44
Presented by: Aamir RASHID Thesis Adviser: M. Hervé Aubert Electromagnetic Modeling of Large and Non-uniform Planar Array Structures using Scale Changing Technique (SCT) 1

PhD defense

Embed Size (px)

Citation preview

Page 1: PhD defense

1

Presented by: Aamir RASHID

Thesis Adviser: M. Hervé Aubert

Electromagnetic Modeling of Large and Non-uniform Planar Array Structures using Scale Changing Technique (SCT)

Page 2: PhD defense

2

Presentation Plan

1. Motivation2. Scale Changing Technique (SCT)3. Modeling of a Planar Reflector cell4. Characterization of Electromagnetic Coupling in

non-uniform array5. Scattering from 2-D Planar Arrays6. Conclusions and Perspectives

Page 3: PhD defense

3

Presentation Plan

1. Motivation2. Scale Changing Technique (SCT)3. Modeling of a Planar Reflector cell4. Characterization of Electromagnetic Coupling in

non-uniform array5. Scattering from 2-D Planar Arrays6. Conclusions and Perspectives

Page 4: PhD defense

4

Motivation

Problems with simulating planar structures with large size and complex geometries (e.g. FSS, Reflectarrays) Long Execution Times Immense Memory Requirements Numerical conditioning problems

Generally used solution Simulations under Infinite array assumption using Floquet Modes

Problems with the infinite array approach not applicable to non-uniform arrays

Page 5: PhD defense

5

Presentation Plan

1. Motivation2. Scale Changing Technique (SCT)3. Modeling of a Planar Reflector cell4. Characterization of Electromagnetic Coupling in

non-uniform array5. Scattering from 2-D Planar Arrays6. Conclusions and Perspectives

Page 6: PhD defense

6

RF-MEMS controlled Reflectarray – An example of a multiscale structure

10-6

Surface of Wi / Surface of W0

100 10-1 10-2 10-3 10-4 10-5

W0Reflectarray

W1

Phase-shifter cell

W2

Slot loaded by RF-MEMS switches

W3

RF-MEMS switch

W4

Region below the switch

Simulation of such structures with conventional techniques a Nightmare!!

Scale Changing Technique

Page 7: PhD defense

7

Scale Changing Technique

I. Decomposition of the planar surface ------- by introducing artificial boundary conditions

II. Definition of tangential electromagnetic fields on orthonormal modal basis

III. Determination of appropriate number of modes

IV. Computation of Scale-changing Networks (SCN)

V. Cascade of all SCNs

Page 8: PhD defense

8

Scale Changing Technique

Partitioning of the Discontinuity Plane

b0

a0

a1

x32,5

x32,4

x32,3

x32,2

b1

x31,1

x31,2

x31,3

x31,4

x31,5

b21

b22

b42,1

Slot

RF-MEMS switch

MetallicPatch

W2W3

W4

W1

[Ref] E.Perret et al, “Scale-changing technique for the electromagnetic modeling of MEMS-controlled planar phase-shifters”, IEEE Transactions on Microwave Theory and Techniques, Vol.54, No.9, September 2006, Pages: 3594-3601.

Page 9: PhD defense

9

Scale Changing Technique

The choice of boundary conditions Perfect Electric Perfect Magnetic A combination of above two Periodic (Floquet)

Tangential EM fields expressed on orthonormal modal basis Lower order modes define Large scale field variations Higher order modes define Localized and fine scale variations

EM coupling between parent domain and daughter subdomains is largely due to lower order modes ---- active modes

Appropriate number of active and passive modes need to be determined --- convergence study

EM coupling between a domain at scale ‘s’ and its subdomains at scale ‘s-1’ is represented by a Scale Changing Network

Page 10: PhD defense

10

Scale Changing Technique

Scale Changing Network

Active modesD1

s-1

Active modesD2

s-1

Active modesDN

s-1

Active modesDo

s

Scale Changing Network (SCN)

A multiport network where the ports represent active modes

Models EM coupling between successive scales

Computation of all SCNs mutually independent --- PARALLEL PROCESSING

Page 11: PhD defense

11

Scale Changing Technique

Cascade of all Scale Changing Networks

b0

a0

a1

x32,5

x32,4

x32,3

x32,2

b1

x31,1

x31,2

x31,3

x31,4

x31,5

b21

b22

b42,1

Slot

RF-MEMS switch

MetallicPatch

Page 12: PhD defense

12

Scale Changing Technique

Structures already simulated using SCT

b0

a0

a1

x32,5

x32,4

x32,3

x32,2

b1

x31,1

x31,2

x31,3

x31,4

x31,5

b21

b22

b42,1

Slot

RF-MEMS switch

MetallicPatch

Active Patch Antenna MEMS controlled Reflector cell

Multi-frequency Selective surfaces Prefractal Multi-band scatterer

[Ref] E.Perret et al, “Scale-changing technique for the computation of the input impedance of active patch antennas”, IEEE Antennas and Wireless Propagation Letters, Vol.4, 2005.

[Ref] D.Voyer et al, “Scale-changing technique for the electromagnetic modeling of planar self-similar structures”, IEEE Transactions on Antennas and Propagation, Vol.54, No.10, October 2006.

Page 13: PhD defense

13

Presentation Plan

1. Motivation2. Scale Changing Technique (SCT)3. Modeling of a Planar Reflector cell4. Characterization of Electromagnetic Coupling in

non-uniform array5. Scattering from 2-D Planar Arrays6. Conclusions and Perspectives

Page 14: PhD defense

14

a0

b0

a1

b1

a2

b2

θ φ

z

kinc

Periodic BCMagnetic BCElectric BC

y

a0=15mm b0=15mm Dielectric thickness = 4mm Dielectric=Aira1=12mm b2=1mm b1 and a2 variable

Infinite Reflectarray Modeling

Floquet modal expansion to simulate infinite array conditions

Plane-wave Excitation (Oblique Incidence)

Nine geometric configurations simulated varying dimensions b1 and a2

Objective: To find the phase of reflection coefficients for TE00 and TM00 modes

Planar Reflector Cell under infinite array conditions

Page 15: PhD defense

15

Infinite Reflectarray Modeling

Application of Scale Changing Technique (SCT)

Partitioning of planar geometry at three scale-levels

Cascade of SCNs

Page 16: PhD defense

16

20 30 40 50 60 70 80 90 100 110 120

-161

-160

-159

-158

-157

-156

-155

-154

-153

No of Slot Modes

Ph

ase

(d

eg

ree

s)

2003006008001000

Infinite Reflectarray Modeling

Convergence Study (Normal Incidence)

Convergence curves between active modes in domains D1

(2) and D1(1) (slot domain)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

-180

-175

-170

-165

-160

-155

No of Waveguide Modes (x1000)

Ph

ase

(d

eg

ree

s)

2003006008001000

Convergence curves between modes in domains D1

(2) and D1(3) (discontinuity

domain)

Modes for convergence 2500 [D1(3)] 600 [D1

(2)] 80 [D1(1)]

Page 17: PhD defense

17

Infinite Reflectarray Modeling

Numerical Results (Normal Incidence)

____ SCT x x x HFSSConvergence study performed at the centre frequency of 12.1GHz for each case

Phase results for the reflection coefficient of TM00 mode

Page 18: PhD defense

18

Variation in the phase results of the TM00 mode with the change in the incidence angle (θ)

Infinite Reflectarray Modeling

Numerical Results (Oblique Incidence) at 12.1 GHz (φinc = 0⁰)

0 5 10 15 20 25 30 35 40-200

-150

-100

-50

0

50

100

150

200

Theta (Degrees)

Ref

lect

ed P

hase

(Deg

rees

)

Config 9

Config 1

Config 2

Config 5

Config 7

SCT solid lines

HFSS broken lines

Phas

e S 11

(D

egre

es)

0 5 10 15 20 25 30 35 40-250

-200

-150

-100

-50

0

50

100

150

Theta (Degrees)R

efle

cte

d P

ha

se (

de

gre

es)

Config 1

Config 9

Config 5

Config 2

Config 7

Phas

e S 22

(D

egre

es)

Variation in the phase results of the TE00 mode with the change in the incidence angle (θ)

Page 19: PhD defense

19

Presentation Plan

1. Motivation2. Scale Changing Technique (SCT)3. Modeling of a Planar Reflector cell4. Characterization of Electromagnetic Coupling in

non-uniform array5. Scattering from 2-D Planar Arrays6. Conclusions and Perspectives

Page 20: PhD defense

20

Bifurcation Scale Changing Network

Electromagnetic Coupling Characterization

How to model electromagnetic coupling in non-uniform arrays?

Artificial boundary conditions are introduced around each unit-cell domain

A SCN can then be used to combine two unit-cell domains into a single domain modeling the mutual interactions between them

Appropriate number of modes need to be determined in each domain

An iterative cascade of these SCNs is used to model the entire array

Page 21: PhD defense

21

Bifurcation Scale Changing Network

Electromagnetic Coupling Characterization

V0I0

VN1IN1

Ms,s-1

v0i0

vN2

iN2

v’0

v’N2i’N2

i’0

i0

i’0

I0v0

v’0

V0

L(s)

L(s)

M(s)

Multiport Representation of Bifurcation SCN

(Characterized by an impedance or admittance matrix )

Equivalent Electric Network (for only TEM excitation in each domain)

Page 22: PhD defense

22

Electromagnetic Coupling Characterization

Scattering from two planar half-wave dipoles

Page 23: PhD defense

23

dBo

02.64

0 1 2 3 4 50

1

2

3

4

5

6

7

8

9

10

d/Lambda

SE

R/S

ER

(sin

gle

dip

ole

) d

B

R

CS R

atio

RCS ratio in the absence of mutual coupling

λFor separation D >> λ

012 Z

2

22

121

4

ZZo

Electromagnetic Coupling Characterization

Scattering from two planar half-wave dipoles

Page 24: PhD defense

24

0 0.2 0.4 0.6 0.8 1 1.20

2

4

6

8

10

12

14

16

18

20

d/Lambda

|Er| D

irect

Co

mp

on

en

t (m

V/m

)

IE3D

SCT

|Er| in the absence of mutual coupling (IE3D SCT)

Electromagnetic Coupling Characterization

Electromagnetic coupling modeled by Bifurcation SCN

2

2

24inc

scat

E

Er

[Ref] A.Rashid, H.Aubert , “Modeling of Electromagnetic Coupling in Finite Arrays Using Scale-changing Technique”, Progress In Electromagnetics Research Symposium (PIERS), 5-8 July 2010, Cambridge, USA.

Page 25: PhD defense

25

Modeling Linear Arrays

1

2

3

4

5

Modeling of a non-uniform linear (1-D) array of metallic stripes

A unit-cell of the array

Dimensions: a=10 mm b=9mm x=2mm Freq=5 GHz

A non-uniform array of lossless metallic strips

Partitioning process of an eight cell array

Page 26: PhD defense

26

Modeling Linear Arrays

Modeling of a non-uniform linear (1-D) array of metallic stripes

Modeling of entire array by an iterative cascade of Bifurcation SCNs

Page 27: PhD defense

27

Modeling Linear Arrays

Array Size Unit-cell ArrangementInductance (nH)

SCT HFSS

2 cells BC 2.34 2.13

2 cells DB 2.57 2.30

4 cells DACD 1.30 1.24

16 cells ABCDBCABECAABAAD 0.30 0.29

32 cellsEAEAEAEAEAEAEAEAEAEAEAEAEAEAEAEA

0.27 0.26

ConfigurationInductance (nH)

SCT HFSSA (x0= 0mm) 8.46 8.89

B (x0= 2mm) 4.85 5.19

C (x0= 4mm) 4.0 4.32

D (x0= 6mm) 4.87 5.19

E (x0= 8mm) 8.51 8.89

Modeling of a non-uniform linear (1-D) array of metallic stripes

Page 28: PhD defense

28

1. [Ref] A.Rashid, H.Aubert, H.Legay “ Modélisation Electromagnétique d’un Réseau Fini et Non-Uniforme par la Technique par Changements d’Echelle”, JNM 2009, Grenoble

Modeling Linear Arrays

1 2 3 4 5 6 70

2

4

6

8

10

12

14

Iteration

Te

mp

s d

e c

alc

ul N

orm

alis

é

SCTHFSS

Exec

ution

Tim

e (N

orm

alize

d)

Modeling of a non-uniform linear (1-D) array of metallic stripes

Iteration = Number of Bifurcation SCNs used

Array size (no of unit-cells) = 2^(Iteration)

Page 29: PhD defense

29

Presentation Plan

1. Motivation2. Scale Changing Technique (SCT)3. Modeling of a Planar Reflector cell4. Characterization of Electromagnetic Coupling in

non-uniform array5. Scattering from 2-D Planar Arrays6. Conclusions and Perspectives

Page 30: PhD defense

30

Modeling 2-D Planar Arrays

Bifurcation Scale Changing Network in 2-D

Partitioning of 2-D planar array

Phase results for the reflection coefficient of TM00 mode

Cascade of SCNs

Page 31: PhD defense

31

Modeling 2-D Planar Arrays

Surface Equation for electromagnetic scattering from a planar surface

When an equivalent current is assumed at the whole discontinuity plane

In spectral domain

Using Galerkin’s method

Formulation of the Scattering Problem

Page 32: PhD defense

32

Modeling 2-D Planar ArraysNormal Plane-wave Incidence

Uniform Array Simulation Results (Normal Plane-wave Incidence)

-50 0 500

100

200

300

400

500

600

700

800

Elevation (Degrees)

|Eph

i| H-p

lan

e (

mV

/m)

HFSS

SCT

8x8 uniform patch array

Page 33: PhD defense

33

Non-uniform Array Simulation Results (Normal Plane-wave Incidence)

-50 0 500

50

100

150

200

250

Elevation (Degrees)

|Eph

i| (H

-pla

ne

) (

mV

/m)

IE3D

SCT

HFSS

Modeling 2-D Planar ArraysNormal Plane-wave Incidence

8x8 non-uniform patch-slot array

Page 34: PhD defense

34

x

y

Uniform Array Simulation Results (Normal Plane-wave Incidence)

Modeling 2-D Planar ArraysNormal Plane-wave Incidence

16x16 uniform patch array

Page 35: PhD defense

35

x

y

Non-uniform Array Simulation Results (Normal Plane-wave Incidence)

Modeling 2-D Planar ArraysNormal Plane-wave Incidence

16x16 non-uniform patch array

Page 36: PhD defense

36

Uniform Array Simulation Results (Horn antenna Excitation)

Horn antenna has been modeled analytically by a radiating aperture in an infinite ground plane

Modeling 2-D Planar ArraysHorn Antenna Excitation

Page 37: PhD defense

37

Uniform Array Simulation Results (Horn antenna Excitation)

-100 -50 0 50 1000

5

10

15

20

25

Elevation (Degrees)

Eph

i (V

/m)

-100 -50 0 50 1000

10

20

30

40

50

Elevation (Degrees)

Eth

eta (

V/m

)

SCT

FEKOSCT

FEKO

8x8 uniform patch array

H-Plane E-Plane

Modeling 2-D Planar ArraysHorn Antenna Excitation

Page 38: PhD defense

38

Non-uniform Array Simulation Results (Horn antenna excitation)

-100 -50 0 50 1000

2

4

6

8

10

Elevation (Degrees)

Eph

i (V/m

)

SCT

FEKO

H-Plane

Modeling 2-D Planar ArraysHorn Antenna Excitation

8x8 non-uniform patch-slot array

Page 39: PhD defense

39

Modeling 2-D Planar Arrays

Execution Times to compute surface impedance of the array

CPU Time (sec)

[Zs] complete array 43.06Zs unit-cell 11.7

SCN (1 SCN + 1 cascade) 13SCN (1 SCN + 1 cascade) 11SCN (1 SCN + 1 cascade) 6

CPU Time (sec)

[Zs] complete array 172Zs unit-cell (8 configs) 135

SCN (1 SCN + 4 cascades) 16SCN (1 SCN + 2 cascades) 12SCN (1 SCN + 1 cascade) 6

8x8 uniform array

8x8 non-uniform array

Page 40: PhD defense

40

Presentation Plan

1. Motivation2. Scale Changing Technique (SCT)3. Modeling of a Planar Reflector cell4. Characterization of Electromagnetic Coupling in

non-uniform array5. Scattering from 2-D Planar Arrays6. Conclusions and Perspectives

Page 41: PhD defense

41

Conclusions

SCT has been proposed for efficient electromagnetic modeling of large and complex planar array structures

SCT models mutual coupling effects between the elements of non-uniform arrays

The unique formulation avoids the direct computation of large structures with high aspect ratios – thus prevents numerical and convergence errors

Inherent modular nature of SCT allows the parallel execution of SCNs allowing execution times to increase linearly with the exponential increase in array size

In case of a modification in geometry at a given scale only two SCNs need to be recalculated ---- an essential feature for a good PARAMETRIC and OPTIMIZATION TOOL

Page 42: PhD defense

42

Perspectives

Experimental validation in the case of a real life planar array application

A general implementation framework for grid-computing

Usage in hybrid with other techniques and methods for the simulation of multi-layered structures

Page 43: PhD defense

43

Thank You All

Page 44: PhD defense

44

Publications

1) A. Rashid et al, "Modeling of Infinite Passive Planar Structures using Scale-Changing Technique" IEEE-APS July 5-11, 2008, SanDiego, USA.

2) A. Rashid et al, "Modélisation Electromagnétique d’un Réseau Fini et Non-Uniforme par la Technique par Changements d’Echelle" JNM 2009, Grenoble, France.

3) A. Rashid et al, "Modeling of finite and non-uniform patch arrays using scale-changing technnique " IEEE-APS June 1-5, 2009, Charleston, USA.

4) A. Rashid et al, "Scale-Changing Technique for the numerical modeling of large finite non-uniform array structures " PIERS, 2009, Moscow, Russia.

5) E.B.Tchikaya et al, "Multi-scale Approach for the Electromagnetic Modeling of Metallic FSS Grids of Finite Thickness with Non-uniform Cells " APMC, 2009, Singapore.

6) F. Khalil et al, "Application of scale changing technique-grid computing to the electromagnetic simulation of reflectarrays " IEEE-APS June 1-5, 2009, Charleston, USA.