30
CEA | 10 AVRIL 2012 PETAL : a multi-PW beam on LMJ facility J.L. MIQUEL Experimental Validation & PETAL Projects Manager CEA,DAM, F-91297 Arpajon, France Retard = 50 fs Retard = 3 ps

PETAL : a multi-PW beam on LMJ facility

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

CEA | 10 AVRIL 2012

PETAL :

a multi-PW beam

on LMJ facility

J.L. MIQUEL Experimental Validation & PETAL Projects Manager

CEA,DAM, F-91297 Arpajon, France

Retard = 50 fs Retard = 3 ps

2 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

The PETAL Project

PETAL is a part of the opening policy of CEA, and it will be dedicated to the scientific community

PETAL is supported by :

PETAL is a step toward :

The coupling of PETAL was previously planned with the LIL Facility

Transferring of PETAL and coupling with LMJ Quads was decided in 2010

Opportunity to study a wider field of physics and prepare efficiently HiPER

3 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

PETAL beamline

North

South

Focusing

Source

Compression stages (SS2)

Energy Bank

Implantation in LMJ building

PETAL

1st LMJ Quadruplets

© CEA 2010

4 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

PETAL goals

Energy : up to 3 kJ *

Wavelength : 1053 nm (526 nm option)

Pulse duration : from 0,5 to 10 ps

Intensity on target : ~ 1020 W/cm²

Power contrast : 10-7 at -7 ps

Energy contrast : 10-3

LMJ (1 beam)

Energy : up to 7.5 kJ (x 176 = 1,3 MJ)

Wavelength : 351 nm

Pulse duration : from 0,3 to 25 ns

Intensity on target : ~ 1015 W/cm²

* limited at the beginning to 1 kJ due to the damage threshold of the transport mirrors

PETAL characteristics versus LMJ

5 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

PETAL Project

Phase 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

I- Key issues : Front End, Compression stage

II– Laser development : Front end & Amplifier section

III- Compression : Air

transport & Compression stages

IV- Focusing : Vacuum Transport & Focusing

V- Coupling to LMJ

LIL LMJ

6 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Amplification kJ – UHI

PETAL = kJ-UHI « Robust »

• 3 kJ, sub-ps : CPA

• 3 kJ, robust : Nd:glass amplification

→ Amplifier section = LMJ type

Physical limitations

• Non-linear effects : filamentation

High stretching factor, vacuum, reflective optics

• Amplification : spectral narrowing

Pre-amplification with large Dl : OPCPA,

Power amplification : glass mixing

• Geometric and chromatic aberrations

Large size optics, thermal effect in amplifiers : deformable mirror

Chromatism corrector

Compressor adjustment

• Damage threshold

Large size optics, in vacuum, fs regime

Short pulse oscillator (100 fs)

Stretching (qq ns)

Amplification in the laser chain(qq kJ)

Compression (ps)

I

t t

I I

t

I

t

Filamentation

Damage Threshold

7 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

* E. Hugonnot et al., Appl. Opt. 45 (2006)

Front-End Architecture : OPCPA Technique

Pump

OPCPA amplifier Source

X 90 000

Femtosecond Laser 77.76 MHz - 1053 nm 3nJ - 100fs - 16nm

Pockels cells

Optical fiber (PM)

Collimator

Alimentation + Driver

Öffner stretcher Femtosecond

oscillator Pulse

selector

Driver

Signal 100 mJ - 1053 nm

4.5 ns - 8 nm Single shot

Fiber Oscillator monochromatic

Modulator A.O

Temporal pulse

shaping Collimator

Pockels Cells

Diode pumped amplifier

Fiber oscillator Regenerative amplifier

Pump 1.2J - 526nm - 4,5ns

monochromatic Single shot

Spatial beam shaping

LBO 25mm

BBO 15mm

Rod amplifier

Flash pumped amplifier

Laser Pump 14W CW (532nm)

Driver

KTP

collimator LBO 25mm

BBO 15mm

0

0,5

1

1025 1035 1045 1055 1065 1075

wavelength (nm)

Inte

nsit

y (

a.u

)

Input

Output

8 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

* E. Hugonnot et al., Appl. Opt. 45 (2006)

Pump Laser 14W

continuous 532nm

Femtosecond Laser

77.76 MHz – 1053 nm

3nJ - 100fs - 16nm

Pockels Cell

Optical Fiber(PM)

Collimator

Power supply + Driver

Öffner StretcherFemtosecond Oscillator

Pulse Selector

Driver

Signal Output

150mJ/1053nm/4,5ns/8nmsingle shot

Fibered oscillator

monochromatic

Acousto-optic

Modulator

Temporal

shaping

ModulatorCollimator

Pockels

Cell

Diode pumped

head

fibered SourceRegenerative Amplifier

Pump

1.2J/526nm/4,5ns/monochromaticSingle shot

KTPKTP

Active Beam

Shaper

Active Beam

Shaper

collimatorLBO

25mmBBO

15mm

Flash Pumped head

Power amplifier

Flash Pumped head

Power amplifier

100 mJ

Integrated Pre-amplifier Module (PAM)

Offner system

Pre-amplifier on table

Front End

output beam

(LIL)

Front end OPCPA : 100 mJ / 8 nm / 4.5 ns @ 1053 nm

9 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

LMJ → PETAL : 4 x 2 beams → 1 x 1 beam

LMJ architecture : 4 passes Amplifier slabs : Nd:phosphate glasses Beam size : 35 x 37 cm²

1,7 ns # 3 nm # 6,4 kJ

M1 deformable mirror

Chromatism Corrector*

© CEA 2011

PEPC

* C. Rouyer, Opt. Express 15, 2019-2032 (2007)

Amplifiers

Diffractive Fresnel Lens

© CEA 2007

Amplifier section : Architecture LIL/LMJ

Automatic alignment

10 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

The Amplifier Section

Energy bank

Amplifier slab during the integration process

PETAL LMJ

LMJ Laser bay n°2

11 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Transport, Compression, Focusing

Focusing

Vacuum Transport

Beam from Amplifier Section

Compression stages

Air Transport © CEA 2010

2 stages compression : 1st stage in air

Input : 6.4 kJ # 1.7 ns Output : 4.4 kJ # 350 ps

2nd stage in vacuum Output : 3.6 kJ # 0.5-10 ps

12 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

1,7 ns

6,4 kJ

500 fs

3,6 kJ

350 ps

4,4 kJ

Segmented mirror

Cylindrical mirror

Specific diagnostics

* N Blanchot, Opt. Express (2010)

4 J/cm² and 40 x 40 cm² beam → 400 x 1800 mm² gratings

→ 4 sub-aperture compressors with beam phasing

Grating developments

Compression Sub-aperture compression scheme*

13 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Feedback of Phase 1 : Wavefront deformation due to grating modification under vacuum :

Pre-correction in air by segmented and cylindrical mirrors

Compression wavefront correction

4 compressors = Corrugated surface

Tilt of segments of segmented mirror

2 cylindrical mirrors or 1 toroidal mirror

Rx = Ry = ∞

RY RY RY RY

RX RX RX RX

RY RY RY RY

RX

Tr = Tr1 + Tr2

Front d’énergie

Front d’onde

Tr1 Tr2

Tr = 0

No impact on compressor performances

14 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Segmented and toroidal Mirrors

Mirror segment : 1 translation 2 rotations

Mirrors support : 1 translation 2 rotations

Segment adjustment

axis Course sensibility

δZ +/- 10 µm 1 nm

θX +/- 40 µrad 0.05 µrad

θY +/- 40 µrad 0.05 µrad

PZT connected to capacitive sensor

Capacitive sensor

Segment

toroidal mirror

15 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

© CEA 2012 © CEA 2012

© CEA 2013 © CEA 2013

Compression box

Room for the 1st compression stage Room for the compression diagnostics

Compression stages

16 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Transport and focusing of the compressed beam

Reservation for the 2w option

Pointing mirror

Alignment mirror Off-axis parabola

Focusing by off-axis parabola 7,8 m focal length, 90° deviation Multi-beam option Exploration for target : +/- 50 mm Focal spot ~ 50 µm

Box for the parabola

Vacuum transport

17 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

PETAL diagnostics

© CEA 2010

TDI

TEI

TDA

REA

TDC

DTF

SORF

RECO Légende : TDI : Table de Diagnostics d’Injection TDA : Table de Diagnostics d’Amplification TDC : Table de Diagnostics sortie Compresseur DTF : Diagnostic de Tache Focale

TEI : Tiroir Etalon d’Injection REA : Radiomètre Etalon d’Amplification RECO : Radiomètre Etalon de Compression

SORF : Système Optique de Réduction de Faisceau

Integrated Equipment

Equipment being integrated

Equipment being designed

18 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Diagnostics SORF and TDA

SORF

Banc de réglage SORF sur la LIL

MDA VOSA

SORF

Salle E110

MT1

Bâti MDA

SORF MDA VOSA

CCD Energy

distribution

CCD Wave front

O.F. Temporal

O.F Spectrum

O.F Energy

Salle E110

Leaky mirror, beam reduction, diagnostics

19 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Compressor Diagnostics TDC

Salle TDC (ISO8)

10 measurements for compressors alignment and compressed beam characterization :

Synchronization & Phase adjustment : spectral Interferometry

PETAL/LMJ synchronization

Characterization : Short time contrast Long time contrast Wavefront Energy

Compression : Far field Near field Spectral width Spectral phase

Salle ISO8 à SS2

20 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

• Absorption on precursor default (scratch, SSD, inclusion, structural default)

• Plasma, pressure, shock wave, … → damage

•Complex, multi-physic problem

• Multi-photonic absorption, tunnel effect ionization , relaxation, …

• Ne > NCr (1020 à 1022 e-/cm3)

→ Dielectric breakdown = damage

Silice 351nm, 3ns, 30 J/cm²

Norton SPIE 6403 (2007)

ns sub-ps

The damage threshold problem

Silice 1053nm, 400 fs, 3 J/cm²

Sub-ps and ns damages

21 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Great efforts have been made on gratings*

Modélisation des

structures

Tests sur échantillons

100 200 300 400 500

1200

1400

1600

1800

2000

2200

2400

2600

HfO2

SiO2

HfO2

SiO2

06-0676

0

0.1875

0.3750

0.5625

0.7500

0.9375

1.125

1.313

1.500

1.688

1.875

2.063

2.250

2.438

2.625

2.813

3.000

X Axis

Y A

xis

Métrologie LMO, physique

de l’endommagement fs

Fabrication industrielle

pleine taille

- The effect of E field has been demonstrated (2006-2011 - 7 publications)

-PETAL gratings have been optimized :

threshold > 4J/cm²

- Work in progress with new structures

(2 patents)

* J. Néauport, Opt. Express 15 (2007)

22 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

But mirrors cannot sustain more than 2-2.4 J/cm² (4 J/cm² specified) : new technologies are needed

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9 3,1 3,3 3,5

Pro

babili

Fluence moyenne (J/cm²)

Probabilité d'endommagementEchantillon DKTOB54 - polaristion S et P - 45°

fluence calculée avec 90% de l'énergie

Pola P

Pola S

Maximum energy available :

Test on Mirror : 2.4 J/cm² @ 500 fs Correspond to Ebeam = 3.4 kJ Beam modulation => Emax~ 1 kJ

Perhaps more : spectral smoothing

Study of damages morphology :

Several damage processes can be observed depending on material properties and/or irradiation conditions :

Thermal effects Mechanical effects Ripples, surface plasmons Plasma burn

Monochromatic Broad spectrum (16 nm)

23 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Ways of improvment

Materials :

Test of high index materials (other than HfO2)

Test of mixtures

Coating processes :

e-beam + IAD

IBS

Impact of process on wave front

Design of layers :

Multi-materials coating (nb>2)

Adjustment of layers thickness

Combination multi-materials + layers thickness

| PAGE 23 11.7.2013

Effect of coating process parameters (IAD)

Use of mixtures (IBS)

24 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Dammage threshold of materials and mixtures

Case of simple materials for laser coatings

500 fs, 1on1, 1030 nm

Low index

High index

Case of mixtures

25 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Physics with PETAL – 1 : “Standard” HED Physics

Generation of intense electron, ion and X-ray beams

Electrons up to 150 MeV (Temperature 7-10 MeV)

Protons up to 120 MeV (Temperature 6-14 MeV)

Study of their propagation in Warm Dense Matter

Stopping power

Extreme WDM states by short-pulse

Isochoric heating

Laboratory Astrophysics Experiments

Opacity, hydrodynamics similarity, …

Fast ignition experiments

26 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Physics with PETAL – 2 : Extreme Physics

Acceleration and High Energy Physics Electron acceleration to 100 GeV- 1 TeV

Channel-guided acceleration by laser wakefield in low density plasma

Extreme power laser Cascaded Compression Conversion (C3) scheme, up to EW :

Coupling of CPA, OPCPA & Backward Raman (or Brillouin) Amplification

CPA

OPCPA BRA

A. Puckov -> K. Nakajima talk

-> T. Kuehl talk

27 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

Ali.1w

J F M A M J A S O N D J

2012 J F M A M J A S O N D J

2013 J F M A M J A S O N D J

2014 J A S O N D J

2011

Shots 1w

Shots 3w

Command-Control Tests

Assembly Alignt 1B AS

Assembly

Alignt 4B AS

Ali. 4B TCF

Ali. CC

Schedule for LMJ first experiments

M1

PAM

PEPC Polarisers

SCF

Amplifier

First Experiments

28 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

1st LMJ QUAD PETAL Equatorial plan

Schedule for PETAL on LMJ

© CEA 2011

80 to 90°

Experiments with PETAL will begin in 2016

LMJ/PETAL, as LIL, will be open to the scientific community

2014 2015 2016 2017 2018

Commis-sioning

Full access (call for proposals beginning in 2015)

First experiments (Restricted access)

LMJ increasing capabilities

(beams number, energy, shots number, plasma diagnostics, targets, …)

First LMJ experiments LMJ

PETAL

Last alignment

Commissioning

Align

Thank you for your attention

Direction des applications militaires

Direction des armes nucléaires

Commissariat à l’énergie atomique et aux énergies alternatives

Centre DAM Île de France – Bruyères-le-Châtel| 91297 Arpajon Cedex

T. +33 - (0)1 69 26 62 16 | F. +33 - (0)1 69 26 70 03

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

30 J-L. Miquel CEA/DAM/DAN CP VEPL IZEST Livermore| 18 July 2013

PETAL Plasma Diagnostics

PETAL+ project :

Funded by ANR and managed by the University of Bordeaux Two diagnostics + inserters Availability : 2016

Charged particles diagnostic :

Proton spectroscopy & Imaging (proton-radiography) 100 keV-200 MeV

Electron spectroscopy 100 keV – 150 MeV

Hard X-ray spectrometer

7 – 100 keV (2 transmission crystals) .

Shielding : high energy X-ray and particles (magnets)