Phychem Formula Sheets

Embed Size (px)

DESCRIPTION

Equations used in physical Chemistry

Citation preview

  • FORMULA SHEETS UNITS

    Physical

    Quantity

    SI Unit CGS Unit Other Unit(s) Conversion

    Length meter (m) centimeter(cm) angstrom (A) 1m= 100 cm

    1m = 1010

    A

    Mass kilogram (kg) gram (g) 1kg = 1000g

    Temperature Kelvin (K) Celsius (C) Fahrenheit (F)

    K = C + 273.15

    F = 9/5 C + 32

    Volume cubic meter

    (m3)

    cubic

    centimeter (cm3)

    liter (L)

    milliliter (mL)

    1m3 = 10

    6 cm

    3

    1m3 = 1000 L

    1L = 1000 cm3

    1mL = 1 cm3

    Density kg m-3

    g cm-3

    1kg cm-3

    = 10-3

    g cm-3

    Force Newton

    (N =kg m s-2

    )

    dyne (g cm s

    -2)

    1 N = 105 dyne

    Pressure

    pascal (Pa = N m

    -2)

    dyne cm

    -2

    atm. torr, mmHg,

    bar

    1atm = 101,325 Pa 1 atm = 760 torr

    1 atm = 760 mmHg 1bar = 10

    5 Pa

    Energy

    Joule

    (J=kg m2s

    -2)

    erg (g cm

    2 s

    -2)

    calorie (cal) electron volt (eV)

    Calorie (Cal) : nutritional Calorie

    1 J =107 erg

    1 cal = 4.184 J 1eV=1.6022x10

    -9J

    1 Cal = 1kcal = 103 cal

    Other useful units: Amperes (A) = C s-1

    Watts (W) = J s-1

    = kg m2 s

    -3 = V A

    Volts (V) = J C-1

    = J A-1

    s-1

    for PV work: 1 J = 101.325 L atm (expansion/compression work)

    Prefixes Used with SI Units

    Prefix Symbol Meaning

    Tera- T 1012

    Giga- G 109

    Mega- M 106

    Kilo- k 103

    Deca- dc or dk 101

    Deci- d 10-1

    Centi- c 10-2

    Milli- m 10-3

    Micro- 10-6

    Nano- n 10-9

    Pico- p 10-12

    Femto f 10-15

  • IDEAL GAS

    Kinetic Molecular Theory of Gases

    root-mean-square speed: crms = 3

    mean speed: c = 8

    most probable speed: c* = 2

    Van der Waals Equation of State

    (P + 2

    2)(V nb) = nRT

    Pc =

    272

    Vc = 3b

    Tc = 8

    27

    Pr =8

    272 -

    3

    2

    Kinetic Molecular Theory of Gases

    Collision frequency:

    ZA = d2

    AB (8

    )1/2 (

    )

    number of collisions:

    ZAB = d2

    AB (8

    )1/2 (

    ) (

    )

    Where: d = :

    2

    = reduced mass

    =

    :

    For A-A collision,

    collision frequency:

    ZA = 2d2 c (

    )

    number of collisions:

    ZAA = 2

    2d2 c (

    )2

    mean free path: =

    =

    1

    2 2 (

    ) Virial Equations of State

    PVm = RT (1 +

    +

    2 + )

    PVm = RT ( 1 + BP + CP2 + )

  • FIRST LAW OF THERMODYNAMICS

    = +

    W = -

    Heat Capacities

    Cp = (

    )p

    Cv = (

    )v

    ADIABATIC REVERSIBLE PROCESS

    FOR IDEAL GAS

    Cv dT = -P dV

    Cv,m ln

    = -R ln

    2

    1 = (

    1

    2) 1

    P1V1 = P2V2

    Where = ,

    ,

    OR: T1V1c = T2V2

    c

    2

    1

    +1 =

    1

    2

    Where c =

    ,=

    EXPERIMENTAL COEFFICIENTS

    Coefficient of Thermal Expansion:

    =

    (

    )p

    Isothermal Compressibility:

    KT = ;1

    (

    )T

    Joule Thomson Coefficient:

    JT = (

    ) H

    For ideal gas systems:

    Process qrev wrev Isobaric

    -P = or =

    Isochoric 0

    Isothermal nRTln( 2

    1) -nRTln(

    2

    1) 0 0 nRTln(

    2

    1)

    Adiabatic 0 0

  • Legendre Transformation

    H = U + PV

    A = U TS

    G = H TS

    Combined First and Second Law

    dU = TdS PdV (

    )S = - (

    )V

    dH = TdS + VdP (

    )S = - (

    )P

    dA = -SdT PdV (

    )T = - (

    )V

    dG = -SdT + VdP (

    )T = - (

    )P

    dU = Cv dT + (

    )T dV

    dH = Cp dT + (

    )T dP

    dS =

    +

    1

    [P + (

    )T]dV

    dS =

    +

    1

    [ (

    )T - V ]dP

    Consequences of Maxwell Relations:

    (

    )T = T(

    )V P

    (

    )T = V T (

    )P

    Temperature Dependence of Thermodynamic Functions

    2 = 1 + 21

    2 = 1 + 21

    Gibbs-Helmholtz Equation:

    (

    )P =

    ;

    2

    (

    )P =

    ;

    2

    THERMODYNAMICS OF MIXING OF IDEAL GASES/SOLUTION = ntRT = -ntR = 0 = 0

    SOLUTIONS Raoults Law: Pi = Xl Pi Henrys Law: Pi = XI Ki

    Where: Ki = Henrys law constant

  • DEBYE-HUCKEL LIMITING LAW

    log = -0.51 |Z+ Z- |

    where: I = 1

    2

    2

    COLLIGATIVE PROPERTIES Vapor Pressure Lowering: P = X2 P1

    Psoln = X1 P1 Boiling Point Elevation:

    = m where =

    21

    1000

    Freezing Point Depression:

    = m where =

    21

    1000

    Osmotic Pressure: = Note: 1- solvent; 2 - solute

    Electrochemical Cells Nernst Equation:

    = 0

    ln

    At 25C: = 0 0.0592

    log

    = Where: n = moles of electron F = Faradays constant = 96485 c mol-1

    CHEMICAL EQUILIBRIUM

    = ;0

    = ()

    Where = moles of gaseous products moles of gaseous reactants

    Vant Hoff Equation:

    ln 2

    1 =

    ;

    (1

    2

    1

    1)

  • PHASE EQUILIBRIA Clapeyron Equation:

    =

    Clausius- Clapeyron Equation:

    ln 2

    1=

    (

    1

    2

    1

    1)

    Troutons Rule:

    = 21

    ;= 88

    ;

    Gibbs Phase Rule: F = C P + 2 Where: F= variance; degrees of freedom C= components P= phases

    Electrical Quantities

    Quantity Units Defining Relationship

    Resistance Ohm, V = IR Conductance Siemen (S), -1 G =

    1

    =

    Cell constant m-1 K=

    Conductivity S m-1 K=

    =

    Molar Conductance S m2 mol-1 m =

    Kohlrauschs Law: 0 = : :

    0 + ;0

  • CHEMICAL KINETICS

    Order Integrated Rate Equation Half-life Unit of k

    0 [A]t = -kt + [A]0 t1/2 = 0

    2

    Conc time-1

    1 ln[A]t = -kt + ln[A]0 t1/2 = 2

    time-1

    2 1

    = kt +

    1

    0 t1/2 =

    1

    0

    Conc-1 time-1

    QUANTUM CHEMISTRY

    CHEMICAL KINETICS

    Arrhenius Equation: k = A ;

    ln (2

    1) = -

    (1

    2 -

    1

    1)

    Collision Theory:

    k = p d2 (8

    )1/2 NA

    ;

    where : p = steric factor

    d = :

    2

    = reduced mass

    =

    :

    NA = Avogadro's Number

    SURFACE TENSION

    Capillary Rise: y =

    2

    SOLID STATE

    Bragg Equation: n = 2d sin

    De Broglie Equation: =

    =

    Heisenberg's Uncertainty Principle: xp

    4

  • SCHRODINGER WAVE EQUATION

    - 2

    2(2

    2 +

    2

    2 +

    2

    2) + V(x,y,z) = E

    PARTICLE-IN-A-BOX

    Particle in a one-dimensional box:

    = 2

    sin

    E = 22

    82

    Particle is a three-dimensional box: nonchalant

    (x,y,w) = 2

    sin

    ][

    2

    ][

    2

    ]

    E(x,y,z) = 2

    8 (2

    +

    2

    +

    2

    )

    =( + 1)2

    2

    HARMONIC OSCILLATOR

    Ev = (v + 1

    2) hv

    where: v = 1

    2

    RIGID ROTOR

    2

    2 2

    2+2

    2+ 2

    2

    2

    4 0 =

    HYDROGEN AND HYDROGEN-LIKE IONS

    Schrdinger Wave Equation:

    = 42

    2(40)222

    = ()()()