Patlisci, Nano-Tera 2013

Embed Size (px)

Citation preview

  • 7/28/2019 Patlisci, Nano-Tera 2013

    1/65

    1

    PATLiSciProbe Array Technology for

    Life Sciences

    Ernst Meyer

  • 7/28/2019 Patlisci, Nano-Tera 2013

    2/65

    2

    Project PartnersPATLiSci Probe Array Technology for Life Science Applications

    H. Vogel

    EPFL

    Membrane prot.

    immobilisation

    H.P. Herzig

    EPFL-IMT

    Optics

    A. Mariotti

    CePO, CHUV

    Melonoma

    progression

    P. Romero

    LICR U Lausanne

    Head & neck

    carcinoma

    E. Meyer

    Ch. Gerber

    Uni Basel

    Cantilever sensors

    D. Rimoldi

    LICR U Lausanne

    Melanoma

    H. Heinzelmann

    CSEM (Coord)

    Probe array

    technologies

    P. Renaud

    EPFL-IMT

    Fluidics

    N. de Rooij, P. Vettiger, J. Brugger

    EPFL-IMT, MEMS design & fab

  • 7/28/2019 Patlisci, Nano-Tera 2013

    3/65

    3

    Probe Array Tech 2 promising approaches to

    Cancer Research

    cantilever arrays (without tips)for nanomechanical sensing

    measure the presence of minute

    concentrations of analytes (N channels)

    personalized healthcare & diagnostics (PHC)

    probe arrays with tipsfor parallel force spectroscopy

    measure interaction forces and

    mechanical properties (N statistics)

    R&D, cell based screening

  • 7/28/2019 Patlisci, Nano-Tera 2013

    4/65

    4

    Metastatic malignant melanoma at the heart

    WikiMedia Commons

  • 7/28/2019 Patlisci, Nano-Tera 2013

    5/65

    5

    Nanomechanical sensing of Human Melanoma

    M. Volkenandt: Maligne Melanome. In:

    Dermatologie und Venerologie.

    O. Braun-Falco u. a. (Ed.), Verlag Springer,2005, S. 13131324

    Melanoma on a patient's skin

    (source : National CancerInstitute).

    1960 20060.000

    0.002

    0.004

    0.006

    0.008

    0.010

    rateofincidence

    year

    development of lifetime risk for

    melanoma in the last 50 years

    (collaboration with University Hospital of Lausanne)

    Different growth phases:

    Radial, vertical, circulating tumor cells

    Radial growthphase

    Verticalgrowth phase

    F. Huber et al,

    Nature Nanotechnology

    8, 125-129 (Feb. 2013)

    http://upload.wikimedia.org/wikipedia/commons/6/6c/Melanoma.jpg
  • 7/28/2019 Patlisci, Nano-Tera 2013

    6/65

    6

    Principle of Nanomechanical

    Biosensors

    each cantilever is functionalized for molecular recognition (ex:

    oligonucleotides)

    Probe cantilevers coated with a specific layer for target capture

    Reference cantilevers coated with a non-specific layer

    Differential measurement reveals net signal and cancels thermal

    drift

    InjectionBaseline

    baseline

    injection

    diff.deflectionDx

    time

  • 7/28/2019 Patlisci, Nano-Tera 2013

    7/657

    Functionalization for BRAF V600E

    Au/Ti layer for thiol binding

    PEG-silane (Passivation lower side)1.

    2.

    3. Thiol-oligonucleotide self-assembly

    SH-GAGATTTCTCTGTAGCTA

    SH-GAGATTTCTCTGTAGCTA

    SH-GAGATTTCTCTGTAGCTA

    SH-GAGATTTCTCTGTAGCTA

    SH-ACACACACACACACACAC

    SH-ACACACACACACACACAC

    SH-ACACACACACACACACAC

    SH-ACACACACACACACACAC

    Sensing cantilever: Probe oligonucleotide

    Reference cantilever: unspecific oligonucleotide

    Sensor : SH-GAGATTTC CTGTAGCTA

    Reference : SH-ACACACACACACACACAC

    : Single point mutation

    B-Raf oncogene (Rapidly accelerating fibrosarcoma B)

    => Functionalization of cantilevers with specific RNA-

    sequence to detect BRAF V600E

  • 7/28/2019 Patlisci, Nano-Tera 2013

    8/658

    60 80 100 120 140 160 180 200-120

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    differentialdeflection/nm

    time /min

    wild type

    wild type:V600E = 50:1wild type:V600E = 20:1

    wild type:V600E = 10:1

    wild type:V600E = 3:1

    wild type:V600E = 1:1

    V600E

    buffer flow

    10 ng/l DNA injection

    Detection of melanoma specific

    somatic mutations in B-Raf Concentration dependence

    B-Raf oncogene (Rapidly accelerating fibrosarcoma B)

    wt =

    wild type,

    not mutated

    Wt / mut

    SNP

    F. Huber et al,

    Nature Nanotechnology

    8, 125-129 (Feb. 2013)

  • 7/28/2019 Patlisci, Nano-Tera 2013

    9/659

    F. Huber et al,

    Nature Nanotechnology8, 125-129 (Feb. 2013)

    BRAF concentration dependence - Langmuir isotherm

    R2 = 0.97

    indicates a

    reliable fit to

    the data.

  • 7/28/2019 Patlisci, Nano-Tera 2013

    10/6510

    Braf V600E mutant response in total RNA background

    BRafmtV600E _minus:

    SH-GAGATTTCTCTGTAGCTA 18-mer

    Unsp (reference):

    SH-ACACACACACACACACAC 18-mer

    Wt_long (reference):

    SH-TAGCTACAGTGAAATCTC 18-mer

    Sensing cantilever:

    SH-BRafmt

    Reference cantilever:

    Unsp or Wt_long

    10 20 30 40 50 60 70 80-80

    -60

    -40

    -20

    0

    2020ng/l wild type total RNA

    20ng/l V600E total RNA

    buffer

    RNA injection

    differentiald

    eflection/nm

    time /min

    0 10 20 30 40 50 60 70 80-80

    -60

    -40

    -20

    0

    20

    differentia

    ldeflection/nm

    time /min

    100ng/l wild type total RNA

    100ng/l V600E total RNA

    buffer

    RNA injection

    Concentration dependence: 100 ng/l & 20 ng/l, no PCR required !

    F. Huber et al,

    Nature Nanotechnology8, 125-129 (Feb. 2013)

  • 7/28/2019 Patlisci, Nano-Tera 2013

    11/65

    11

    25 35 45 55 65 75 85 95 105 115 125-80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    differentialdeflection(nm

    )

    time (min)

    25 35 45 55 65 75 85 95 105 115 125-80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    differential

    deflection(nm)

    time (min)

    BRAF V600E cells

    BRAF wild type cells

    SK-Mel37 V600E total RNA

    Me275 V600E total RNA

    Me246.M1 V600E total RNAT618A wild type total RNA

    T1405B wild type total RNA

    Buffer

    100 ng/l total RNA

  • 7/28/2019 Patlisci, Nano-Tera 2013

    12/6512

    50% of melanoma patients carry the BRAF V600E mutation:RG7204 shows a significant survival benefit in melanoma.

    FDA-Early approval for blockbuster meloma drug Venurafenib

    ZelborafFirst personalized medical drug

  • 7/28/2019 Patlisci, Nano-Tera 2013

    13/6513

    Capture of Circulating Tumor Cells (CTC) using antibodies

    covalently attached to Au-coated cantilever surfaces

    Antibodies:

    Sensing cantilevers: anti-HMW-MAA binding, highly specific to melanoma cells

    anti-MHC-Class-I molecules binding, less specific to melanoma cells

    Reference cantilevers: anti-Hemagglutinin (HA) non-binding

    PEG-

    silane

    Au/Ti (20/2nm)

    Antibodies covalently attached to Au

    Functionalization protocol

    Si

    Melanoma cells expressing

    High Molecular Weight Melanoma-

    Associated Antigen (HMW-MAA)

    J. Zhang, N. Backmann et al. 2013

    The number of CTCs is

    low, about 1 to 10 in a

    billion cells per ml blood,

    but more than 90% of all

    cells are erythrocytes.

  • 7/28/2019 Patlisci, Nano-Tera 2013

    14/6514

    Real-time capturing of live melanoma cells

    4.2*105 cells/ml in RPMI/Hepes/Pen-strep

    Injection of cells

    0 2 4 6 8 10 12 14 16 18 20

    -4.0

    -3.0

    -2.0

    -1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    cl2345/4-cl1ref

    cl2345/4-cl6ref

    cl2345/4-cl7ref

    cl2345/4-cl8ref

    cl7ref-cl8ref

    cl6ref-cl8ref

    cl1ref-cl7ref

    d

    ifferentialdeflectionm

    t hr

    J. Zhang et al. 2013

    After washing

    10 cells remain

    adhered

  • 7/28/2019 Patlisci, Nano-Tera 2013

    15/6515

    Experimental set-up for cell sorting

    Rodrigo Martinez Duarte, Philippe Renaud EPFL

    PATLiSci Extension MINACEL

  • 7/28/2019 Patlisci, Nano-Tera 2013

    16/6516

  • 7/28/2019 Patlisci, Nano-Tera 2013

    17/6517

    0.0E+00

    5.0E+04

    1.0E+05

    1.5E+05

    2.0E+05

    2.5E+05

    Control 1 2 3 4 5 6 7 8

    cellspermililiter

    15 ul fraction

    Fraction concentration2.5Mhz//10l/min

    viable

    non-viable

    FIELD OFF,

    Cell release

    Trapping viable Retrieval

    viable

    %viable 95 84 95 94 88 84 83 97 100

    Rodrigo Martinez Duarte, Philippe Renaud EPFL

    PATLiSci Extention MINACEL

  • 7/28/2019 Patlisci, Nano-Tera 2013

    18/6518

    MINACEL

    User friendly platform for viability assay

    Relatively fast (~0.5 hour assay) for 15 ul

    samples

    Efficient at purifying viable population

    Separating viable melanoma cells (~20 m) from

    non viable ones and leukocytes (7-12 m)

  • 7/28/2019 Patlisci, Nano-Tera 2013

    19/6519

    Force Spectroscopy

    information about adhesion proteins,

    cell mechanics, kinetics,

    statistics! parallelforce spectroscopy

    novel cantilever deflection

    readout

    probe array microfabrication

    living melanoma cell array

    source: JPK

  • 7/28/2019 Patlisci, Nano-Tera 2013

    20/65

    20

    Microfabrication Summary

    Development and fabrication of 3x8 probe arrays

    Complex 2-wafers process

    Molded SiN cantilevers

    200 m

  • 7/28/2019 Patlisci, Nano-Tera 2013

    21/65

    21

    Cantilevers with Various

    Spring Constants Were Needed

    V-grooves along the cantilevers allow to define their stiffness without

    changing their footprint

  • 7/28/2019 Patlisci, Nano-Tera 2013

    22/65

    22

    Cantilevers with Various

    Spring Constants Were Needed

    V-grooves along the cantilevers allow to define their stiffness without

    changing their footprint

    50 m

    Li i C ll M i l ti R i

  • 7/28/2019 Patlisci, Nano-Tera 2013

    23/65

    23

    Living Cells Manipulation Requires

    a Tip with a Large Radius of Curvature

    Silica or polystyrene bead glued on tip Repeatable and large radius of

    curvature

    Postprocess technique

    Serial process

    Thie, M., R. Rspel, et al. (1998). Human Reproduction 13(11): 3211-3219.

    Oxide removal in a pyramidal mold Wafer scale process

    Small radius of curvature ( R < 500

    nm )

    G.M. Kim, A. K., J. Holleman, J. Brugger (2002).

    Journal of Nanoscience and Nanotechnology 2:

    55-59.

  • 7/28/2019 Patlisci, Nano-Tera 2013

    24/65

    24

    Spherical tips have been developed

    with an advanced molding process

    10 m

    Hi h Ti W Add d i th

  • 7/28/2019 Patlisci, Nano-Tera 2013

    25/65

    25

    Higher Tips Were Added in the

    Corners to Align the Chip with the Surface

    The Alignment Tips are 15 m

  • 7/28/2019 Patlisci, Nano-Tera 2013

    26/65

    26

    The Alignment Tips are 15 m

    Higher than the Spherical Tips

  • 7/28/2019 Patlisci, Nano-Tera 2013

    27/65

    27

    Flat Tips Can also Be Created by DRIE

  • 7/28/2019 Patlisci, Nano-Tera 2013

    28/65

    28

    SiN probe arrays with (active) actuationActuator working principle

    Metal

    Metal

    Structural layer, SixNy

    = 0

    = 0

    T

    z

    Published in IEEE Sensors Journal, Special edition, 2013 IEEE.

    Thermal bimorph actuation.

    Stress inducing metalliclayers are balanced.

    Endpoint angle is keptconstant during deflection.

  • 7/28/2019 Patlisci, Nano-Tera 2013

    29/65

    29

    SiN probe arrays with (active) actuationSEM images of actuated devices

    Published in IEEE Sensors Journal, Special edition, 2013 IEEE.

    Meandered bimorph

    actuator

    Cantilever

    Top and bottom metal layerfunction both as resistors and as

    stress-inducing layers (left).

    Arrays to parallelizemeasurements (top).

  • 7/28/2019 Patlisci, Nano-Tera 2013

    30/65

    30

    550m

  • 7/28/2019 Patlisci, Nano-Tera 2013

    31/65

    31

    SiN probe arrays with (active) actuationDisplacement versus temperature in air

    Published in IEEE Sensors Journal, Special edition, 2013 IEEE.

    17 m displacement achieved in air.

    Linear relation betweentemperature and displacement.

    Thermomechanical sensitivity of77.6 nm/K.

    Devices can be passivated for inliquid operation.

  • 7/28/2019 Patlisci, Nano-Tera 2013

    32/65

    32

    SiN probe arrays with (active) actuationComsol simulations

    Comsol simulations made to know the

    temperature profile during actuation.

    A substantial temperature increase canbe achieved locally at the electrode.

    Temperature at the water-to-cell

    substrate interface is dominated by the

    temperature of the substrate.

    Published in IEEE Sensors Journal, Special edition, 2013 IEEE.

  • 7/28/2019 Patlisci, Nano-Tera 2013

    33/65

    33

    SiN probe arrays with (active) actuation

    A novel actuator system for parallelized

    cantilever arrays was created.

    This part of the project is ongoing.

    Fabrication-related challenges are

    resolved. The system is to be tested for

    its real application.

    Published in IEEE Sensors Journal, Special edition, 2013 IEEE.

  • 7/28/2019 Patlisci, Nano-Tera 2013

    34/65

    34

    Experimental platform for operating 2D

    probe arrays

  • 7/28/2019 Patlisci, Nano-Tera 2013

    35/65

  • 7/28/2019 Patlisci, Nano-Tera 2013

    36/65

    36

    Parallel force spectroscopy on SBCL2 cells

  • 7/28/2019 Patlisci, Nano-Tera 2013

    37/65

    37

    Examples of analyzed curves

    M l ll

  • 7/28/2019 Patlisci, Nano-Tera 2013

    38/65

    38

    Elastic analysis of melanoma cells

    (primary and cancerous)

    The different phases of melanoma cancer

    development

    For each phase, one cell line

    Radial growth phase: SBCL2

    Vertical growth phase: WM115

    Metastatic: WM239

    Two types of analysis

    AFM-based force indentation curves

    Probing cell elasticity with optical tweezers

    (OT-pulled nanotube relaxation time)

    Melanoma cells

    Nanotube relaxation kinetics allows to

  • 7/28/2019 Patlisci, Nano-Tera 2013

    39/65

    39

    Nanotube relaxation kinetics allows to

    distinguish between different melanoma cell

    lines

  • 7/28/2019 Patlisci, Nano-Tera 2013

    40/65

    40

    Influence of the substrate on the cell elasticity (by AFM)

    The cells (primary melanocytes, RGP, VGP, metastatic) were grown ondifferent substrates with different incubation times

    Primary

    NHEM

    RGP

    SBCL2

    VGP

    WM115

    Metastatic

    WM239

    PS 24h FN 24h FN 2h FN spot 2h PLL 2h

    Pl ti it f l ll tiff i ith li t i

  • 7/28/2019 Patlisci, Nano-Tera 2013

    41/65

    41

    0

    200

    400

    600

    800

    1000

    1200

    1400

    NHEM SBCl2 WM115 WM239A

    Young'smodulus(P

    a)

    PS 24 h

    FN 24 h

    FN 2 h

    FN-spots 2 h

    PLL 2 hA B C D E A B C D E A B C D E A B C D E

    malignant progression

    normal melanocytes RGP VGP Met

    Cell stiffness decreases during malignant progression from NHEM to RGP and VGP cells

    (conform to literature, cancerous cells are softer as healthy cells)

    But metastatic cells are stiffer than the 3 less malignant types of cell.

    Our explanation:

    Plasticity of melanoma cells stiffness, i.e. their ability to vary their stiffness in response

    to external stimuli, increases with progression to VGP and metastatic phase

    Plasticity of melanoma cells stiffness increases with malignant progression

  • 7/28/2019 Patlisci, Nano-Tera 2013

    42/65

    42http://diseasespictures.com/neck-cancer/

    Head & Neck Cancer

    Pi i ti

  • 7/28/2019 Patlisci, Nano-Tera 2013

    43/65

    43H.P. Lang et al. 2013

    Piezoresistive

    Membrane Surface

    Stress Sensor

    (PMSS) Results

  • 7/28/2019 Patlisci, Nano-Tera 2013

    44/65

    44

    From Simulation

    Single clamped cantilever (PROBART-like) Optimized single clamped cantilever

    Membrane-type sensor

  • 7/28/2019 Patlisci, Nano-Tera 2013

    45/65

    45

    To Actual Sensors

  • 7/28/2019 Patlisci, Nano-Tera 2013

    46/65

    46

    500 Micrometers in Diameter

    and 2.5 Micrometers in Thickness

  • 7/28/2019 Patlisci, Nano-Tera 2013

    47/65

    47

    Membranes are sensitive, have a fast

    response and are easy to use

  • 7/28/2019 Patlisci, Nano-Tera 2013

    48/65

    48

    They also have a linear response over the entire

    measurement range during humidity characterization

  • 7/28/2019 Patlisci, Nano-Tera 2013

    49/65

    49

    Membrane-type sensors show higher sensitivity

    (6x) and better reproducibility over optimized

    cantilevers

    Membrane-type sensorCantilevers

    Pi i ti M b S f St S (PMSS)

  • 7/28/2019 Patlisci, Nano-Tera 2013

    50/65

    50

    Piezoresistive Membrane Surface Stress Sensors (PMSS)

    F. Loizeau, T. Akiyama, S. Gautsch, IMT EPFL

    H.P. Lang et al., Univ. Basel 2012

    G. Yoshikawa et al., Nano. Lett. 11, 1044 (2011) Diameter: 500 m, thickness: 2 m

  • 7/28/2019 Patlisci, Nano-Tera 2013

    51/65

    51

    Functionalizsation of Membrane Sensors by Inkjet Technology

    Towards non-invasive diagnostics based on breath analysis

  • 7/28/2019 Patlisci, Nano-Tera 2013

    52/65

    52

    PCA case scores

    Axis2

    Axis 1

    -0.2

    -0.5

    -0.7

    -1.0

    0.2

    0.5

    0.7

    1.0

    1.2

    -0.2-0.5-0.7-1.0 0.2 0.5 0.7 1.0 1.2

    Nitrogen

    Breath sample of a

    healthy patient

    Acetone (Diabetes)

    Dimethylamine

    (Uramia)

    Principal Component Analysis (PCA) scores

    D. Schmid, P. Hunziker, Eur. J. Nanomedicine 1, 44-47 (2008)

    Towards non-invasive diagnostics based on breath analysis

    Principal Component Analysis (PCA) of Volatile Organic Compounds

  • 7/28/2019 Patlisci, Nano-Tera 2013

    53/65

    53

    Principal Component Analysis (PCA) of Volatile Organic Compounds

    H.P. Lang et al. 2011

    A h i f f CHUV h i l

  • 7/28/2019 Patlisci, Nano-Tera 2013

    54/65

    54

    Ash tray in front of CHUV hospital

    Head and neck cancer patients and healthy persons are smokers

    Double blind study

    Di ti f H d & N k C

  • 7/28/2019 Patlisci, Nano-Tera 2013

    55/65

    55

    Diagnostics of Head & Neck Cancer

    HP Lang et al (Univ. Basel), 2012, J.P. Rivals, University Hospital Lausanne

  • 7/28/2019 Patlisci, Nano-Tera 2013

    56/65

    56

  • 7/28/2019 Patlisci, Nano-Tera 2013

    57/65

    57

    cured

    healthy

    cancer

    HP Lang et al (Univ. Basel), 2013, J.P. Rivals et al.,

    University Hospital Lausanne

    cured

    healthybifurcation

  • 7/28/2019 Patlisci, Nano-Tera 2013

    58/65

    58

    S d O tl k

  • 7/28/2019 Patlisci, Nano-Tera 2013

    59/65

    59

    Summary and Outlook

    Arrays with self sensing cantilevers and suitable probing

    tips were developed

    Cantilever Sensing was used to detect BRAF V600E in

    complete RNA background and different cell lines

    Circulating Tumor Cells were catched by suitably sensed

    cantilevers

    Elasticity of melanoma cells at different stages were

    analyzed by parallelized force spectroscopy

    Head and neck cancer was detected by breath analysis

    with cantilever arrays

    First experiments with cell lung cancer seem promising

    Thank you for your attention

  • 7/28/2019 Patlisci, Nano-Tera 2013

    60/65

    60

    PATLiSci team

    Uni Basel:

    Andreas Tonin

    Heinz Breitenstein

    Sascha MartinHans Peter Lang

    Franois Huber

    Jiayun Zhang

    Natalija Backmann

    Christoph Gerber

    Ernst Meyer

    CSEM:

    Gilles Weder

    Mlanie Favre

    Ral Ischer

    Joanna Bitterli

    Rita Smajda

    Marta Giazzon

    Martha Liley

    Andr Meister

    Harry Heinzelmann

    Thank you for your attention.

    EPFL-SAMLAB:

    Frdric Loizeau

    Terunobu Akiyama

    Sebastian GautschPeter Vettiger

    Nico de Rooij

    EPFL-LMIS1:

    Jonas Henriksson

    Maurizio Gullo

    Juergen Brugger EPFL-OPT

    Laura Chantadasantodomingo

    Eric Logan

    Hans Peter Herzig

    EPFL-LCPPM:Horst Pick

    Horst Vogel

    EPFL-LMIS4:

    Rodrigo Martinez Duarte

    Philippe Renaud

    CHUV-Ludwig-Institute for Cancer Research

    (LICR):

    Jean-Paul Rivals

    Agnes Hiou

    Pedro RomeroDonata RimoldiMarielle Hendriks

    Agnese Mariotti

    B k Slid

  • 7/28/2019 Patlisci, Nano-Tera 2013

    61/65

    61

    Back up Slides

  • 7/28/2019 Patlisci, Nano-Tera 2013

    62/65

    62

    Representative lung cancer biomarkers

    Probe Array Technologies

    for Life Science Applications

    H.P. Lang et al., 2012

    P. Romero, J.P. Rivals, D. Rimoldi,

    CHUV / Ludwig Institute for Cancer Research, Lausanne

    Working principle of the compact system

  • 7/28/2019 Patlisci, Nano-Tera 2013

    63/65

    63

    Working principle of the compact system

    In order to measured the depletion of

    multiplexed cantilevers, the deflected beams

    have to be smartly distributed in the CCD.

    A grating deposited on the cantilevers tip will

    result in a diffraction spot line. The cantilever tilt

    results in a shift of the spots line which

    corresponds to a phase change in the Fourier

    domain.

    Cantilevers can be multiplexed in different directions and their displacements analyse in

    the Fourier domain.

    Results

  • 7/28/2019 Patlisci, Nano-Tera 2013

    64/65

    64

    Results

    200m

    P=10m =10

    200

    200

    #3

    20

    #9

    200 200

  • 7/28/2019 Patlisci, Nano-Tera 2013

    65/65

    Principal Component Analysis (PCA)

    explain the axis of the PCA plot, and how the analysis works SEE TEXT

    Projection of multi-

    dimensional data in

    a two-dimensional plot

    Among the different

    possibilities for projection,

    PCA reveals maximized

    information content