13
PERMEABILITY Gas Flow in Porous Media

PETE311_06A_Class08_(Maggard)

Embed Size (px)

DESCRIPTION

Rock Course lecture 08

Citation preview

Page 1: PETE311_06A_Class08_(Maggard)

PERMEABILITYGas Flow in Porous Media

Page 2: PETE311_06A_Class08_(Maggard)

Gas Flow vs. Liquid Flow• Gas density is a function of pressure (for isothermal

reservoir conditions)– Real Gas Law

– We cannot assume gas flow in the reservoir is incompressible• Gas density determined from Real Gas Law

– Darcy’s Law describes volumetric flow rate of gas flow at reservoir conditions (in situ)

TRzMγp

ρ airgg =

conditionsstandardreservoir znTpV

znTpVR ⎟

⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛=

⎥⎦⎤

⎢⎣⎡−==

dsdp

μk

Aq

vg

gs

Page 3: PETE311_06A_Class08_(Maggard)

Gas Flow vs. Liquid Flow– Gas value is appraised at standard conditions

• Standard Temperature and Pressure• qg,sc[scf/day] is mass flow rate (for specified γg)

– For steady state flow conditions in the reservoir, as flow proceeds along the flow path:

• Mass flow rate, qg,sc , is constant• Pressure decreases• Density decreases• Volumetric flow rate, qg , increases

[days]dt[Mscf/day]q[$/Mscf]Price[$]Income2

1

t

tscg,∫ ⋅=

Page 4: PETE311_06A_Class08_(Maggard)

Gas Formation Volume Factor– Given a volumetric gas flow rate at reservoir

conditions, qg, we need to determine the mass flow rate, qg,sc

• Bg has oilfield units of [rcf/scf]– scf is a specified mass of gas (i.e. number of moles)– reservoir cubic feet per standard cubic foot– (ft3)reservoir conditions / (ft3)standard conditions

gscg,g

scsc

sc

sc

res

sc

resg

Bqq

1z;pT

Tzp(znRT/p)(znRT/p)

VVB

=

====

Page 5: PETE311_06A_Class08_(Maggard)

Linear Gas Flow

• 1-D Linear Flow System Assumptions• Steady state flow (mass flow rate, qg,sc , is constant)• Gas density is described by real gas law, ρg=(pγgMair)/(zRT)• Horizontal flow path (dZ/ds=0 ∴ Φ=p)• A(0≤s ≤ L) = constant• Darcy flow (Darcy’s Law is valid)• k = constant (non-reactive fluid)• single phase (Sg=1)• Isothermal (T = constant)

Lqg

A

1

2

Page 6: PETE311_06A_Class08_(Maggard)

Linear Gas Flow• Darcy’s Law:

• q1→2 > 0, if p1 > p2

Lqg

A

12

⎥⎦⎤

⎢⎣⎡−==

dsdp

μk

Aq

vg

gs

dpμkAdsq

gg −=

dpμBAkdsq

ggscg, −=

dpμzp

pTTAkdsq

gsc

scscg,

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

dpμzp

pTTAkdsq

2

1

p

p gsc

scL

0scg, ∫∫ ⎟⎟

⎞⎜⎜⎝

⎛−=

Page 7: PETE311_06A_Class08_(Maggard)

Integral of Pressure Dependent Terms• Two commonly used approaches to the evaluating the integral of the pressure

dependent terms:

• (zμg )=Constant approach, also called “p2 Method”• valid when pressure < 2,500 psia• for Ideal Gas a subset of this approach is valid

– z = 1; valid only for low pressures– μg depends on temperature only

– Pseudopressure approach• “real gas flow potential” - Paul Crawford, 2002 (see notes view).• the integral is evaluated a priori to provide the pseudopressure function,

m(p)– specified gas gravity, γg– specified reservoir temperature, T– arbitrary base pressure, p0

– valid for any pressure range

dpμzpI

2

1

p

p g∫=

Page 8: PETE311_06A_Class08_(Maggard)

(zμg )=Constant• Assumption that (zμg ) is a constant function of pressure

is valid for pressures < 2,500 psia, across the range of interest, for reservoir temperature and gas gravity

Page 9: PETE311_06A_Class08_(Maggard)

(zμg )=Constant• At other temperatures in the range of interest

Reservoir Temperature Gradient

dT/dZ ≅ 0.01 °F/ft

Page 10: PETE311_06A_Class08_(Maggard)

(zμg )=Constant, Linear Flow• If (zμg )=Constant

• Gas Flow Rate (at standard conditions)

2

1

2

1

2

1

p

p

2

g

p

pg

p

p g 2p

)μ(z1dpp

)μ(z1dp

μzpI ⎥

⎤⎢⎣

⎡=== ∫∫

( )22

21

gsc

scscg, pp

μz21

pTT

LAkq −⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

Page 11: PETE311_06A_Class08_(Maggard)

Real Gas Pseudopressure• Recall piecewise integration:

the ordering (position along x-axis) of the integral limits a,band c is arbitrary

• pseudopressure, m(p), is defined as:

• Piecewise Integration of the pressure dependent terms:

∫∫∫ +=c

b

b

a

c

a

dxf(x)dxf(x)dxf(x)

pdzμ

p2m(p)p

p g0

′′

= ∫

[ ])m(p)m(p21pd

μzp2-pd

μzp2

21dp

μzpI 12

p

p

p

p gg

p

p g

2

0

1

0

2

1

−=⎥⎥⎦

⎢⎢⎣

⎡′

′′

′== ∫ ∫∫

Page 12: PETE311_06A_Class08_(Maggard)

Real Gas Pseudopressure, Linear Flow• Recalling our previous equation for linear gas flow

• And substituting for the pressure integral

dpμzp

pTTAkdsq

2

1

p

p gsc

scL

0scg, ∫∫ ⎟⎟

⎞⎜⎜⎝

⎛−=

[ ])m(p)m(p21

pTT

LAkq 21

sc

scscg, −⎟

⎠⎞

⎜⎝⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

Page 13: PETE311_06A_Class08_(Maggard)

Radial Gas Flow• The radial equations for gas flow follow from the previous

derivation for liquid flow and are left as self study

– (zμg )=Constant

– Pseudopressure

[ ])m(p)m(p21

pTT

)/rln(rhkπ2q we

sc

sc

wescg, −⎟

⎠⎞

⎜⎝⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

( )2w

2e

gsc

sc

wescg, pp

μz21

pTT

)/rln(rhkπ2q −⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=