35
INORGANIC CHEMISTRY (AS) The Periodic table Groups II , VII , V and VI Transition elements

Periodic Table

Embed Size (px)

DESCRIPTION

Periodic Table

Citation preview

  • INORGANIC CHEMISTRY (AS)

    The Periodic table

    Groups II , VII , V and VI

    Transition elements

  • THE PERIODIC TABLE (AS)

    Trends in physical and chemical properties

    Across a period from left to right

  • Periodic table

    1869 : proposed by Mendeleev

    63 elements arranged according to increasing atomic mass

    1913 : modern periodic table proposed by Moseley

    108/109 elements arranged according to increasing atomic number

  • Structure of the Table

    Elements are arranged according to their atomic no.

    Period = the horizontal row

    Group = the vertical column

    Divided into sections:

    s-block (Groups I and II) : outermost subshell s

    p-block (Groups III to VIII):outermost subshell p

    d-block with transition elements : partially filled d subshell

  • Diagonal relationship

    First element in any group usually shows unusual behaviour unlike the rest of the elements in the same group

    More similar to the second element in the neighbouring group

  • Example :

    Group I II III

    Li Be B

    Na Mg Al

  • Rxn Typical Group I element

    Li

    (Group I)

    Mg

    (Group II)

    Heat carbonate

    No reaction

    Li2O + CO2 MgO + CO2

    Heat nitrate

    MNO2 + O2 Li2O + O2 + NO2

    MgO + O2 + NO2

  • Trends in physical properties ( Physical periodicity )

    1. Atomic and ionic radii

    a. Atomic radius :

    i) Size of atoms = atomic (covalent) radii

    = half internuclear distance between 2 atoms of the same element joined by a single bond

    Eg Cl - Cl

    x

    Size of Cl = x/2

  • Note :atomic radius for other elements

    (1)Metals metallic radius of the atom in the metal

    (2)Noble gases -atomic/ VDW radius is half the average distance between adjacent non-bonded atoms -unusually large value

  • ii) Atomic size decreases from left to right due to increase in nuclear charge

    iii) Decrease in size becomes smaller with increasing atomic number due to increased repulsion between electrons

    Eg Li Be B C

    Radius 0.123 0.089 0.080 0.077

    Decrease 0.034 0.009 0.003

  • Period 2

    Atomic number

    Atomic

    radius

    Li

    Be

    F

  • Period 3 ( data from Data Booklet )

    Atomic number

    Atomic

    radius

    Ar

    Unusually large value

    (VDW radius)

  • b. Ionic radius

    i) Positive ions :

    Atom - electrons Positive ion

    (p = e) ( p > e)

    In ion , nuclear charge has greater pull on remaining electrons

    Or sometimes positive ion has one shell less than atom

    Size of positive ion smaller than neutral atom

  • ii) Negative ions :

    Atom + electrons Negative ion

    (p = e) ( p e)

    In ion , nuclear charge has weaker pull on the electrons

    Also increased repulsion between electrons

    Size of negative ion bigger than neutral atom

  • c. Eg : Period 3

    i) Positive ions Na+ Mg2+ Al3+ Si4+

    Ionic radius 0.095 0.065 0.050 0.041

    ( nm)

    All ions are isoelectronic (10 e ), [Ne]

    From Na to Si, nuclear charge increases

    Attractive force on outer electrons increases

    Decrease in ionic radii

  • ii)Negative ions P3- S2- Cl-

    Ionic radius/nm 0.212 0.184 0.181

    All ions are isoelectronic ,18 e , [Ar]

    From P to Cl, nuclear charge increases

    Attractive force on outer electrons increases

    Decrease in ionic radii

  • iii)Radii of negative ions are larger than that of positive ions

    Reasons :

    Extra shell of electrons in negative ions

    ( 18 e vs 10 e ) (*)

    Increased repulsion between larger no of electrons

  • iv)Graph

    Atomic

    number

    Ionic

    radius

    Na+ Si4+ P3- Cl-

  • 2. Melting* and boiling points :

    Depends on strength of the bonds and on the structure in the solid state

    Eg Period 3 ( Na to Ar )

    Na Mg Al Si P S Cl Ar

    Giant metallic structure

    Simple molecular structure

    Giant molecular structure

  • a. Na , Mg , Al :

    Giant metallic structure

    Strong metallic bonds high m.p

    M.p increases from Na to Al as metallic bonds becomes stronger

  • Reasons : Increasing no of delocalised electrons (*)

    Increasing nuclear charge

    Decreasing atomic radius

  • b. Si :

    Giant molecular structure

    Numerous strong covalent bonds present

    Highest melting point

  • c. P to Ar :

    Simple molecular structure

    Weak VDW forces low m.p

    Strength of VDW forces no of electrons

    P4 S8 Cl2 Ar

    no of electrons most least

    VDW force strongest weakest

    m.p / 0C 44 119 -101 -189

    highest lowest

  • Note:

    Structure of P4 : tetrahedral

  • Sulphur, S8

  • Atomic number

    Melting

    Point / 0 C

    Na

    Mg Al

    Si

    P

    S

    Cl Ar

  • 3. Electrical conductivity : In period 3 (from Na to Ar) , elements

    change from metal to non metal a. Na , Mg , Al : Metals with metallic structures consisting of

    cations in a sea of delocalised electrons Mobile electrons Good conductors/high

    conductivity Conductivity increases as no of delocalised

    electrons increases from Na to Al

  • b. Si :

    Semi metal , semi conductor / moderate conductivity

    c. P to Ar :

    Non metals , exists as simple discrete molecules

    All electrons paired in covalent bonds

    No free electrons or ions non conductors/ low conductivity

  • Electrical conductivity

    Atomic number

    Na

    Al

    Si

  • 4. Ionisation energy ( first I.E ) :

    a. Generally , the I.E of elements increase across a period due to

    i) increase in nuclear charge (*)

    ii)slight decrease in atomic radius

  • Note : However there are anomalies :

    (1)between elements in Groups II and III , and

    (2)between elements in Groups V and VI

    b. In any period , the elements in Group VIII ( inert or noble gases ) being stable have the highest first I.E

  • Atomic number

    First I.E

    Na

    Mg

    Al

    Si

    P

    S

    Cl

    Ar

  • 5. Electronegativity :

    a. Definition : electronegativity of an element is a measure of its attraction for bonding electrons

    b. Electronegativities increases from left to right across a period due to

    increase in nuclear charge

  • c. Electronegativity decreases down a group

    due to increase in shielding effect

  • Changes in Physical Properties of Elements in a Period

    Property Na Mg Al Si P S Cl Ar

    Proton # 11 12 13 14 15 16 17 18

    Ionisation energy (kJ/mol)

    500 740 580 790 1010 1000 1260 1520

    Covalent bond radius (nm)

    0.156

    0.136 0.125 0.117 0.110 0.104 0.099 0.192

    Electronegativity 1.0 1.25 1.45 1.74 .05 2.45 2.85

    Structure GiantMetal

    -lic

    Giant molec-ular

    Simple

    Molec-ular

    Density (gcm-3) 0.97 1.74 2.70 2.33 1.82 2.07 gas Gas

    Melting pt (oC)

    Boiling pt (oC)

    98

    low

    890

    651

    high

    1117

    660

    high

    2447

    1410

    high

    2355

    44

    low

    280

    119

    low

    445

    -101

    low

    -35

    -189

    low

    -186

    Electrical conductivity

    high high high moderate

    low low low low