[12] Por lo tanto, la introduccin de un paso osmtico en el proceso de secado parece una buena oportunidad para mejorar la calidad.MATERIALES Y METODOSFUENTE Y PREPARACIN DE RODAJAS DE CEBOLLA Y TOMATE Frutos de cebolla (Allium cepa), comprados en el mercado local (Ngaoundr, Camern), eran focos de 8 a 12 cm de dimetro longitudinal y 6-8 cm de dimetro transversal. Se eliminaron los sobres externas de las bombillas, y la carne se lav con agua destilada, a continuacin, en rodajas horizontalmente con el fin de obtener anillos de 0,5 cm de espesor. Frutos de tomate rojo (Lycopersicon esculentum), cultivar "Roma", se recogieron de una granja local (Ngaoundr, Camern). Todas las frutas tenan forma ovoide con una longitud de 5,2 0,4 cm, un dimetro medio de 3,3 0,2 cm, y un peso de 45 2 g. Los frutos seleccionados fueron se lav en agua destilada y se utiliza para los ensayos durante la semana despus de la cosecha. Los tomates fueron tratados sin rebanar.PRE-TRATAMIENTO OSMTICOLas muestras fueron osmotizada en frascos de vidrio sellados a 25 C para las rebanadas de cebolla y 60 C para los frutos de tomate, con agitacin permanente (80 giro / min), utilizando una relacin producto / solucin de 1/10 (W / W). Los medios de comunicacin osmtico consisti en soluciones de sacarosa comercial (600 g / l), cloruro de sodio comercial (300 g / l), o una mezcla de sacarosa y NaCl (45/15, w / w). Para cada solucin, las muestras se sumergieron durante 5, 10, 15, 30, 60, y 120 minutos de rodajas de cebolla, y 1, 5, 10, 20, 40, 60, 80, y 100 horas para los tomates.[10]TRATAMIENTO DE SECADOLas muestras no tratadas y osmotizada se colocaron en capas simples y gaseosas en bandejas de secado previamente pesados, y se secaron a 60 C en un secador de cabina de flujo transversal (Heraeus T6), con una tasa de flujo de aire de 0,13 ms-1. Bandejas de secado se pesaron peridicamente durante el secado proceso. Para cada muestra, las bandejas se prepararon por triplicado, y a partir de los tres valores de peso de la bandeja, promedio de humedad de la muestra se determinaron como una funcin de tiempo. Estos valores se utilizaron para construir las curvas de secado.APROXIMACIN TERICASuponiendo que la descripcin del comportamiento de secado de las muestras por la ecuacin de difusin de Fick y la solucin analtica dada por manivela, [13] se expres la relacin de humedad extrable (Hr) de las muestras durante el secado usando la ecuacin simplificada de Perry et al. [14] y Henderson y Perry: [15]

Dnde: Ht (gH2O.g1 DM) es el contenido de humedad dependiente del tiempo de la muestra; H0 es el contenido de humedad inicial de la muestra; He es el contenido de humedad de equilibrio (al final del proceso de secado); D (m2 h1) es la difusividad de humedad aparente; T (h) es el tiempo de secado, y, k (h1) es la constante de secado, obtenido a partir de la trama de lnHrvs. t. Desde los experimentos de secado se llevan a cabo durante mucho tiempo hasta que se acerc tasa de equilibrio, se supone que en el equilibrio, la velocidad de secado es cero; [3] es decir:Therefore, from plots of near equilibrium, final values of

dHt dt

vs.H0, and through

regression analyses, He values were determined as the point where the graph cuts the Htaxis.[3] The values obtained were included in Eq. (1) to determine drying constants.

The apparent moisture diffusivities D, during the drying process were estimated at various moisture contents by the method of Perry et al.,[14] as described by Sankat et al.[3]2For a given value of Hr, the theoretical value of Dt / L0

is calculated from Eq. 1, and the

predicted experimental value of t obtained from the linear regression of Hr vs. t. Then D isobtained from:(D / L2)D = t 0 th (t / L2)

(3)

where subscripts th and exp refer to theoretical and experimental values, respectively.

RESULTS AND DISCUSSIONDrying curves of untreated and osmosed onion slices and tomato fruits are shown respectively on Figs. 1 and 2. The difference in initial moisture content of osmosed prod- ucts reflects the varying degrees of water loss during osmotic pre-treatment and indicates reduction of residual water content with increasing of osmotic treatment time.[9] In this respect, initial water content is higher in the sugar osmosed samples than in the salt and mixed osmosed ones. In spite of these initial differences, all curves show convergence after 20 hours and 60 hours of drying, respectively, for onion slices and tomato.

The predicted values of equilibrium moisture contents (He) attained at the end of the drying process (Table 1) show that in onion slices, He decreases with the increase in pre- osmosis time, whatever the osmotic solution used. When osmotic pre-treatment was done for more than 15 minutes in a given osmotic solution, the decrease in He was not signifi-

cantly different. He values of tomato samples are relatively comparable when pre-treatmenthas been less than 20 hours. Above this pre-treatment time, He values become irregular.The previously mentioned behaviour in He values could be related to the structural alter-ation of cells and disturbance of material exchange previously observed for extended osmotictreatments. The cell alteration occurred after 15 minutes and 20 hours of osmosis, respectively, for onion slices and tomato.[10] It could be hypothesized that the destruction of the proteins of cells membrane by osmotic shock, after extended osmotic treatment,[16] disturbed the water- binding capacity of the macromolecules. For short and medium time osmosed products, i.e., equal or less than 15 minutes and 20 hours, respectively, for onion slices and tomatoes, the equilibrium moisture contents at the end of the drying process are comparable to the untreated samples; which indicate that the cell structure of these samples are relatively intact.The drying rate curves (Figs. 3,4) show two periods of drying. In the early period of dry- ing, when moisture content is the highest, drying rates start with the highest values, dependent upon the level of osmotic pre-treatment, then decline rapidly. After this initial period of rapid decline, the drying rate curves continue to decline, but more gradually and in a linear fashion, to equilibrium conditions. In this second period, the differences in equivalent drying rate between fresh and osmosed samples are not easily perceptible. The break point separating thetwo falling rate periods occurs at moisture contents of about 2g H2O.g1 (DM basis) and 0.75gH2O.g1 (DM basis), respectively, for onion slices (Fig. 3) and tomato (Fig. 4).From linear regression analyses of the drying rate (lnHr vs. t), considering transientmoisture content values in each of the two falling rate periods, drying constants k1 and k2 wereestablished (Eq. 1) for all drying runs (Tables 2, 3). k1 and k2 represent the drying constantsrespectively in the first falling rate period, when drying rates are high, and in the second fallingrate period, when decline in drying rate is linear and drying curves are about the same. In all drying runs, k1 is higher than k2, confirming a higher drying rate in the first falling rate period.In onion slices, for each falling-rate period, drying constants of osmosed samples

are relatively comparable for all osmotic pre-treatment times and solutions used. There- fore, k1 and k2 means have been calculated (Table 2). In addition, it should be noted that the drying of untreated onion slices does not show two falling-rate periods (k1 is almost equal to k2), indicating that in this case, drying occurs in one falling rate. In tomato (Table

3), k1 constants are comparable and higher than k2 for samples pre-osmosed during 5h and10h. During this drying time, drying rate is in general higher for salt pre-osmosed samples

than for sucrose pre-osmosed samples and than for mixed pre-osmosed ones. Above this pre-treatment time, there is a change in the trend of drying constant values for all pre-osmosis solutions, with tendency of k1 values to increase for sucrose and mixed pre-osmosed

Pre-osmosis in Salt solution10 10

Pre-osmosis in Sugar solution10

Pre-osmosis in mixed solution8 8 8

Untreated5 min osmosis10 min osmosis15 min osmosis30 min osmosis60 min osmosis120 min osmosis6 6 64 4 42 2 200 1 2 3 4

10 20 30 40

050 0 1 2 3 4

10 20

30 40

050 0 1 2 3 4

10 20

30 40 50

Drying time (hours)Figure 1 Drying curves of onion slices from different osmotic pre-treatments.

Pre-osmosis in salt solution25 25

Pre-osmosis in sugar solution25

Pre-osmosis in mixed solution20 2015 15

20 Untreated5h osmosis10h osmosis20h osmosis40h osmosis60h osmosis15 80h osmosis10 10 105 5 50010

20 40 60

080 100 0 10

20 40 60

080 100 010

20 40

60 80

100

Drying time (hours)Figure 2 Drying curves of tomato from different osmotic pre-treatments.

Table 1 Equilibrium moisture contents (g H20.g1 DM) of dried, fresh, and osmosed onion slices and tomato.Osmotic solutionOsmotic

pre-treatment

NaCl solutionSucrose solutionMixed solutionOnion slicesUntreated0.34 0.165 min0.42 0.040.42 0.120.35 0.0510 min0.29 0.050.27 0.040.39 0.0415 min0.18 0.050.20 0.060.31 0.0530 min0.11 0.040.15 0.040.25 0.0760 min0.12 0.070.15 0.070.29 0.08120 min0.18 0.050.23 0.080.24 0.03Tomato

Untreated0.01 0.005 h0.02 0.000.02 0.000.02 0.0010 h0.04 0.010.02 0.010.02 0.0020 h0.12 0.020.13 0.020.10 0.0340 h0.08 0.010.09 0.020.04 0.0060 h0.03 0.010.26 0.010.01 0.0080 h0.03 0.010.20 0.010.01 0.00samples, while for salt pre-osmosed tomato samples the drying tends to occur in one fall- ing period (k1 K2). The incrustation of sugar molecules at the surface of cytoplasm dur-

ing long period of osmotic pre-treatment and the resulting alteration of cell membrane[10,17] may explain the increase in drying rate for sucrose and mixed pre-osmo- sed tomato samples. The presence of salt in mixed solution seems to have contributed to limit the incrustation of sugar and the physical alteration of cell membrane during osmotic pre-treatment,[7] which may be the reason why the increase in drying rate is lower for mixed solution pre-osmosed tomato samples than in sucrose pre-osmosed ones.

The calculation of apparent moisture diffusivity of onion slices during drying, as a func- tion of samples moisture content (Fig. 5) shows that during drying, moisture diffusivityTable 2 Drying constants k1 and k2, during the air drying of onion slices as a function of osmotic pre-treatment time and solution.

Osmotic solutionOsmotic

pre-treatment

NaCl solutionSucrose solutionMixed solutionk1 (h1)k2 (h1)k1 (h1)k2 (h1)k1 (h1)k2 (h1)Untreated0.250.250.25

5 min0.520.270.440.080.360.20

10 min0.440.170.400.100.300.16

15 min0.510.110.490.090.330.25

30 min0.430.150.410.080.480.26

60 min0.390.120.330.110.370.20

120 min0.330.170.420.100.360.20

Mean0.440.160.420.090.370.21

Pre-treatment in salt solution10

Pre-treatment in sugar solution10

Pre-treatment in mixed solution108 8 8

Fresh sample5min. osmosis10min. osmosis15min. osmosis30min. osmosis60min. osmosis120min. osmosis6 6 64 4 42 2 200 1 2 4 6

08 10 0 1 2

4 6 8

010 0 1

2 4 6

8 10Moisture Content (gH O.g-1

DM)

Figure 3 Drying rate curves for onion slices from different osmotic pre-treatments.

0,70,60,50,4

Pre-treatment in salt solution

0,70,60,50,4

Pre-treatment in sugar solution

0,70,60,50,4

Pre-treatment in mixed solutionFresh sample

5h osmosis

10h osmosis

20h osmosis

40h osmosis

60h osmosis

80h osmosis

0,3

0,3

0,30,2

0,2

0,20,1

0,1

0,10,0

0,0

0,5

4,0

8,0

12,0

0,0

0,0

0,5

4,0

8,0

12,0

0,0

0,0

0,5

4,0

8,0

12,0Moisture content (g H2O.g

DM)

Figure 4 Drying rate curves for tomato from different osmotic pre-treatements.

Table 3 Drying constants k1 and k2, during the air drying of tomato fruits as a function of osmotic pre-treatment time and solution.

Osmotic solutionNaCl solutionSucrose solutionMixed solutiondecreases with the decrease of moisture content. This behaviour is normal since moisture migration becomes increasingly difficult as the consequence of toughness and hardness of sample structure during drying. Meanwhile, though residual water is higher in untreated onion than in pre-osmosed one, the moisture diffusivity during drying is higher in the later; the mini-mum predicted diffusivity value in this case is around 1.5 108 m2h1 when moisture contenttends towards zero, while in unosmosed onion slice, the minimum diffusivity is around 0 when the moisture content is still around 8 gH2O g1 DM (Fig. 5). This observation indicates thatpre-osmosed dry sample contains less residual moisture than untreated dry sample.During the decrease of apparent diffusivity, for a given moisture content of pre- osmosed onion, D is higher as the pre-treatment time increases, particularly between 5 minutes to 60 minutes of pre-osmosis. Above 60 minutes, D decreases. In addition, from the trend of moisture diffusivity (Fig. 5), pre-osmosed samples can be divided in 2 homogenous groups characterised by their pre-treatment time (5 to 15 minutes and above 15 minutes), and their comparable diffusivity towards equilibrium, particularly for sugar and mixed pre osmo- sed samples. These observations are related to the trend of equilibrium moisture content (Table1); He decreased as pre-osmosis time increased up to 15 minutes, and remained constant for sam- ples pre treated above 15 minutes. From 60 minutes of pre-treatment, change in trend of He and D values may be attributed to alteration of cells membrane due to long osmotic pre-treatment.

CONCLUSIONThis study has shown that extension of osmotic pre-treatment results in reduction of equilibrium moisture content at the end of air drying. This reduction in He value seems to be related to the alteration of the cells membrane during long osmotic pre-treatment. In this respect, and considering the mastering of the drying process, 15 minutes of osmosis seems an acceptable pre-treatment time before drying of onion slices, while for tomato, pre-osmosis should end before 20 hours.

Air drying occurs in two falling rate periods, whose constants depend on the nature of the food material. For onion slices, osmotic pre-treatment increases the drying con- stants; but since the cells membrane do not seem to be significantly affected by osmotic pre-treatment, the drying constants are not significantly influenced neither by the osmotic solution, nor by the time of pre-treatment. On the other hand, for tomato, the structure of

Pre-Osmosis in salt solution

Pre-Osmosis in sugar solution

Pre-Osmosis in mixed solution20 2015 15

Untreated20 5 min10 min15 min30 min15 60 min120 min10 10 105 5 500 2 4 6

08 10 0 2 4

6 810

00 2 4 6

8 10

Moisture content (g H2O g-1 DM)Figure 5 Changes in apparent moisture diffusivity in onion slices as a function of residual moisture content during the drying process.

cells membrane are more affected by osmotic conditions (time and solution) and results thus in variation of drying constant values.With respect to the structural effect of osmotic pre-treatment on the drying behav- iour of food, the study of the ultra structure of cells both during osmosis and air drying represents a research opportunity for better understanding of the behaviour of food materi- als during these treatments.

REFERENCES1. Jackson, T.H.; Mohammed, B.B. (1971). The Shambat Process. New Development Arising from the Osmotic Dehydration of Fruits and Vegetables. Sudan Journal of Food Science and Technology 1971, 3, 1822.

2. Islam, M.N.; Flink, J.N. Dehydration of Potatoes. II. Osmotic Concentration and its Effect on

Air Drying Behaviour. Journal of Food Technology 1982, 31, 123125.

3. Sankat, C.K.; Castaigne, F.; Rohanie, M. The Air Drying Behaviour of Fresh and Osmotically Dehy- drated Banana Slice. International Journal of Food Science and Technology 1996, 31, 123135.4. Jiokap, N.Y.; Nuadje, G.B.; Raoult-Wack, A.L.; Giroux, F. Comportement de Certains Fruits

Tropicaux Traits Par Dshydratation-imprgnation Par Immersion Dans Une Solution De

Saccharose. Fruits 2001, 56 (2), 7583.

5. Moreno-Castillo, E.J.; Gonzales-Garcia, R.; Grajales-Lagunes, A.; Ruiz-Cabrera, M.A.; Abud- Achilla, M. Water Diffusivity and Color of Cactus Pear Fruits (Opuntia Ficus indica) Subjected to Osmotic Dehydration. International Journal of Food Properties 2005, 8 (2), 323336.

6. Ponting, J.D. Osmotic Dehydration of FruitsRecent Modifications and Applications. Process

Biochemistry 1973, 8, 1820.

7. Lenart, A.; Flink, J.N. Osmotic Concentration of Potatoes: Criteria for the End Point of the

Osmotic Effect. Journal of Food Technology 1984, 19, 6589.

8. Fito, P.; Chiralt, A. Osmotic Dehydration: An Approach to the Modelling of Solidliquid Food Operations. In Food Engineering 2000; Fito, P.; Ortega-Rodriguez, E.; Barbosa-Canovas, G.; Eds.; Chapman & Hall, International Thomson Publishing: New York, 1997.

9. Shi, J.; Le Maguer, M. Mass Transfer in Cellular Material at Solidliquid Contacting Interface.

LWT Food Science and Technology 2003, 36, 311.

10. Passo Tsamo, C.V.; Bilame, A-F.; Ndjouenkeu, R.; Jiokap Nono, Y. Study of Material Transfer During Osmotic Dehydration of Onion Slices (Allium Cepa) and Tomato Fruits (Lycopersicon Esculentum). LWT Food Science and Technology 2005, 38, 495500.

11. Rahaman, M.D.S.; Lamb, J. Air Drying Behaviour of Fresh and Osmotically Dehydrated Pine- apple. Journal of Food Process Engineering 1991, 14, 163171.

12. Kenfack, H.; Ndjouenkeu, R.; Ngongang, D.; Ferr, T.; Koumaro, M. Evaluation de la Production etde la Commercialisation de la Poudre de Tomate au Nord Cameroun et au Tchad. In Sminaire Inter- national sur le Schage et la Valorisation du Karit et de Lal, Proceedings of the International Workshop on Drying and Improvement of Shea and Canarium, Ngaoundere, Cameroon, Dec. 13,1999; Kapseu, C.; Kayem, J.; Eds.; ENSAI, Universit de Ngaoundr: Cameroun, 1999; 381387.13. Crank, J. Mathematics of Diffusion; Oxford University Press: London, 1975.

14. Perry, R.H.; Green, D.W.; Maloney, J.O. Perrys Chemical Engineers Handbook; McGraw

Hill: New York, 1984.

15. Henderson, S.M.; Perry, R.L. Agricultural Process Engineering; AVI Publishing Co. Inc.: Connecticut, 1976.

16. Berkaloff, A.; Bourguet, J.; Favard, P.; Lacroix, J.C. Biologie et physiologie cellulaire I.Membrane plasmique; Herman ETC: Paris, 1977; 270.

17. Isse, M.G.; Schubert, H. Osmotic Dehydration of Mango: Mass Transfer Between Mango and Syrup. In Proceedings of Fourth World Congress of Chemical Engineering; Behrens, D. Ed.; Bechema: Francfurt, 1992; 728745.

0 exp

Water content (g/100g DW)

881

Water content (g/100g DW)

882

2

Drying rate (gH2O.g DM.h )

-1-1

884

885

Osmotic

pre treatment

k1 (h1)

k2 (h1)

k1 (h1)

k2 (h1)

k1 (h1)

k2 (h1)Untreated0.150.030.150.030.150.035 h0.240.050.160.040.100.0410 h0.320.090.140.030.070.0120 h0.100.060.100.040.060.0140 h0.140.050.200.040.090.0260 h0.080.050.440.060.130.0180 h0.040.430.060.24

Moisture diffusivity, Dx10 (m2h-1)

887