37
www.phi.com PHI 710 Scanning Auger Nanoprobe 1 Complete Auger Compositional Analysis for Nanotechnology, Semiconductors, Advanced Metallurgy and Advanced Materials

PHI 710 Scanning Auger Nanoprobe

  • Upload
    daktari

  • View
    67

  • Download
    1

Embed Size (px)

DESCRIPTION

PHI 710 Scanning Auger Nanoprobe. Complete Auger Compositional Analysis for Nanotechnology, Semiconductors, Advanced Metallurgy and Advanced Materials . PHI Auger 710 Superior Analytical Capabilities. Nanoscale image resolution Image registration for high sensitivity - PowerPoint PPT Presentation

Citation preview

Page 1: PHI  710 Scanning Auger Nanoprobe

www.phi.com 1

PHI 710 Scanning Auger Nanoprobe

Complete Auger Compositional Analysisfor Nanotechnology, Semiconductors,

Advanced Metallurgy and Advanced Materials

Page 2: PHI  710 Scanning Auger Nanoprobe

www.phi.com 2

PHI Auger 710 Superior Analytical Capabilities

Nanoscale image resolution

Image registration for high sensitivity

Constant sensitivity for all sample geometries

High sensitivity at low tilt angles for insulator analysis

Nano-volume depth profiling

Chemical state analysis: spectra, imaging, depth profiling

Page 3: PHI  710 Scanning Auger Nanoprobe

www.phi.com 3

PHI 710 Secondary Electron Imaging (SEI)3 nm from Au Islands on Carbon

Page 4: PHI  710 Scanning Auger Nanoprobe

www.phi.com

PHI 710: High Spatial Resolution Auger

Ga Map 25kV; 1nA 256x256 pixels Line Analysis Al Map 25kV; 1nA 256x256 pixels Line Analysis

Locations for Line Scans Area Analyzed4 nm Al LineAlGaAs Line Width (nm)

AugerLine

Scans

Sample provided by Federal Institute for Materials Research and Testing (BAM)Berlin, Germany

BAM-L200 Standard Sample

1

2

3

4

24 Hour stability test demonstrating exceptional image registry

Page 5: PHI  710 Scanning Auger Nanoprobe

www.phi.com 5

PHI 710: High Spatial Resolution Auger

4 nm Line

Line Scan #4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35Distance (µm)

Inte

nsity

Ga

Al (X3)

BAM-L200 Standard Sample

24 hour analysis demonstrating exceptional image registration

Page 6: PHI  710 Scanning Auger Nanoprobe

www.phi.com 6

Constant Sensitivity for All Geometries

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

Tilt Angle (degree)

Sen

sitiv

ity (k

cps)

Sensitivity vs. Sample Tilt

Coaxial CMA

Non-Coaxial SCA

The CMA with a coaxial electron gun provides high sensitivity at all sample tilt angles which is essential for insulator analysis

Minimum Beam DiameterField

Emission Electron Source

Cylindrical Mirror

Analyzer

Multi-ChannelDetector

Sample holder with high energy resolution optics

Ar+ Ion Gun

Page 7: PHI  710 Scanning Auger Nanoprobe

www.phi.com 7

CMA with Coaxial Electron Gun

Poly-Si/W Deposition and PatterningAuger Analysis of ex situ FIB cut

Auger Maps:Si oxideSi elementalW

Auger maps show: Defect is sub-micron Si oxide particle Surrounded by elemental Si Introduced during poly-Si deposition Covered with W

Only the PHI 710 can image samples such asFIB sections with uniform, high sensitivity

Page 8: PHI  710 Scanning Auger Nanoprobe

www.phi.com 8

PHI CMA High Energy Resolution Mode

How does the high energy resolution mode work?– The CMA energy resolution is given as:– ΔE / E = 0.5%– An optics element placed between the sample surface and

the entrance to the standard CMA retards the Auger electrons, reducing their energy, E

– From the energy resolution equation, if E is reduced, ΔE is also reduced and so is the Auger peak width; energy resolution is improved

– The CMA is not modified in any way and retains a 360º coaxial view of the sample relative to the axis of the electron gun

– US Patent 12 / 705,261

Page 9: PHI  710 Scanning Auger Nanoprobe

www.phi.com 9

PHI CMA High Energy Resolution Mode

710 Energy Resolution Specification

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500

Auger Peak Kinetic Energy (eV)

ΔE

/ E (%

)

Page 10: PHI  710 Scanning Auger Nanoprobe

www.phi.com 10

PHI CMA High Energy Resolution Mode

Auger KLL spectrum of native oxide on Al foil measured on PHI CMA at 0.5% (blue) and 0.1% (red) energy resolution, after background subtraction.

1350 1360 1370 1380 1390 1400 1410 1420-50

0

50

100

150

200

250

300

350

1393.4 (Al metal)1386.9 eV (Al oxide)

Kinetic Energy (eV)

N(E

) cps

0.5%0.1%

Al KLL Spectra of Native Oxide on Al Foil

Page 11: PHI  710 Scanning Auger Nanoprobe

www.phi.com 11

PHI CMA High Energy Resolution Mode

970 980 990 1000 1010 1020 10300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kinetic Energy (eV)

Nor

mal

ized

Inte

nsity

Zn LMM Spectra of Sputter Cleaned Zn Metal0.5% Energy Resolution0.1% Energy Resolution

Page 12: PHI  710 Scanning Auger Nanoprobe

www.phi.com 12

PHI CMA High Energy Resolution Mode

0.1% Energy Resolution

Si oxide

Si plasmons

Si elemental

1580 1590 1600 1610 1620 16300

20

40

60-2

0

2

4

6

8

x 104

Kinetic Energy (eV)

c/s

Depth Profile of Native Oxide on Si

10 kV - 10 nA20 µm defocused beam4 minutes per cycle

Page 13: PHI  710 Scanning Auger Nanoprobe

www.phi.com 13

PHI CMA High Energy Resolution Mode

Zn oxide Zn metal

970 980 990 1000 1010 1020 10300

5

10

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

x 105

Kinetic Energy (eV)

c/s

Depth Profile of Zn Oxide on Zn

Page 14: PHI  710 Scanning Auger Nanoprobe

www.phi.com 14

PHI 710 Spectral Window Imaging

IC412_256.map: Pad 41 PHI

2012 Sep 22 10.0 kV 10 nA FRR 0.00 s

Si4/-1 RSF

32297

746520 µm

20 µ

mSi4.ls3

IC412_256.map: Pad 41 PHI2012 Sep 22 10.0 kV 10 nA FRR 0.00 sSi4/-1 RSF

47.0

0.020 µm20

µm

Si4.ls1+Si4.ls2+Si4.ls3

Panel A shows a 200 µm FOV SEI of a semiconductor bond pad. Panel B shows the Si KLL peak area image from the area of panel A. Panels C, D and E show the chemical state images of silicide, elemental Si and Si oxynitride respectively. Panel F shows a color overlay of elemental silicon, silicide and silicon oxynitride images.

A B

ED

SEI

Elemental Si Si Oxynitride

SilicideC4094

892.8

IC.401.sem: Pad 41 PHI

2012 Sep 21 10.0 kV 10 nA FRR

SEM/-1 RSF

20 µm

20 µ

m

SEM

IC412_256.map: Pad 41 PHI

2012 Sep 22 10.0 kV 10 nA FRR 0.00 s

Si4/-1 RSF

3462175

113732920 µm

20 µ

m

Si4

Si KLL Peak Area

IC412_256.map: Pad 41 PHI

2012 Sep 22 10.0 kV 10 nA FRR 0.00 s

Si4/-1 RSF

32297

746520 µm

20 µ

m

Si4.ls1

IC412_256.map: Pad 41 PHI

2012 Sep 22 10.0 kV 10 nA FRR 0.00 s

Si4/-1 RSF

32297

746520 µm

20 µ

m

Si4.ls2

F Si Chemical States

Page 15: PHI  710 Scanning Auger Nanoprobe

www.phi.com 15

PHI 710 Spectral Window ImagingA B

C

Composite Si KLL

IC412_256.map: Pad 41 PHI

2012 Sep 22 10.0 kV 10 nA FRR 0.00 s

Si4/-1 RSF

3462175

113732920 µm

20 µ

m

Si4

Elemental Si

SilicideSi Oxynitride

Si KLL image with ROI areas

Si KLL Basis Spectra

1604 1608 1612 1616 1620 1624Kinetic Energy (eV)

Inte

nsity

1605 1615 1625Kinetic Energy (eV)

Inte

nsity

Panel A shows the Si KLL spectrum from the sum of all pixel spectra in the Si KLL Auger image shown in panel B. Panel B shows the three Regions Of Interest (ROI) selected for creation of the basis spectra for Linear Least Squares (LLS) fitting of the Si KLL image data set. Panel C shows the three basis spectra with their corresponding chemical state identifications.

PHI App. Note: Chemical State Imaging WithThe PHI 710 Scanning Auger NanoProbe

Page 16: PHI  710 Scanning Auger Nanoprobe

www.phi.com 16

Nanocone Imaging

N Map 256 x 256 pixels SEI HR Si-oxide Map at 0.1% Energy Resolution

Only the larger Nanocone contains N Both the large and small features contain Silicon oxide

The composition suggested by the images is confirmed with high energy resolution analysis

Smaller Silicon Oxide Feature Smaller Silicon Oxide Feature

Auger Images SuggestLarger Nanocone Surface Composed of Silicon Oxide and Nitride

2O kV – 10 nA

Page 17: PHI  710 Scanning Auger Nanoprobe

www.phi.com 17

Nanocone Chemical Analysis

Si NitrideStandard

Large Nanocone Base 0.1% Energy Resolution

Nanocone base is mixture of silicon oxide and silicon nitride

Si OxideStandard

1600 1605 1610 1615 1620 1625 16300

0.2

0.4

0.6

0.8

1

Kinetic Energy (eV)

Nor

mal

ized

Inte

nsity

Si KLL

20 kV – 10 nA

Page 18: PHI  710 Scanning Auger Nanoprobe

www.phi.com 18

PHI 710 Advantages

World’s best Auger depth profiling– Floating column ion gun for high current, low voltage depth

profiling– Compucentric Zalar Rotation™ maximizes depth resolution– Image registration maintains field-of-view

Page 19: PHI  710 Scanning Auger Nanoprobe

www.phi.com 19

Low Voltage Depth Profiling

0 10 20 30Sputter Time (min)

Inte

nsity

As

Ga

Al

0 200 400 600 800Sputter Time (min)

Inte

nsity

As

Al

Ga

500 eV Depth Profile 100 eV Depth Profile

Improved Interface Definition with use of Ultra Low Ion Energies

AlAs/GaAs Super Lattice Sample

Improved definition of layers

Page 20: PHI  710 Scanning Auger Nanoprobe

www.phi.com 20

Nano Depth Profiling

FOV: 2.0 µm

F

0.5 µm

1

P from the growth gas is detected on the surface of a Si nanowire

20 kV, 10 nA, 13 nm Beam

60 nm Diameter Si Nanowire

100 200 300 400 500 600 700 800-2

-1.5

-1

-0.5

0

0.5

1x 10

4

Kinetic Energy (eV)

c/s

Atomic %Si 97.5P 2.5

O

CSi

P

Surface Spectrum of Nanowire A

SEI

Page 21: PHI  710 Scanning Auger Nanoprobe

www.phi.com 21

Non-homogeneous P Doping of Si Nanowires

500 V Ar sputter depth profiling shows a non-homogeneous radial P distribution. The data suggests Vapor-Solid incorporation of P rather than Vapor-Liquid-Solid P incorporation

Depth Profile of Nanowire B

Page 22: PHI  710 Scanning Auger Nanoprobe

www.phi.com 22

Compucentric Zalar Rotation Depth Profiling

Ion Beam

Sample

AnalysisArea

Zalar rotation is used to eliminate sample roughening that can occur when sputtering at a fixed angle.

Compucentric Zalar rotation depth profiling defines the selected analysis point as the center of rotation. This is accomplished by moving the sample in X and Y while rotating, all under software control.

Micro-area Zalar depth profiling is possible on features as small as 10 µm with the 710’s automated sample stage.

Page 23: PHI  710 Scanning Auger Nanoprobe

www.phi.com 23

Compucentric Zalar Rotation Depth Profiling

0 50 100 150 200 250 3000

20

40

60

80

100

Sputter Time (min)

Ato

mic

Con

cent

ratio

n (%

)

O

Al (oxide)

Al (metal) Si

Compucentric Zalar Depth Profile of 10 µm Via Contact

Secondary Electron Image(Before Sputtering)

Page 24: PHI  710 Scanning Auger Nanoprobe

www.phi.com 24

Compucentric Zalar Rotation Depth Profiling

0 50 100 150 200 250 3000

20

40

60

80

100

Sputter Time (min)

Ato

mic

Con

cent

ratio

n (%

)

O

Al (oxide)

Al (metal) Si

Depth Profile Comparison With and Without Zalar Rotation

0 50 100 150 200 250 3000

20

40

60

80

100

Sputter Time (min)

Ato

mic

Con

cent

ratio

n (%

)

Al (metal)

O

Al (oxide)

Si

Without RotationWith Rotation

Page 25: PHI  710 Scanning Auger Nanoprobe

www.phi.com 25

Compucentric Zalar Rotation Depth Profiling

Without RotationWith Rotation2500X2500X

SE Images of 10 µm Via Contactsafter Depth Profiling

Page 26: PHI  710 Scanning Auger Nanoprobe

www.phi.com 26

Large Area Chemical Depth Profile of Ni/Si WaferAnnealed at 425 ºC

0.1% Energy Resolution 10 kV-10 nA20 µm AverageAs Received

Sputter Conditions:500 V Argon1 x 0.5 mm raster

No Zalar Rotation10° Sample Tilt

Chemical State of Si ? Chemical State of Ni ?

0 10 20 30 40 50 600

100

200

300

Sputter Time (min)

Inte

nsity

(kcp

s)

Ni LMM

Si KLL

Elemental Depth Profile

Page 27: PHI  710 Scanning Auger Nanoprobe

www.phi.com 27

Large Area Chemical Depth Profile of Ni/Si WaferAnnealed at 425 ºC

Si in Ni layer

Si inSi substrate

0 10 20 30 40 50 60

0

100

200

Sputter Time (min)

Inte

nsity

(kcp

s)

Si KLL

Si Chemical Depth Profile Created Using Linear Least Squares Fitting

Page 28: PHI  710 Scanning Auger Nanoprobe

www.phi.com 28

Large Area Chemical Depth Profile of Ni/Si WaferAnnealed at 425 ºC

0.1% Energy ResolutionSi basis spectra for LLS Si basis spectra for LLS (expanded)

1616.5 eV(metal)

1617.2 eV(silicide)

Si in Ni layerSi inSi substrateSi in Ni layer

Si inSi substrate

1570 1590 1610 1630Kinetic Energy (eV)

Nor

mal

ized

Inte

nsity

1610 1615 1620 1625Kinetic Energy (eV)

Nor

mal

ized

Inte

nsity

Si KLL Si KLL

Page 29: PHI  710 Scanning Auger Nanoprobe

www.phi.com 29

Large Area Chemical Depth Profile of Ni/Si WaferAnnealed at 425 ºC

0.1% Energy Resolution

Ni in Ni layer Ni inSi substrate

0 10 20 30 40 50 60

0

100

200

300

Sputter Time (min)

Inte

nsity

(kcp

s)

Ni LMM

Si Chemical Depth Profile Created Using Linear Least Squares Fitting

Page 30: PHI  710 Scanning Auger Nanoprobe

www.phi.com 30

Large Area Chemical Depth Profile of Ni/Si WaferAnnealed at 425 ºC

Ni basis spectra for LLS Ni basis spectra for LLS (expanded)

844.8 eV(Ni-silicide)

846.2 eV(Ni-metal)

Ni in Ni layerNi inSi substrateNi in Ni layer

Ni inSi substrate

0.1% Energy Resolution

810 820 830 840 850 860 870 880Kinetic Energy (eV)

Nor

mal

ized

Inte

nsity

830 835 840 845 850 855 860Kinetic Energy (eV)

Nor

mal

ized

Inte

nsity

Ni LMM Ni LMM

Page 31: PHI  710 Scanning Auger Nanoprobe

www.phi.com 31

Large Area Chemical Depth Profile of Ni/Si WaferAnnealed at 425 ºC

FOV: 5.0 µm 20.000 keV

Fe3C 2/16/2010F

1.0 µm

1

2

SEM 20kV - 1nA Analysis points

Point 1: Ni-silicidePoint 2: Si-metal

After Depth Profile

Auger multi-point analysis shows composition of nano-structures

500 1000 1500 2000

1.0

1.5

2.0

2.5

Kinetic Energy (eV)

Inte

nsity

(Mcp

s)

Si

Ni

||||

Si

Si

Si

NiNi

C

C

Ni Point 1

Point 2

22 nm beam size

Page 32: PHI  710 Scanning Auger Nanoprobe

www.phi.com 32

Large Area Chemical Depth Profile of Ni/Si WaferAnnealed at 425 ºC

After Depth Profile0.1% Energy Resolution

1616.5 eV(metal)

1617.2 eV(silicide)

Point 2Si inSi substrate

Point 1Si in Ni layer

Point 1Si in Ni layer

Point 2Si inSi substrate

1570 1580 1590 1600 1610 1620 1630 1640Kinetic Energy (eV)

Nor

mal

ized

Inte

nsity

1610 1615 1620 1625Kinetic Energy (eV)

Nor

mal

ized

Inte

nsity

Si KLL

22 nm beam size

Si KLL (expanded)22 nm beam size

Page 33: PHI  710 Scanning Auger Nanoprobe

www.phi.com 33

Ni/Si Annealed at 425 °C

FOV: 5.0 µm 20.000 keV

Ni/Si 425C 3/30/2010F

1.0 µm

1

2

1

2

SEM 20 kV - 10 nA Analysis points Auger Color Overlay 20 kV - 10 nA 256 x 256 pixels

12 nm Removed

Nano-areas selected for depth profiling

Page 34: PHI  710 Scanning Auger Nanoprobe

www.phi.com 34

Nano Area Chemical Depth Profile of Ni/Si WaferPoint 1 – Ni Layer

10 kV – 10 nAPoint 1LLS Profile

Sputter Conditions:500 V Argon1 x 0.5 mm raster

No Zalar Rotation10° Sample Tilt

Nano area depth profile shows nickel silicide at the nickel / silicon interface Large area depth profile included heterogeneous distributions of nickel silicide

that grows through imperfections in Ni film

0 20 40 60 80 100 120 140 160 180 2000

100

200

Sputter Depth (nm)

Inte

nsity

(kcp

s)

Si metal

Si silicide

Ni metal

Ni silicide

Chemical Depth Profile Created Using Linear Least Squares Fitting

22 nm beam size

Page 35: PHI  710 Scanning Auger Nanoprobe

www.phi.com 35

PHI 710 Scanning Auger NanoprobeMulti-technique Options

The Complete Auger Solution

Energy Dispersive Spectroscopy (EDS or EDX)

Backscatter Electron Detector (BSE)

Electron Backscatter Diffraction (EBSD)

Focused Ion Beam (FIB)

Page 36: PHI  710 Scanning Auger Nanoprobe

www.phi.com 36

PHI 710 Chamber Layout for Options

Page 37: PHI  710 Scanning Auger Nanoprobe

www.phi.com 37

PHI 710 Scanning Auger Nanoprobe

Complete Auger Compositional Analysisfor Nanotechnology, Semiconductors,

Advanced Metallurgy and Advanced Materials