Performance Test on Solar Cooker With Augmentative Reflectors

Embed Size (px)

Citation preview

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    1/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 1

    FFFAFACULTY OF ENGINEERING AND TECHNOLOGY

    DEPARTMENT OF MECHANICAL ENGINEERING

    MSC.IN SUSTAINABLE ENERGY ENGINEERING

    LABORATORY REPORT ON SOLAR BOX COOKER

    SUBMITTED TO: Dr.A.VENKATA RAMAYA

    AND ATO BALEWGIZE AMARE

    BY: BELAY AGA

    ID No: Msc.00278/2003 DATE: 12/12/2011

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    2/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 2

    Experiment 4 performance test on solar cooker with augmentative

    reflectors

    Experimental setup

    H=0.495m

    L=0.495m

    Where DMM is the digital multimetre to measure the mv reading of the thermocouple in the

    can and DT is the digital thermometer to measure the chamber temperature

    Collector area

    Chamber

    Can with

    waterDT

    DMM

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    3/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 3

    Objectives of the experimentTo test the efficiency of the box solar cooker

    To predict the temperature of water in the can with time

    To predict the temperature of the chamber with time

    Materials used for the experimentAluiminium can

    Thermocouple

    Digital thermometer

    Infrared thermometer

    Black body

    1.5 litres of water

    Parameters to be measuredChamber temperature

    Water trmperature

    Solar insolation

    Mass flowrate of air

    Cooking power of the solar cooker

    Theory

    Introduction

    The use of solar energy to cook food presents a viable alternative to the use of fuelwood,

    kerosene, and other fuels traditionally used in developing countries for the purpose of

    preparing food. While certainly, solar cookers cannot entirely halt the use of combustible fuels

    for food preparation, it can be shown that properly applied, solar cooking can be used as an

    effective mitigation tool with regards to global climate change, deforestation, and economic

    debasement of the worlds poorest people.

    Types of solar cookers

    A survey of solar cookers worldwide shows that a wide variety of cookers have been designed.

    However, the available designs of solar cooker fall into four main categories namely, the solar

    box cookers or popularly known as solar ovens, panel cookers, collector cookers and

    concentrating or reflector cookers. The feature common to each design is the shiny reflective

    surface that directs the suns rays onto the cooking area and dark inner walls of the cooking

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    4/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 4

    area and cooking vessel. Each type of solar cooker has advantages when compared on their

    cooking ability, ease of construction, and safety of use.

    The solar box cooker or solar oven is the most common type of solar cooker made for personal

    use. It consists largely of a box made of insulating material with one face of the box fit ted with a

    transparent medium, such as glass or plastic.

    The panel cooker is quite similar in operation to the solar box cooker. The same principles are

    employed but instead of an insulated box only, the panel cooker typically relies on large (often

    multi-faceted) reflective panels, which focus the sunlight on a cooking vessel. The collector

    cooker is made up of two parts that often share a single casing: a collector for gathering heat

    and a cooking part for exploiting the yield. A typical collector cooker would consist of a flat

    plate solar collector, side and head mirrors, and the cooker part. The user is not affected by

    radiation and heat as the cooking part is separate and protected from radiation. Oil is used as

    the heat transfer medium in order to allow higher temperatures to be reached. Theconcentrating solar cooker or reflector cooker utilizes the principles of concentrating optics. It

    concentrates direct solar radiation on the bottom of the cooking pot, heating the pot in a

    fashion similar to a traditional electric or gas powered stove.

    Calibration of the thermocouple

    Table 1.calibration data for thermocouple

    voltage(mv) T(oC)

    0.5 400.8 45

    1 50

    1.2 55

    1.4 60

    1.7 65

    2.1 70

    2.4 75

    2.6 80

    2.8 85

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    5/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 5

    Figure 1 J-type thermocouple calibration

    Sample calculations

    Area of the collector

    0.495*0.495=0.245025m2

    Cookers shall have 7,000 grams potable water per square meter from standard testing

    =7kg/m2=7litre

    7lit=1m2

    Xlit=0.245m2

    X=.

    =1.715lit

    Mass of water taken to be tested =1.5kg=1.5litre

    Solar insolation calculation

    T = 18.90*(mv) + 31.30R = 0.992

    010

    20

    30

    40

    50

    60

    70

    80

    90

    0 0.5 1 1.5 2 2.5 3

    Temperatureindegreecelcius

    mv reading

    Temperature vs mv reading for the J type

    thermocouple

    T(deg.C)

    Linear (T(deg.C))

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    6/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 6

    Radiat ion component (Grad)

    Boltzmann constant () =5.67*(10-8) w/m2. k4,=1(for black body)

    G radiation= (Ts4-Tsky4) where Ts and Tsky are in Kelvin

    Table 2.data for the radiation components of insolation

    Tsur(k) Tsky(K) Grad(w/ m2)

    343.725 290.5644 387.2977833

    344.85 291.1408 394.4943069

    343.875 288.9815 397.4156314

    341.025 295.4753 334.6976664

    346.275 295.7651 381.3256008

    343.125 301.5795 316.9269647

    345.375 292.1503 393.709034353.025 291.5733 470.8514043

    352.425 293.5944 453.3982464

    348.15 292.872 415.8547253

    348.825 292.4389 424.7960172

    353.925 293.1609 470.8675418

    354.525 291.5733 485.9146195

    355.5 290.4204 502.2516626

    354.9 289.7007 500.1370566

    351.75 291.4291 459.007763

    351.225 294.0281 439.0510212

    345.975 294.1727 387.7727212

    347.925 292.1503 417.8004718

    345.825 291.5733 401.1753476

    343.35 294.0281 364.231161

    Average 419

    Convection component (Gconv)

    From Heat transfer_A practical Approach_Yunus A.Cengel , for natural convection

    Rayleigh number (Ral) =()()^

    ^*pr

    Where the

    g = gravitational acceleration, m/ s2

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    7/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 7

    =Coefficient of volume expansion, 1/K (= 1/T for ideal gases)

    Ts = temperature of the surface, C

    Tamb= temperature of the fluid sufficiently far from the surface, C

    Lc= characteristic length of the geometry, m

    = kinematic viscosity of the fluid, m2/s

    Pr =prandtl number

    The air properties are taken at the fluid temperature (average of the ambient and surface

    temperature)

    Tf=(Ts+Tamb)/2

    Table 3. Temperature reading of chamber and water

    Tsurf

    (oC)

    Tchamber

    (oC)

    T water(mv) Twater

    (oC)

    Tamb

    (oC)

    94.1 59.7 0.3 36.97 29.6

    95.6 63.2 0.4 38.86 30

    94.3 62.7 0.5 40.75 28.5

    90.5 63.1 0.6 42.64 33

    97.5 66.6 0.65 43.585 33.2

    93.3 69 0.7 44.53 37.2

    96.3 70.4 0.8 46.42 30.7

    106.5 71.3 0.9 48.31 30.3

    105.7 72.2 1 50.2 31.7

    100 72.4 1.15 53.035 31.2

    100.9 72.8 1.2 53.98 30.9

    107.7 73.3 1.3 55.87 31.4

    108.5 73.5 1.35 56.815 30.3

    109.8 72.4 1.45 58.705 29.5

    109 72.9 1.5 59.65 29

    104.8 80 1.55 60.595 30.2104.1 81.2 1.6 61.54 32

    97.1 80.7 1.65 62.485 32.1

    99.7 80.2 1.7 63.43 30.7

    96.9 78.7 1.9 67.21 30.3

    93.6 81.3 1.95 68.155 32

    Twater=18.90*(mv) +31.30 from the calibration of the thermocouple

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    8/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 8

    Figure 2 temperature profiles for the chamber and water with time from 11:40am to 3:00pm

    Lc=As/P where As is surface area,P is perimeter of the plate

    The plate is 8cm*8cm

    As=0.08*0.08=6.4*10-3m2, P=4*0.08m=0.32m,

    Lc= (6.4* 10-3m2)/ (0.32m) =0.02m.

    g=9.81m/s2

    For the Horizontal plate, (Upper surface of a hot plate or lower surface of a cold plate)

    For RaL=104107 =1.45*104 Nu=0.54RaL

    0.25=0.54*(15400)0.25=5.92

    Nu=

    =5.92=

    .

    ., h=8.23w/m2.k

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 5 10 15 20 25

    Temperature(degreecelcius)

    time of the day from 11:40am to 3:00pm respectively

    Chamber temperature and water

    temperature

    T chamber

    Twater

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    9/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 9

    Table 4. Convective component of the solar insolation with the respective time

    Taver

    age(oC)

    Kg/m3

    (N.s/m2)

    (m2

    / s)

    (1/K)

    pr

    (w/ m.k)

    Ra Nu h

    (w/k.m2)

    Gconv(w

    / m2)

    Gtotal(w

    / m2)

    50.08

    75

    0.88

    9

    1.97E

    -05

    2.22E

    -05

    0.003

    1

    0.7

    13

    0.027

    8

    1.45E

    +04

    5.92E

    +00

    8.23E

    +00

    337.3475

    689

    724.6453

    522

    50.85

    0.88

    7

    1.97E

    -05

    2.22E

    -05

    0.003

    09

    0.7

    13

    0.027

    9

    1.46E

    +04

    5.94E

    +00

    8.28E

    +00

    345.3969

    386

    739.8912

    455

    49.61

    25

    0.89 1.97E

    -05

    2.21E

    -05

    0.003

    1

    0.7

    13

    0.027

    8

    1.49E

    +04

    5.97E

    +00

    8.30E

    +00

    350.4572

    733

    747.8729

    047

    50.43

    75

    0.88

    8

    1.97E

    -05

    2.22E

    -05

    0.003

    1

    0.7

    13

    0.027

    8

    1.23E

    +04

    5.69E

    +00

    7.90E

    +00

    275.6304

    885

    610.3281

    548

    53.16

    25

    0.88

    1

    1.98E

    -05

    2.25E

    -05

    0.003

    07

    0.7

    13

    0.028 1.36E

    +04

    5.83E

    +00

    8.16E

    +00

    325.8217

    227

    707.1473

    23553.58

    75

    0.87

    9

    1.98E

    -05

    2.25E

    -05

    0.003

    07

    0.7

    13

    0.028

    1

    1.11E

    +04

    5.54E

    +00

    7.79E

    +00

    255.2154

    882

    572.1424

    53

    51.46

    25

    0.88

    5

    1.97E

    -05

    2.23E

    -05

    0.003

    09

    0.7

    13

    0.027

    9

    1.45E

    +04

    5.92E

    +00

    8.26E

    +00

    343.1984

    297

    736.9074

    637

    55.08

    75

    0.87

    5

    1.99E

    -05

    2.27E

    -05

    0.003

    05

    0.7

    13

    0.028

    2

    1.64E

    +04

    6.11E

    +00

    8.61E

    +00

    426.8800

    466

    897.7314

    509

    55.48

    75

    0.87

    4

    1.99E

    -05

    2.28E

    -05

    0.003

    05

    0.7

    13

    0.028

    2

    1.57E

    +04

    6.04E

    +00

    8.52E

    +00

    405.2309

    78

    858.6292

    244

    53.1

    0.88

    1

    1.98E

    -05

    2.25E

    -05

    0.003

    07

    0.7

    13

    0.028 1.49E

    +04

    5.97E

    +00

    8.35E

    +00

    365.8192

    185

    781.6739

    438

    53.2875

    0.88 1.98E-05

    2.25E-05

    0.00307

    0.713

    0.028 1.52E+04

    6.00E+00

    8.39E+00

    375.8129615

    800.6089787

    56.08

    75

    0.87

    3

    2.00E

    -05

    2.29E

    -05

    0.003

    04

    0.7

    13

    0.028

    2

    1.60E

    +04

    6.07E

    +00

    8.56E

    +00

    422.8335

    207

    893.7010

    625

    55.83

    75

    0.87

    3

    2.00E

    -05

    2.29E

    -05

    0.003

    04

    0.7

    13

    0.028

    2

    1.66E

    +04

    6.13E

    +00

    8.64E

    +00

    441.1090

    749

    927.0236

    944

    55.92

    5

    0.87

    3

    2.00E

    -05

    2.29E

    -05

    0.003

    04

    0.7

    13

    0.028

    2

    1.71E

    +04

    6.18E

    +00

    8.71E

    +00

    460.3538

    325

    962.6054

    95

    55.37

    5

    0.87

    5

    1.99E

    -05

    2.27E

    -05

    0.003

    05

    0.7

    13

    0.028

    2

    1.74E

    +04

    6.20E

    +00

    8.75E

    +00

    461.3234

    504

    961.4605

    07

    54.4

    0.87

    7

    1.99E

    -05

    2.27E

    -05

    0.003

    06

    0.7

    13

    0.028

    1

    1.61E

    +04

    6.08E

    +00

    8.55E

    +00

    413.6114

    304

    872.6191

    93455.03

    75

    0.87

    6

    1.99E

    -05

    2.27E

    -05

    0.003

    05

    0.7

    13

    0.028

    1

    1.52E

    +04

    6.00E

    +00

    8.43E

    +00

    388.3867

    181

    827.4377

    393

    52.46

    25

    0.88

    3

    1.98E

    -05

    2.24E

    -05

    0.003

    08

    0.7

    13

    0.028 1.40E

    +04

    5.87E

    +00

    8.22E

    +00

    334.6537

    752

    722.4264

    964

    52.73

    75

    0.88

    2

    1.98E

    -05

    2.24E

    -05

    0.003

    07

    0.7

    13

    0.028 1.50E

    +04

    5.98E

    +00

    8.37E

    +00

    368.9016

    681

    786.7021

    4

    51.48 0.88 1.98E 2.24E 0.003 0.7 0.027 1.46E 5.94E 8.29E 351.1121 752.2875

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    10/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 10

    75 5 -05 -05 09 13 9 +04 +00 +00 818 295

    51.1

    0.88

    6

    1.97E

    -05

    2.22E

    -05

    0.003

    06

    0.7

    13

    0.027

    9

    1.32E

    +04

    5.79E

    +00

    8.08E

    +00

    308.6195

    308

    672.8506

    918

    Average

    788.4139

    545

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    11/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 11

    Figure 3 solar insolation with time of the day

    Gconv average =369.415w/ m2

    = +=369.415+419=788.415w/m2

    =0.245m2

    Input power

    =*=0.245*788.415=193.162watt

    Output power

    = ( )

    Where =4186J/kg.K

    0

    200

    400

    600

    800

    1000

    1200

    0 5 10 15 20 25

    solarinsolation(w/m2)

    time inhrs from 11:40am to 3:00pm respectively with 10 minutes interval

    Gtotal(w/m2)

    Gtotal(w/m2)

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    12/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 12

    =3:00pm-11:40am=3:20h=3.33hour

    =.

    (..)

    .=16.33watt

    Efficiency ( ) =

    100% =.

    ..*100%=8.454%

    Cooking power for the 10minute interval

    =( )

    =.(..)

    =19.78watt

    =

    =.

    .=19.10617watt

    =-=39.97-29.6=7.37oC

    Table 5. Instant cooking power and standard cooking power relations

    P (watt) Pi(watt) Twater(oC) Tamb(oC) Td(oC) Gtotal(w/m2)

    19.10617 19.77885 36.97 29.6 7.37 724.6453522

    18.71247 19.77885 38.86 30 8.86 739.8912455

    18.51276 19.77885 40.75 28.5 12.25 747.8729047

    11.34242 9.889425 42.64 33 9.64 610.3281548

    9.78947 9.889425 43.585 33.2 10.385 707.1473235

    24.19886 19.77885 44.53 37.2 7.33 572.14245318.78824 19.77885 46.42 30.7 15.72 736.9074637

    15.42242 19.77885 48.31 30.3 18.01 897.7314509

    24.18715 29.66827 50.2 31.7 18.5 858.6292244

    8.856119 9.889425 53.035 31.2 21.835 781.6739438

    17.29333 19.77885 53.98 30.9 23.08 800.6089787

    7.745988 9.889425 55.87 31.4 24.47 893.7010625

    14.9351 19.77885 56.815 30.3 26.515 927.0236944

    7.191521 9.889425 58.705 29.5 29.205 962.605495

    7.200085 9.889425 59.65 29 30.65 961.460507

    7.933125 9.889425 60.595 30.2 30.395 872.6191934

    8.366306 9.889425 61.54 32 29.54 827.4377393

    9.582425 9.889425 62.485 32.1 30.385 722.4264964

    35.19806 39.5577 63.43 30.7 32.73 786.70214

    9.202063 9.889425 67.21 30.3 36.91 752.2875295

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    13/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 13

    Arranging the temperature difference and the standardized cooking power, the following plot is attained

    Figure 2 standardized cooking power with respect to the temperature difference

    Ps = -0.230* Td + 19.55

    R = 0.087

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 5 10 15 20 25 30 35 40

    standardcookingpower(watt)

    Temperature difference (degree celcius)

    Ps vs Td

    Ps

    Linear (Ps

  • 7/31/2019 Performance Test on Solar Cooker With Augmentative Reflectors

    14/14

    Performance test on solar cooker wi th augmentative reflectors

    By Belay Aga MSc 00278/ 2003 December, 2011 Page 14

    Conclusion

    From the table above the temperature rise of the chamber has rapid response than that of the

    water temperature as expected .the water temperature increases smoothly and that of the

    chamber oscillates in increasing and decreasing. The plot of the standardized cooking power

    with respect to the temperature difference is not like that of the standard tool because of thelow number of data and less change of water temperature.in an interval of 2.33hrs,the water

    temperature rises by 31.185oC by the average solar insolation of 788.415w/ m2 by the collector

    area of 0.245m2. By this data the efficiency of the solar box cooker is 8.454 %