55
L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, 91761 Palaiseau cedex, France Laser-Plasma Accelerators : Status, Applications and Perspectives Laser beam Electron beam 1 mm INFN, Frascati, March 7 (2006)

PDF

Embed Size (px)

Citation preview

Page 1: PDF

L O A

Victor Malka

LOA, ENSTA – CNRS - École Polytechnique,91761 Palaiseau cedex, France

Laser-Plasma Accelerators : Status,

Applications and Perspectives

Laser beam

Electron beam

1 mm

INFN, Frascati, March 7 (2006)

Page 2: PDF

L O A

Particle group

F. EwaldJ. FaureY. GlinecA. Lifschitz

Laser group

F. BurgyB. MercierJ.Ph. Rousseau

A. Pukhov, University of Dusseldorf, Germany

ELFSPL

Collaborators

E. Lefebvre, CEA/DAM Ile-de-France, France

Supported by EEC under FP6 : CARE

INFN, Frascati, March 7 (2006)

Page 3: PDF

L O A

E-field max ≈ few 10 MeV /meter (Breakdown) R>Rmin Synchrotron radiation

Classical accelerator limitations

LEP at CERN

27 km

Circle road

31 km

New medium : the plasma

Energy = Length = $$$

≈ PARIS

INFN, Frascati, March 7 (2006)

Page 4: PDF

L O A

Why is a Plasma useful ?

• Plasma is an Ionized Medium High Electric Fields

epz nE ~~w

• Superconducting RF-Cavities : Ez = 55 MV/m

ez nE ~

Are Relativistic Plasma waves efficient ?Ez = 0.3 GV/m for 1 % Density Perturbation at 1017

cc-1

Ez = 300 GV/m for 100 % Density Perturbation at 1019 cc-1

INFN, Frascati, March 7 (2006)

Page 5: PDF

L O ATajima&Dawson, PRL79

How to excite Relativistic Plasma waves?

The laser wake field

laser≈ Tp / 2=>Short laser pulse

Laser pulse

F≈-grad I

Electron density perturbation

Phase velocity vepw=vglaser => close to c

Analogy with a boat

INFN, Frascati, March 7 (2006)

Page 6: PDF

L O A

electron

Analogy:

t1 t2 t3

e >> >> 1

=> Emax(MeV)=( n/n)(nc/ne)

=>Ldeph.=(0/2)(nc /n e)3/2

Emax=2(n/n) 2mc2

L Deph. =p2

Analogy electron/surfer

INFN, Frascati, March 7 (2006)

Page 7: PDF

L O AINFN, Frascati, March 7 (2006)

Page 8: PDF

L O A

Few MeV gain

Laser

Injected electronsFew MeV

Injected electrons acceleration with laser :

Wake field (Beat wave)

INFN, Frascati, March 7 (2006)

Page 9: PDF

L O A

The 3-MeV electrons are accelerated up to ≈ 4.5 MeV

1

10

100

1000

3.00 3.504.004.50 5.005.506.00

Nu

mb

er

of

ele

ctr

on

s

Energy (MeV)

Noise due to scattered electrons

Wakefield : Acceleration in 1.5 GV/m

2.5 J, 350 fs, 1017W/cm2, 0.5 mbar He Amiranoff et al. PRL 1998

LULI/LPNHE/LPGP/LSI/IC

INFN, Frascati, March 7 (2006)

Page 10: PDF

L O A

Laser beam

Electron beam

1 mm

Direct production of e-beam

INFN, Frascati, March 7 (2006)

Page 11: PDF

L O A

How to generate an electron beam?

Self-modulated Laser Wakefield Scheme (Andreev, Sprangle, Antonsen 1992)

cp

enhances

WavebreakingPc(GW) = 17 02/p

2

Short Pulse Energetic Electronsif then

excites

INFN, Frascati, March 7 (2006)

Page 12: PDF

L O A

Wave breaking : from waves to particles

INFN, Frascati, March 7 (2006)

Page 13: PDF

L O A

Relativistic wave breaking

A. Modena et al., Nature 1995

Multiple satellites : high amplitude plasma wavesbroadening at higher densities

Loss of coherence of the relativistic plasma waves

Forward Raman Spectra

10-1

100

101

102

103

104

105

106

-2 -1 0 1 2 3 4 5In

tens

ity

(U. A

.)

spectral shift (p)

ne=0.5x1019cm-3

ne=1.5x1019cm-3

Ele

ctro

ns/

MeV

105

106

104

103

101

102

0 20 40 60 80 100 120

Energy (MeV)

ne=0.5x1019cm-3

ne=1.5x1019cm-3

Electron spectra

INFN, Frascati, March 7 (2006)

Page 14: PDF

L O A

5-pass Amp. : 200 mJ

8-pass pre-Amp. : 2 mJ

Oscillator : 2 nJ, 15 fs

Stretcher : 500 pJ, 400 ps

After Compression :1 J, 30 fs, 0.8 m,

10 Hz, 10 -7

2 m

Nd:YAG : 10 J

4-pass, Cryo. cooled Amp. :< 3.5 J, 400 ps

Salle Jaune Laser

Page 15: PDF

L O A

z

rayon2 mill.

2 mill.

z

rayon2 mill.

2 mill.

10

5

0

Phase

(ra

dia

ns)

16

5

1Densi

ty (

101

8 c

m-3

)

0

2 1018

4 1018

6 1018

8 1018

1 1019

-4 -3 -2 -1 0 1 2 3 4

Rayon (mm)

Densi

té d

e n

eutr

e (

cm-3

)

Neutral profil density measurements : the gas jet’s lab

V. Malka et al., RSI (2000)INFN, Frascati, March 7 (2006)

Page 16: PDF

L O AS. Semushin & V. Malka et al., RSI (2001)

Gas Jet Nozzle DesignFor laser plasma studies

D critmm

D exitmm

L optmm

Machexit

N ext cm-3

1 2 6 3.5 18 x 1019

1 3 7 4.75 7.5 x 1019

1 5 10 7 2.7 x 1019

1 10 15 10 0.75 x 1019

0.5 1 4 3.3 16 x 1019

0.5 2 5 5.5 4.5 x 1019

0.5 3 5 6.2 2.1 x 1019

0.5 5 7 9.5 0.7 x 1019

D critmm

D exitmm

L optmm

Machexit

N ext cm-3

INFN, Frascati, March 7 (2006)

Page 17: PDF

L O A

10

100

1019 1020E

max (

MeV

)n

e (cm -3)

Emax=4p2mec

2dnn

Tunable electron beam : temperature

Electrons are accelerated by epw

V. Malka et al., PoP (2001)

F/6

106

107

108

109

1010

0 10 20 30 40 50 60 70

# e

lect

rons/

MeV

/sr

W (MeV)

Teff=8.1 MeV

Teff=2.6MeV

detection threshold

Ne=1.5x1019cm-3

Ne=1.5x1020cm-3

INCREASE THE ACCELERATION LENGTH

INFN, Frascati, March 7 (2006)

Page 18: PDF

L O A

Interaction chamber (inside)

Laser beam

electron beam

50 cm

INFN, Frascati, March 7 (2006)

Page 19: PDF

L O A

Summary of FLWF previous results

V. Malka et al., Science, 298, 1596 (2002)

105

106

107

108

109

1010

0 50 100 150 200Energy (MeV)

Detection Threshold

Nu

mb

er

of

ele

ctr

on

(/M

eV

/sr)

Experiments

106

107

108

109

1010

1011

0 50 100 150 200 250Energy (MeV)N

um

ber

of

ele

ctr

on

(/M

eV

/sr)

3D PIC simulations

INFN, Frascati, March 7 (2006)

Page 20: PDF

L O A

Low Normalized Emittance

Emittance is indeed comparable with todays Accelerators

Electron Energy (MeV)

n (

mm

mra

d)

20 40 60

20

40

Ee- = ~ 55 MeV = ~ 3 mm mradn

x (mm)

x

(mra

d)

-

Ee- = ~ 20 MeV

= ~ 32 mm mraden

0.5 -0.25 0 0.25 0.5

-0.05

0

0.05

S. Fritzler et al., PRL 04

INFN, Frascati, March 7 (2006)

Page 21: PDF

L O A

SMLWF : Multiple e- bunches / FLWF Single e- bunch

Electron bunches

laser

Electric field

Ps

V. Malka, Europhysics news, April 2004Ps/fs

Electron bunch

laserElectron density perturbation

ne/n0-1

Electric field

0

fs

INFN, Frascati, March 7 (2006)

Page 22: PDF

L O A

Laser pulse autocorrelation

time (fs)

no plasma ne=7.5×1018 cm-3

0

1.3

r (mm

)

-150 0 150• sensitive to cp

• duration depends on pulse shape (gaussian)

•Initial duration ~ 38+/-2 fs

•Final duration ~ 9.5+/-2 fs

• Energy efficiency ~ 20 %

J. Faure et al., Phys. Rev. Lett. 95, 205003 (2005)

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100 150

aut

oco

rrel

atio

n

t (fs)

-100 -50 0 50 100I(

t) (

arb

.un

.)

t (fs)

8 fs

LineoutsPossible shape

9.5 fs

INFN, Frascati, March 7 (2006)

Page 23: PDF

L O A

700

650

Z/

20

-20

Y/

-20

2 0

X/

Quasi-Monoenergetic Electron Beams

In homogenous plasma : virtual or real?

0 200 400 E, MeV

t=350

t=450

t=550

t=650

t=750

t=850

5 108

1 109Ne / MeV

Time evolution of electron spectrum

monoenergeticelectron beam

VLPL

A.Pukhov & J.Meyer-ter-Vehn, Appl. Phys. B, 74, p.355 (2002)

One stage LPA

INFN, Frascati, March 7 (2006)

Page 24: PDF

L O A

Experimental Setup : single shot measurement

INFN, Frascati, March 7 (2006)

Page 25: PDF

L O A

2.0 x 1019cm-3

Divergence = 6 mrad

Recent results on e-beam :Spatial quality improvements

6.0 x 1018cm-37.5 x 1018cm-31.0 x 1019cm-3

5.0 x 1019cm-3 3.0 x 1019cm-3

INFN, Frascati, March 7 (2006)

Page 26: PDF

L O A

Recent results on e-beam :From Mono to maxwellian spectra

Electron density scan

V. Malka, et al., PoP 2005INFN, Frascati, March 7 (2006)

Page 27: PDF

L O A

Charge in [150-190] MeV : (500 ±200) pC

Energy distribution improvements:The Bubble regime

PIC

Experiment

Divergence = 6 mrad

INFN, Frascati, March 7 (2006)

Page 28: PDF

L O A

FLWF/BR : Beam charge improvement

DE/E=10%

FLWFBubble regime

0 20 50 100 200Energy (MeV)

Ch

arg

e (

pC

)500

INFN, Frascati, March 7 (2006)

Page 29: PDF

L O A

14 Groups have now measured a quasi mono energetic e-beam

RAL & LBNL

50 pC

300 pC

very hot topic !

INFN, Frascati, March 7 (2006)

Page 30: PDF

L O A

Applications and New Science

X-rays:diffraction-rays:radiography

Material science

MedicineRadiotherapy Proton-therapy

Radioisotopes PETRadiobiology

Accelerator Physics e beam, and p

beam ?and nuclear physics

High current

Chemistry

Radiolysis by ultra short e or p beam

New science on“ultrashort phenomena”

INFN, Frascati, March 7 (2006)

Page 31: PDF

L O A

Particle beam in medicine : Radiotherapy

99% Radiotherapy with X rayINFN, Frascati, March 7 (2006)

Page 32: PDF

L O A

Radiation Therapy : context

Depth in tissue

Photon dose

Photon beams are commonly used for radiation therapy

tumor

tumor

Photon beam

Dose

INFN, Frascati, March 7 (2006)

Page 33: PDF

L O A

Medical application : Radiotherapy

VHE ELECTRONS

e beam

INFN, Frascati, March 7 (2006)

Page 34: PDF

L O A

VHE Radiation Therapy

Depth in tissue

VHE dose

Reduced dose in save cellsDeep traitementGood lateral contrast

tumor

tumor

VHE

Dose

INFN, Frascati, March 7 (2006)

Page 35: PDF

L O A

Monte Carlo simulationof the dose deposition in water

Electron gun : quasi-monoenergetic (170MeV) with 0.5nC and 10mrad divergence

Water target : 40cm x 4cm x 4cm divided in 100 pixels in all directions.Simulation parameters : CutRange=100um and N0=105 electrons

In collaboration with DKFZ

e beam

INFN, Frascati, March 7 (2006)

Page 36: PDF

L O A

Dose deposition profile in water

Glinec et al., Med. Phys. 33, 1 (2006)

e beam

INFN, Frascati, March 7 (2006)

Page 37: PDF

L O A

In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM

Advantages: low divergence, point-like electron source

Application: high resolution -radiography

INFN, Frascati, March 7 (2006)

Page 38: PDF

L O A

Higher resolution: of the order of 400 m

In collaboration with L. Le-Dain, S. Darbon from CEA Mourainvilier and DAM

-radiography results

measured calculatedobject

INFN, Frascati, March 7 (2006)

Y. Glinec et al., Phys. Rev. Lett., 94 025003. (2005)

Page 39: PDF

L O A

Application for radiolysis :

H2O (e-s, OH., H2O2, H3O+, H2, H.) e-

Very important for:• Biology• Ionising radiations effects

In collaboration with Y. Gauduel ‘s group

INFN, Frascati, March 7 (2006)

Page 40: PDF

L O A

radiolysis in the sub ps domain:

B. Brozek-Pluska, et al. Radiation and Chemistry, 72, 149-159 (2005).

INFN, Frascati, March 7 (2006)

Page 41: PDF

L O A

Applications : X rays sourceLaser based Synchrotron radiation

lu ~ 10-100 m

E (MeV)

lu ~ cm

3 mm

100 m

Laser

AccélérateurE (GeV)

Rayonnement X

Synchrotron Laser based Synchrotron radiation

onduleur

INFN, Frascati, March 7 (2006)

Page 42: PDF

L O A

Betatron oscillation

r0 ~m

Plasma wiggler

u ~ 100 m

K ~ 20>1,wiggler u ~ 100 m

x

Helium

Plasma accelerator

Acceleration field

~ TeV / meter

EL 200 MeV

X-ray beam: 109 ph/shot 20 mradfemtosecond

K ~ r0/bet.

Principles of the Betatron radiation

INFN, Frascati, March 7 (2006)

A. Rousse et al., Phys. Rev. Lett 93, 135005(2004)

Page 43: PDF

L O A

Laser plasma acceleration has demonstrated•Energy gains of 1 MeV to 200 MeV•E-fields of 1 GV/m to 1000 GV/m•Good e-beam quality : Emittance < 3mm.mrad

•charge at high energy•Quasi monoenergetic• Very high peak current : 100 kA

Laser plasma accelerators advantages Provide e-beam with new parameters : shortProvide e-beam with new parameters : high currentProvide e-beam with new parameters : CollimatedCompact and low cost

The laser plasma accelerators status

ゝゝ

ゝゝ

ゝゝ

ゝゝ

ゝゝ

INFN, Frascati, March 7 (2006)

Page 44: PDF

L O A

Laser plasma accelerator:

• enhance stability•electron sources up to ≈ 1 GeV (nC, <1 ps): Guiding or PW class laser systems Single Stage (Pukhov, Mori) (200TW)

•Generate a tunable e-beam• applications of these electron sources •Compact XFEL

Perspectives

INFN, Frascati, March 7 (2006)

Page 45: PDF

L O A

After 5 Zr / 7.5 mm

0

0.5

1

1.5

2

2.5

800 1200 1600 2000Energy (MeV)

f(E) (a.u.)

w020 m 30 fs a0

40.8mP 200TW np 1.5 1018 cm3

* Gordienko et al, PoP 2005, UCLA& Golp groups

PW class : GeV electron beams => XFEL

INFN, Frascati, March 7 (2006)

Page 46: PDF

L O A

GeV acceleration in two-stages

GeV

Laser Plasma channel

•50-150 TW•~50 fs

Nozzle

Gas-JetLaser

•170±20 MeV•30 fs•10 mrad

•1 J•10 TW•30 fs

•Pulse guiding condition : Δn>1/πre rc2

•Weak nonlinear effects more control : a0 ~ 1-2

•High quality beams : Lb <λp n0<1018 cm-3

rc

Δnn0

Density profile

INFN, Frascati, March 7 (2006)

Page 47: PDF

L O A

GeV in low plasma density in plasma channel

n0=8 1016 cm-3, 11 J - 140 TW rc=40 μm, Δn=2 n0

L channel=4 cm 8 cm

12 cm

4

2

3

1

00 800400 1200

dN

/dE

(a.u

.)

Energy (MeV)Electron bunch

Electric field

Electron bunch

Electric field

INFN, Frascati, March 7 (2006)

V. Malka et al., Plasma Phys. Control. Fusion 47 (2005) B481–B490

Page 48: PDF

L O A

1% bandwidth for 1.2 GeV high quality e-beam

x0

2

4

6

8

10

12

0 0,5 1 1,5

E(GeV)

dN

/dE

n0=3 1016 cm-3, 10 J-0.16 PW Lchannel = 18 cm, Emittance :

0.01mm.mrad

V. Malka et al., to be published in NIM A

Electron bunch

Electric field

Ultra-short bunch

Applications: study of complex structures (X-ray diffraction, EXAFS) But ps time scale

ps

~ rad

10cm

Page 49: PDF

L O A

Extreme Light InfrastructureELI

A science integrator that will bring many frontiers of contemporary physics, i.e. relativistic plasma physics, particle physics, nuclear physics, gravitational physics, nonlinear field theory, ultrahigh pressure physics, and cosmology together.

ELI will provide a new generation of compact accelerators delivering ultra short (fs-as) and energetic particle and radiation beams for European scientists. ELI will work in close contact with synchrotron X rays FEL community.

ELI will also be an Extreme Light technology platform ready to reduce to practice the latest invention and discovery in relativistic engineering

ELI

INFN, Frascati, March 7 (2006)

Page 50: PDF

L O A

Fundamental

Interaction

Ultra-Relativistic optics

Super hot plasma

Nuclear Physics

Astrophysics

General relativity

Ultra fast phenomena

NLQED

Relativistic

Engineering

ELIExtreme Light Infrastructure

Exawatt Laser

Secondary

Beam Sources

Electrons

Positron

ion

Muon

Neutrino

Neutrons

X rays

rays

accelerators

Synchr. Xfel

Attosecond optics

Rel. Microelectronic

Rel. Microphotonic

Nuclear treatement

Nuclear pharmacology

Hadron therapy

Radiotherapy

Material science

INFN, Frascati, March 7 (2006)

Page 51: PDF

L O A

Relativistics microelectronic devices

Plasma cavity

100 m1 m

RF cavity

Courtesy of W. Mori & L. da Silva

INFN, Frascati, March 7 (2006)

Page 52: PDF

L O A

1PW >1Hz 10PW, 1 Hz >100PW, 1Hz

ELI

ELI’s strategy for accelerator physics

GeV e-beam.2 GeV p-beam

10 GeV e-beamGeV p-beam

50 GeV e-beamfew GeV p-beam

Beam lines for users e, p, X, etc…

synchroton & XFEL communities

Fundamental physics Multi stage acceleratorSingle stage acceleratorAccelerator community

INFN, Frascati, March 7 (2006)

Page 53: PDF

L O A

Parameter designs Laser Plasma Accelerators

ELI : > 100 GeV

40

13

4

1.3

Q(nC)

1120120k2804702e151000120

1123.6k91502e1630012

11.21200.28472e171001.2

1.123.60.009152e18300.12

E(Gev)

E(J)L(m)W0 (μm)ne(cm-3)τ (fs)P(PW)

Golp and UCLA Group

a0=4

INFN, Frascati, March 7 (2006)

Page 54: PDF

L O A

Electron beam energy and laser power evolution

1012

1013

1014

1015

1016

1017

Las

er P

ow

er (

W)

1

10

102

103

104

105

106

1930 1940 1950 1960 1970 1980 1990 2000 2010

« conventional » technology M

axim

ale

Ele

ctro

ns

En

erg

y (

MeV

)

Years

LULI

RAL LOA

LOA*LLNL

UCLA

ILE ¤

KEK

UCLA

ELI

ELI

*LLNL*LUND

INFN, Frascati, March 7 (2006)

Page 55: PDF

L O A

Towards an Integrated Scientific Project for European Researcher : ELI

.. ... .

....

..

...

....ELI

....... .

.. .

INFN, Frascati, March 7 (2006)