55
Photolithography vs. Soft Lithography 1

Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Photolithography vs. Soft Lithography

1

Page 2: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Hard Nanoimprinting Lithogrpahy

NIL Process

Sub-10nm feature size Large area (4-8 in.) High throughput Low cost

Nanonex NX-2000 Nanoimprinter Up to 4” wafer Sub-100 nm resolution Up to 300°C, 600 psi, UV

2

Page 3: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

• Low-cost, non-lithographic method to complement photolithogrpahy.

• Use a patterned elastomer such as poly(dimethylsiloxane) (PDMS) as a mask, stamp or mold.

• Embrace chemical concepts of self-assembly, templating and crystal engineering, with soft lithographic techniques of microcontact printing and micromolding.

• Shape materials over different length scales from 1 nm to 500 mm.

• Pattern two- and three-dimensional structures on planar and curved surfaces.

• Important in MEMS and biological applications.

“Soft” Lithography

Reviews: 1. Whitesides, G. M., Angew.

Chem. Int. Ed. (1998). 2. Whitesides, G. M., Chem. Rev.

(1999).

George M. Whitesides http://gmwgroup.harvard.edu/

Father of Soft Lithography

3

Page 4: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

The Core Material of Soft Lithography

Poly(dimethylsiloxane) (PDMS)

Very bendable (135° - 180°) Polycondensation Reaction:

CH3

Si O

4

Page 5: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Unique Properties:

• High flexibility and optically transparent

• High gas permeability

• Low surface energy (21.6 ×10-3 J/m2)

• Conformal contact to almost all surfaces

• Low glass transition temperature (Tg ~ 146K)

5

Unique Properties of PDMS

Surface Modification of PDMS

O2 plasma etch Cl3SiR-X

b)

Page 6: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

6

The Science of Soft Lithography

h: 0.2-20 μm d: 0.5-200 μm l: 0.5-200 μm

CF3(CF2)6(CH2)2SiCl3 treatment

Page 7: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

7

Deformation/Distortion of Relief Structure

Pairing Sometimes, deformation is good. (More structures from a single mask.)

(Nano Lett. 4, 1657, 2004)

Sagging

Shrinking

Page 8: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Soft Lithography Resolution

• Microcontact printing (μCP) 35 nm

• Replica molding (REM) ~2 nm

• Microtransfer molding (μTM) 1 μm

• Micromolding in capillaries (MIMIC) 1 μm

• Solvent-assisted micromolding (SAMIM) 60 nm

8

Five Components of Soft Lithography

Page 9: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Soft Lithography Resolution

• Microcontact printing (μCP) 35 nm

• Replica molding (REM) ~2 nm

• Microtransfer molding (μTM) 1 μm

• Micromolding in capillaries (MIMIC) 1 μm

• Solvent-assisted micromolding (SAMIM) 60 nm

9

Five Components of Soft Lithography

Patterned ZnO Nanowires

Page 10: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Principles of Microcontact Printing

• Dip PDMS stamp in ~2 mM alkanethiol ethanol solution for 1-2 minutes.

• Press PDMS stamp on gold surface for 10-20s.

Printing on Nonplanar Surface

Roll-to-Roll Printing

10

Page 11: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Soft Lithography Resolution

• Microcontact printing (μCP) 35 nm

• Replica molding (REM) ~2 nm

• Microtransfer molding (μTM) 1 μm

• Micromolding in capillaries (MIMIC) 1 μm

• Solvent-assisted micromolding (SAMIM) 60 nm

11

Five Components of Soft Lithography

Page 12: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

12

“Soft” Replica Molding

“Rigid-Mask” Molding

Advantages of soft-mask molding: • The elasticity and low surface energy of the elastomeric

PDMS mold allows it to be released easily. • PDMS mold also enables manipulating the size and shape of

features present on the mold by mechanical deformation.

“Soft-Mask” Molding

Page 13: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

13

Manipulating PDMS Molds

Stretching Bending Mechanical Compression

Page 14: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Soft Lithography Resolution

• Microcontact printing (μCP) 35 nm

• Replica molding (REM) ~2 nm

• Microtransfer molding (μTM) 1 μm

• Micromolding in capillaries (MIMIC) 1 μm

• Solvent-assisted micromolding (SAMIM) 60 nm

14

Five Components of Soft Lithography

Page 15: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

15

Microtransfer Molding (μTM)

• Create microstructures on nonplanar surfaces. • Make three-dimensional microstructures. • Problem: residual film.

Page 16: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Soft Lithography Resolution

• Microcontact printing (μCP) 35 nm

• Replica molding (REM) ~2 nm

• Microtransfer molding (μTM) 1 μm

• Micromolding in capillaries (MIMIC) 1 μm

• Solvent-assisted micromolding (SAMIM) 60 nm

16

Five Components of Soft Lithography

Page 17: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

17

Micromolding in Capillaries (MIMIC)

PMMA

Colloids

Inorganic salt

ZrO2

Page 18: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

18

Principles of Micromolding in Capillaries

most always

• Small θasupport: slipping film.

• Intermediate θa

support : slipping films with shoulders.

• Large θasupport : wedge flow

Gold substrate with different prepolymers

Page 19: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

19

Rate of Capillary Filling

Square capillary:

Rate of capillary filling:

R

Page 20: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Soft Lithography Resolution

• Microcontact printing (μCP) 35 nm

• Replica molding (REM) ~2 nm

• Microtransfer molding (μTM) 1 μm

• Micromolding in capillaries (MIMIC) 1 μm

• Solvent-assisted micromolding (SAMIM) 60 nm

20

Five Components of Soft Lithography

Page 21: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

21

Solvent-Assisted Micromolding (SAMIM)

• Choice of solvent is critical – rapidly dissolve or swell polymer, but not PDMS mold.

• Solvent – high vapor pressure and a moderately high surface tension.

• Methanol, ethanol, acetone are good; toluene and dichloromethane can not be used.

Page 22: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

22

Five Components of Soft Lithography

Page 23: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

23

Applications of Soft Lithography

Page 24: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Photolithography vs. Soft Lithography

24

Page 25: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

• Convenient, inexpensive, accessible to chemists, biologists, and material scientists.

• Basis in self-assembly tends to minimize certain types of defects.

• Many soft lithographic processes are additive and minimize waste of materials.

• Isotropic mechanical deformation of PDMS mold or stamp provides routes to complex patterns.

• No diffraction limit; features as small as 30 nm have been fabricated.

• Nonplanar surfaces (lenses) can be used as substrates.

• Generation and replication of 3D topologies or structures are possible.

• Optical transparency of the mask allows through-mask registration and processing.

• Good control over surface chemistry, very useful for interfacial engineering.

• Applicable to manufacturing: production of indistinguishable copies at low cost.

25

Advantages of Soft Lithography

Page 26: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

• Patterns in the stamp or mold may distort due to the deformation (pairing, sagging, swelling, and shrinking) of the elastomer used.

• Difficulty in achieving accurate registration with elastomers (<1 μm).

• Compatibility with current integrate-circuit processes and materials must be demonstrated.

• Defect levels higher than photolithography.

• μCP works well with only a limited range of surfaces; MIMIC is slow; REM, μTM, and SAMIM leave a thin film of polymer over the surface.

26

Disadvantages of Soft Lithography

Page 27: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

27

Self-Assembled Monolayers (SAMs)

Oxidative addition: Hexanethiolate SAM On Au (111)

(J. Am. Chem. Soc. 114, 1222, 1992)

• The real power of SAMs stems from the ability to chemically tailor the terminal X groups of the alkanethiolate.

• Surface organic chemistry allows controlling surface wettability, adhesion, corrosion, etch protection, chemical and electrochemical reactivity, etc.

Page 28: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

28

Substrates and Ligands that Form SAMs

Page 29: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

29

SAMs with Different Head Groups

Lateral Force Microscope (Contact Mode AFM)

• μCPed HS(CH2)15CH3 followed by adsorption of HS(CH2)15COOH.

• The contrast arose from differences in the fractional force between the AFM tip and the surface in each region.

(Langmuir 11, 825, 1995)

Page 30: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

30

Patterned SAMs as Ultrathin Resists in Selective Wet Etching

4Au + 8CN- + O2 + 2H2O 4[Au(CN)2]- + 4OH-

Au+ 2CN- +[Fe(CN)6]3- [Fe(CN)6]4- + [Au(CN)2]-

Representative Au wet-etch chemistry:

Page 31: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

31

Etchants Used with Patterned SAMs

Anisotropic etching of Si (100)

Page 32: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

32

Patterning Wettability

Square drops of water held by surrounding hydrophobic lines.

Condensation Figures Microlens Arrays

Polyurethane precursors selectively wet patterned hydrophobic regions.

Page 33: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

33

SAMs Formed by μCP vs. Adsorption

Similarity between μCP and adsorption from solution. (J. Am. Chem. Soc. 119, 3017, 1997)

μCP

Page 34: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

34

μCP vs. other SAMs Patterning Techniques

Page 35: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Invisible Materials

35

Page 36: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

36

Page 37: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

37

Doppler Effect

Doppler Effect

Page 38: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

38

Run! Run! The Flash Run!

Page 39: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

39

Page 40: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

40

Retroreflective Coatings

Retroreflection Mechanism

Page 41: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

41

The Cat and The Fish

The light is refracted toward the normal when it passes into a denser medium.

Page 42: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

42

Invisible Cloak by Zhejiang University

Page 43: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

43

Invisible Cloak by Zhejiang University

Page 44: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

44

Invisible Cloak by Zhejiang University

Page 45: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

45

n1 sinθ1=n2 sin θ2

Snell's Law of Refraction

Snell's Law of Refraction

Page 46: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

46

Invisible Cloak Effect

What heppens if “n2” is < 0 ???

Harry Potter’s invisible cloak

Page 47: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Negative Refractive Index (n is < 0) 1. Two components:(S. Tretyakov) 1) Negative permittivity 2) Negative permeability 2. Novel metals based chiral structures (J. Pendry) 3. Applications: Invisible cloak; Invisible vehicles; Invisible coatings

Snell’s Law

47

Metamaterials

Page 48: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

48

Newton Medal Winner (2013) John Pendry, Imperial College London

Chiral Structures

Chirality: An object that can not be superimposed on its mirror image

Page 49: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

D. Smith et al., Science, 292, 77 (2001)

Copper mm-sized split rings 1. Microwave Region (>100 micrometer) 2. GHz

49

Metamaterials by Mask Etching

Permittivity

Permeability

Page 50: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

W. Padilla et al., Science, 313, 1495 (2006); Optics Express, 16, 7181 (2008)

1. Negative reflective index at near- IR region. 2. THz 3. Small features results in higher frequency & narrowband wavelength.

36 μm

GaAs Wafer

Polyimide

Au/Ti Wire

50

Micrometer Scale Metamaterials

Page 51: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

J. Pendry et al., Science (2004)

E. Plum et al., J. Opt. (2008)

N. Zheludev et al., Appl. Phys. Lett. (2009)

51

Spiral Metamaterials

N. Zheludev et al., Phys. Rev. (2007)

Page 52: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Ag Wires

Al2O3

(60 nm wire dia., 110 nm spacing)

1. Negative R. I. at IR Region 2. Limitations 1) 2 D 2) Strong energy losses 3) Fabrication difficult 4) Limit band of frequency 5) Angle dependent transverse electric

transverse magnetic

500 nm

4.5 μm

52

Metamaterials by Anodization

X. Zhang et al., Science, 321, 930 (2008); Nature Materials, 8, 568 (2009)

Page 53: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

21 Layers

X. Zhang et al., Nature, 07247, 1 (2008) 53

Metamaterials by FIB Milling 1

1. 3D structures, 2. R. I. shifts in microwave region (Fabry–Pe´rot effect).

Page 54: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

Imitate reflection of flat surface on dielectric substrate

1. Hole (110 nm) arrays 2. Low energy loss 3. Broadband wavelength ( 1400 nm ~ 1800 nm)

54

Metamaterials by FIB Milling 2

X. Zhang et al., Nature Materials, 8, 568 (2009)

Page 55: Photolithography vs. Soft Lithographyweb.nchu.edu.tw/~hyang/courses/che6842/4th_Week_Lecture.pdf · (J. Am. Chem. Soc. 114, 1222, 1992) • The real power of SAMs stems from the ability

X. Zhang et al., Phys. Rev. Lett., 102, 023901 (2009)

20 μm

Permittivity Permeability

Refractive index

Fresnel’s Reflection

55

Circularly Polarized Wave Metamaterials