60
PHYS 342/555 PHYS 342/555 Introduction to solid state physics Instructor: Dr. Pengcheng Dai Professor of Physics Professor of Physics The University of Tennessee (Room 407A Nielsen 974 1509) (Room 407A, Nielsen, 974-1509) Chapter 7: Energy Bands Lecture in pdf format will be available at: Lecture in pdf format will be available at: http://www.phys.utk.edu 1

PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

PHYS 342/555PHYS 342/555Introduction to solid state physics

Instructor: Dr. Pengcheng DaiProfessor of PhysicsProfessor of Physics

The University of Tennessee(Room 407A Nielsen 974 1509)(Room 407A, Nielsen, 974-1509)

Chapter 7: Energy BandsLecture in pdf format will be available at:Lecture in pdf format will be available at:http://www.phys.utk.edu

1

Page 2: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Bloch’s theoremBloch s theorem

The eigenstates of the one-electron Hamiltonian 2

2 ( ) , where ( ) ( ) for all in 2

H U r U r R U r Rm

a Bravias lattice, can be chosen to have the form of a plane wavetimes a function with the p

eriodicity of the Bravias lattice:p y

( ) ( ), where ( ) ( )

f ll i th B i l tti

ik rnk nk nk nkr e u r u r R u r

R

for all in the Bravias lattice. or

( ) ( )ik R

R

r R e r

Dai/PHYS 342/555 Spring 2013 Chapter 7-2

Page 3: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-3

Page 4: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-4

Page 5: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-5

Page 6: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-6

Page 7: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

1Also, for small , effectively averages to zero so it still looks like the free electron case where

k U

2 2

looks like the free electron case where

( ) and / 2

A h / ( 2 / / ) B

ik rr Ae k m

k k

As approaches / ( 2 / / ), we expect a Bragg reflection or a

k a k a standing wave. We can form two different standing

f h li ( / )iwaves from the two traveling waves exp( / ), or(+) exp( / ) exp( / ) 2cos( / );( ) ( / ) ( / ) 2 i ( / )

i x ai x a i x a x ai i i

( ) exp( / ) exp( / ) 2 sin( / )Both standing waves

i x a i x a i x a are composed of equal parts of right- and left-

di d lidirected traveling waves.

Dai/PHYS 342/555 Spring 2013 Chapter 7-7

Page 8: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Origin of the energy gapOrigin of the energy gap

The two standing waves (+) and ( ) pile up electrons at different regions, and therefore the two waves have different values of the potential energy. This is the origin of the energy gap. The probability

2*

2 2

density of a particle is . For a standing wave (+),

( ) cos /x a

( ) cos / .This function piles up electrons (negative charge) on the positive ions centered at 0 2 where the potential e

x a

x a a

nergy is lowestcentered at 0, , 2 ,...where the potential ex a a nergy is lowest.

For the other standing wave ( ) the probability density is

2 2

For the other standing wave ( ) the probability density is

( ) sin / .x a

Dai/PHYS 342/555 Spring 2013 Chapter 7-8

Page 9: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

The potential energy of is lower than that of the traveling wave

The potential energy of is lower than that of the traveling wave,

and that of is higher than the traveling wave. The difference isthe energ gap

Dai/PHYS 342/555 Spring 2013 Chapter 7-9

the energy gap.

Page 10: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Magnitude of the energy gapMagnitude of the energy gap

Th f i h B ill i b d /kThe wavefunction at the Brillouin zone boundary / are

2 cos / and 2 sin / , normalized over unit length of line.

k a

x a x a

If the potential energy of an electron in the crystal at point is( ) cos 2 /

xU x U x aThe first-order energy difference between the two standing wavestates is

1 2 2

0

2 2

( )[ ( ) ( ) ]

2 cos(2 / )(cos / sin / )

gE dxU x

dxU x a x a x a U

2 cos(2 / )(cos / sin / )dxU x a x a x a U

Dai/PHYS 342/555 Spring 2013 Chapter 7-10

Page 11: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Kronig-Penney ModelKronig Penney Model

Dai/PHYS 342/555 Spring 2013 Chapter 7-11

Page 12: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-12

Page 13: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-13

Page 14: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-14

Page 15: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-15

Page 16: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-16

Page 17: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Chapter 7: Energy BandsChapter 7: Energy Bands

Dai/PHYS 342/555 Spring 2013 Chapter 7-17

Page 18: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

The periodic potential

2 2 ( )2

H U rm

Dai/PHYS 342/555 Spring 2013 Chapter 7-18

Page 19: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-19

Page 20: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-20

Page 21: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Metals and insulatorsMetals and insulators

Dai/PHYS 342/555 Spring 2013 Chapter 7-21

Page 22: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Consider the free electron energy bands of an fcc crystal lattice in theapproximation of an empty lattice, but in the reduced zone scheme in which all 's are transformed to lie in the first Brillouink zone. Plotroughly in the [111] direction the energies of all bands up to six timesroughly in the [111] direction the energies of all bands up to six timesthe lowest band at the zone boundary at

1 1 1(2 / )( )k a (2 / )( , , ).2 2 2

k a

Dai/PHYS 342/555 Spring 2013 Chapter 7-22

Page 23: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-23

Page 24: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-24

Page 25: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-25

Page 26: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-26

Page 27: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-27

Page 28: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-28

Page 29: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-29

Page 30: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-30

Page 31: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-31

Page 32: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-32

Page 33: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-33

Page 34: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-34

Page 35: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-35

Page 36: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-36

Page 37: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-37

Page 38: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-38

Page 39: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-39

Page 40: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-40

Page 41: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-41

Page 42: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-42

Page 43: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-43

Page 44: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-44

Page 45: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-45

Page 46: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-46

Page 47: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-47

Page 48: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-48

Page 49: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Pentavalent impuritiesPentavalent impuritiesImpurity atom with 5 valence electrons produce n-type semiconductors by contributing extra electrons.

Trivalent impurities Impurity atoms with 3 valence electrons produce p-type semiconductors by producing a "hole" or electron deficiencyby producing a hole or electron deficiency.

Dai/PHYS 342/555 Spring 2013 Chapter 7-49

Page 50: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

The addition of pentavalent impurities such as antimony, arsenic or phosphorous contributes free electrons, greatly increasing the conductivity of the intrinsic semiconductor. Phosphorous

may be added by diffusion of phosphine gas (PH3).may be added by diffusion of phosphine gas (PH3).

Dai/PHYS 342/555 Spring 2013 Chapter 7-50

Page 51: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

The addition of trivalent impurities such as boron, aluminum or gallium to an intrinsic semiconductor createsaluminum or gallium to an intrinsic semiconductor creates

deficiencies of valence electrons, called "holes". It is typical to use B2H6 diborane gas to diffuse boron into the

silicon materialsilicon material.

Dai/PHYS 342/555 Spring 2013 Chapter 7-51

Page 52: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-52

Page 53: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Semiconductor Current

Both electrons and holes contribute to current flow in an intrinsic semiconductor.

Dai/PHYS 342/555 Spring 2013 Chapter 7-53

Page 54: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Depletion RegionDepletion Region When a p-n junction is formed, some of the free electrons in the n-region diffuse across the junction and combine with holes to form negative ions. In so doing they leave behind positive ions at the donor impurity sitesIn so doing they leave behind positive ions at the donor impurity sites.

Dai/PHYS 342/555 Spring 2013 Chapter 7-54

Page 55: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

P-N Energy Bands

For a p-n junction at equilibrium, the fermi levels match on the two sides of the junctions. Electrons and holes reach an equilibrium at the junction and form a depletion region. The upward direction in the diagram represents increasing electron energy. That implies that you would have to supply enery to get an electron to go up on the diagram, and supply energy to get a hole to go down.

Dai/PHYS 342/555 Spring 2013 Chapter 7-55

Page 56: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

P-N Energy Bands

To reverse-bias the p-n junction, the p side is made more negative, making it "uphill" for electrons moving across the junction. The conduction direction for electrons in the diagram is right to left, and the upward direction represents increasing electron energy.

Dai/PHYS 342/555 Spring 2013 Chapter 7-56

Page 57: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

-N Energy Bands

To forward bias the p-n junction, the p side is made more positive, so that it is "downhill" for electron motion across the junction An electron can move across the junction and fill a vacancy or "hole" nearmotion across the junction. An electron can move across the junction and fill a vacancy or hole near the junction. It can then move from vacancy to vacancy leftward toward the positive terminal, which could be described as the hole moving right. The conduction direction for electrons in the diagram is right to left, and the upward direction represents increasing electron energy.

Dai/PHYS 342/555 Spring 2013 Chapter 7-57

Page 58: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

When the p-n junction is forward biased, the electrons in the n type material which have been elevated to the conductionn-type material which have been elevated to the conduction

band and which have diffused across the junction find themselves at a higher energy than the holes in the p-type

t i l Th dil bi ith th h l kimaterial. They readily combine with those holes, making possible a continuous forward current through the junction.

Dai/PHYS 342/555 Spring 2013 Chapter 7-58

Page 59: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Forward Biased ConductionForward Biased Conduction The forward current in a p-n junction when it is forward-biased (illustrated below) involves electrons from the n-type material moving leftward across the junction and combining with holes in the p type material Electrons canthe junction and combining with holes in the p-type material. Electrons can then proceed further leftward by jumping from hole to hole, so the holes can be said to be moving to the right in this process.

Dai/PHYS 342/555 Spring 2013 Chapter 7-59

Page 60: PHYS 342/555PHYS 342/555 Introduction to solid state physics · Dai/PHYS 342/555 Spring 2013 Chapter 7-9 the energy gap. Magnitude of the energy gapMagnitude of the energy gap Th

Dai/PHYS 342/555 Spring 2013 Chapter 7-60