19
PHYS 449 - Statistical Mechanics I Assignment 5 Solutions 1. (a) To estimate the number of occupied levels at room temperature (though any suitable temperature of your choosing is ok with me), we would use ¯ h 2 π 2 n 2 max 2mL 2 = k B T. This gives n max = r 2mL 2 k B T ¯ h 2 π 2 . The mass of N 2 is m =4.65 × 10 -26 kg. The maximum occupied level is therefore n max = s (2)(4.65 × 10 -26 )(1) 2 (1.38 × 10 -23 )(300) (1.05459 × 10 -34 ) 2 π 2 . Plugging in numbers gives n max 6 × 10 10 , which is a seriously large number of occupied levels. This is why translational motion is a degree of freedom at room temperature! We would need temperatures that were 10 20 times lower than room temperature to start freezing out the translational motion of nitrogen! (b) The mean energy is given by U = X i n i i = max X =0 n . Assuming that each energy level up to n max is equally occupied, then the occupation of level is n = N/n max for any value of , where N is the total number of particles. The mean energy is therefore: U = N n max nmax X n=0 ¯ h 2 π 2 n 2 2mL 2 = N n max ¯ h 2 π 2 2mL 2 nmax X n=0 n 2 = N n max ¯ h 2 π 2 2mL 2 (n max )(1 + n max )(1 + 2n max ) 6 ¯ h 2 π 2 n 2 max 6mL 2 , where I have used the fact that n max 1 in the last line, consistent with the result obtained in part (a). Meanwhile, the number of arrangements is Ω = n N max . Think of it this way: if there was only one particle then there would be n max different energy levels to occupy; if the N particles are non-interacting then each has this many levels to access. Putting this together with the result above gives Ω= 6mL 2 U ¯ h 2 π 2 N/2 . Using the thermodynamic identity 1/T = ∂S/∂U together with S = k B ln(Ω) gives 1 T = Nk B 2U or U = Nk B T/2, which is the result from the equipartition theorem. Note that this result doesn’t depend on the value of n max , only its existence. So the ‘classical’ result is recovered from the quantum mechanical value of the energies only from the assumption that every accessible energy level is equally likely to be occupied (a very classical assumption). For a three-dimensional box, one can imagine that the accessible states are again multiplicative (each dimension is independent), so that Ω = n 3N max . Everything goes through as before, but now one recovers the result U =3Nk B T/2, as expected.

PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

  • Upload
    buidieu

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

PHYS 449 - Statistical Mechanics I

Assignment 5 Solutions

1. (a) To estimate the number of occupied levels at room temperature (though any suitable temperature of yourchoosing is ok with me), we would use

h2π2n2max

2mL2= kBT.

This gives

nmax =

√2mL2kBT

h2π2.

The mass of N2 is m = 4.65 × 10−26 kg. The maximum occupied level is therefore

nmax =

√(2)(4.65 × 10−26)(1)2(1.38 × 10−23)(300)

(1.05459 × 10−34)2π2.

Plugging in numbers gives nmax ≈ 6 × 1010, which is a seriously large number of occupied levels. This is whytranslational motion is a degree of freedom at room temperature! We would need temperatures that were 1020

times lower than room temperature to start freezing out the translational motion of nitrogen!

(b) The mean energy is given by

U =∑i

niεi =

`max∑`=0

n`ε`.

Assuming that each energy level up to nmax is equally occupied, then the occupation of level ` is n` = N/nmax

for any value of `, where N is the total number of particles. The mean energy is therefore:

U =N

nmax

nmax∑n=0

h2π2n2

2mL2=

N

nmax

h2π2

2mL2

nmax∑n=0

n2 =N

nmax

h2π2

2mL2

(nmax)(1 + nmax)(1 + 2nmax)

6≈ h2π2n2max

6mL2,

where I have used the fact that nmax 1 in the last line, consistent with the result obtained in part (a).

Meanwhile, the number of arrangements is Ω = nNmax. Think of it this way: if there was only one particle thenthere would be nmax different energy levels to occupy; if the N particles are non-interacting then each has thismany levels to access. Putting this together with the result above gives

Ω =

(6mL2U

h2π2

)N/2

.

Using the thermodynamic identity 1/T = ∂S/∂U together with S = kB ln(Ω) gives

1

T=NkB2U

or U = NkBT/2, which is the result from the equipartition theorem. Note that this result doesn’t depend onthe value of nmax, only its existence. So the ‘classical’ result is recovered from the quantum mechanical valueof the energies only from the assumption that every accessible energy level is equally likely to be occupied (avery classical assumption).

For a three-dimensional box, one can imagine that the accessible states are again multiplicative (each dimensionis independent), so that Ω = n3Nmax. Everything goes through as before, but now one recovers the resultU = 3NkBT/2, as expected.

Page 2: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

PHYS 449 - Assignment 5 Solutions 2

2. Most of the resulted for this question are found in the attached Mathematica notebook. But I can summarize.We have two equations of constraint: one for the total particle number and for the total (mean) energy:

N = n0 + n1 + n2 and U = [n0(0) + n1(1) + n2(4)] ε1,

where ε1 = h2π2/2mL2 is the overall energy scale. I can make my life simpler by assuming that the system isat equilibrium so that pi = ni/N and defining u ≡ U/Nε1. The two equations then become p0 + p1 + p2 = 1and p1 + 4p2 = u. We can solve these two equations for p0 and p1 to give p0 = 1 + 3p2 − u and p1 = u− 4p2.We can now write the total entropy of the system

S = −NkB [p0 ln(p0) + p1 ln(p1) + p2 ln(p2)]

= −NkB [(1 + 3p2 − u) ln(1 + 3p2 − u) + (u− 4p2) ln(u− 4p2) + p2 ln(p2)] ,

which is now solely a function of the (unknown) variable p2 and parameter u. To find out the value of p2 weneed to maximize the entropy, ∂S/∂p2 = 0, which (using Mathematica) gives

−NkB [ln(p2) + 3 ln(1 + 3p2 − u) − 4 ln(u− 4p2)] = 0,

which is equivalent to requiring that

p2(1 + 3p2 − u)3

(u− 4p2)4=p2p

30

p41= 1.

The rest of this work is done on the attached Mathematica notebook, which is heavily commented so I willstop this part here.

Page 3: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

Assignment 5 Solutions(1a) First define the fundamental constants:

hbar = 1.05459 * 10^H-34Lm = 4.65 * 10^H-26LL = 1

kB = 1.38 * 10^H-23LT = 300

nmax = Sqrt@2 * m * L^2 * kB * T hbar^2 Pi^2 ΑD

1.05459 ´ 10-34

4.65 ´ 10-26

1

1.38 ´ 10-23

300

5.92254 ´ 1010

1

Α

Here 1/Α is the fraction of room temperature, so room temperature has Α=1 and absolute zero would

have Α -> infinity. At room temperature there are something like 10^(10) energy levels occupied.

(1b) Sum over all energy levels up to nmax:

Clear@nmaxD; Simplify@Sum@n^2, 8n, 0, nmax<DD

1

6

nmax H1 + nmaxL H1 + 2 nmaxL

The rest is done on the analytical solutions pages.

(2a) Solve the two equations for the probabilities p0 and p1:

Clear@p0, p1, p2, uD;

ans = FullSimplify@Solve@8p0 + p1 + p2 1, p1 + 4 * p2 u<, 8p0, p1<DD

88p0 ® 1 + 3 p2 - u, p1 ® -4 p2 + u<<

8p0, p1< = 8p0, p1< . ans@@1DD

81 + 3 p2 - u, -4 p2 + u<

Check that they give the right equations:

FullSimplify@p1 + 4 * p2DFullSimplify@p0 + p1 + p2D

u

1

Page 4: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

write the expression for the entropy at equilibrium:

Clear@kBD; S = -Num * kB * Hp0 * Log@p0D + p1 * Log@p1D + p2 * Log@p2DL

-kB Num Hp2 Log@p2D + H1 + 3 p2 - uL Log@1 + 3 p2 - uD + H-4 p2 + uL Log@-4 p2 + uDL

To find p2, need to maximize the entropy explicitly:

dS = FullSimplify@D@S, p2DD

-kB Num HLog@p2D + 3 Log@1 + 3 p2 - uD - 4 Log@-4 p2 + uDL

This implies that the following function is equal to unity:

func = p2 * H1 + 3 p2 - uL^3 H-4 p2 + uL^4

p2 H1 + 3 p2 - uL3

H-4 p2 + uL4

This is a fourth-order polynomial in p2 with a parameter u. Sounds ugly. We can try to solve this analyti-

cally for p2, but all we get is a mess:

Solve@func 1, p2D

::p2 ®

1

916

H27 + 229 uL -

1

2.

H-27 - 229 uL2

209 764

-

2

229

I-3 + 6 u + 29 u2M + I4 ´ 2

13 I-64 u + 48 u2

- 12 u3

+ u4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27

u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

O +

1 I687 ´ 213M J6912 - 20 736 u + 23 328 u

2- 12 528 u

3+ 3483 u

4- 486 u

5+

27 u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

-

1

2.

H-27 - 229 uL2

104 882

+

1

229

I3 - 6 u - 29 u2M -

3

229

I-3 + 6 u + 29 u2M -

I4 ´ 213 I-64 u + 48 u

2- 12 u

3+ u

4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27

u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

O -

1 I687 ´ 213M J6912 - 20 736 u + 23 328 u

2- 12 528 u

3+ 3483 u

4- 486 u

5+

-

2 ass5solb.nb

Page 5: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

1 I687 ´ 2 M J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+

27 u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

-

-

H-27 - 229 uL3

12 008 989

+ I12 H-27 - 229 uL I-3 + 6 u + 29 u2MM 52 441 -

8

229

I-1 + 3 u - 3 u2

- 15 u3M

4 .H-27 - 229 uL2

209 764

-

2

229

I-3 + 6 u + 29 u2M + I4 ´ 2

13 I-64 u + 48 u2

- 12 u3

+ u4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27 u6

-

-I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+

780 749 280 u7

- 197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+

222 588 u11

- 6183 u12MN

13

O + 1 I687 ´ 213M J6912 - 20 736 u +

23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27 u6

- -I47 775 744 -

286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

- 2 964 957 696 u4

+

3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

- 197 385 255 u8

+

33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

>,

:p2 ®

1

916

H27 + 229 uL -

1

2.

H-27 - 229 uL2

209 764

-

2

229

I-3 + 6 u + 29 u2M +

I4 ´ 213 I-64 u + 48 u

2- 12 u

3+ u

4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27

u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

O +

1 I687 ´ 213M J6912 - 20 736 u + 23 328 u

2- 12 528 u

3+ 3483 u

4- 486 u

5+

27 u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

+

1

2.

H-27 - 229 uL2

104 882

+

1

229

I3 - 6 u - 29 u2M -

3

229

I-3 + 6 u + 29 u2M -

I4 ´ 213 I-64 u + 48 u

2- 12 u

3+ u

4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27

u6

-

ass5solb.nb 3

Page 6: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

O -

1 I687 ´ 213M J6912 - 20 736 u + 23 328 u

2- 12 528 u

3+ 3483 u

4- 486 u

5+

27 u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

-

-

H-27 - 229 uL3

12 008 989

+ I12 H-27 - 229 uL I-3 + 6 u + 29 u2MM 52 441 -

8

229

I-1 + 3 u - 3 u2

- 15 u3M

4 .H-27 - 229 uL2

209 764

-

2

229

I-3 + 6 u + 29 u2M + I4 ´ 2

13 I-64 u + 48 u2

- 12 u3

+ u4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27 u6

-

-I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+

780 749 280 u7

- 197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+

222 588 u11

- 6183 u12MN

13

O + 1 I687 ´ 213M J6912 - 20 736 u +

23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27 u6

- -I47 775 744 -

286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

- 2 964 957 696 u4

+

3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

- 197 385 255 u8

+

33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

>,

:p2 ®

1

916

H27 + 229 uL +

1

2.

H-27 - 229 uL2

209 764

-

2

229

I-3 + 6 u + 29 u2M +

I4 ´ 213 I-64 u + 48 u

2- 12 u

3+ u

4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27

u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

O +

1 I687 ´ 213M J6912 - 20 736 u + 23 328 u

2- 12 528 u

3+ 3483 u

4- 486 u

5+

27 u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

-

4 ass5solb.nb

Page 7: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

1

2.

H-27 - 229 uL2

104 882

+

1

229

I3 - 6 u - 29 u2M -

3

229

I-3 + 6 u + 29 u2M -

I4 ´ 213 I-64 u + 48 u

2- 12 u

3+ u

4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27

u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

O -

1 I687 ´ 213M J6912 - 20 736 u + 23 328 u

2- 12 528 u

3+ 3483 u

4- 486 u

5+

27 u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

+

-

H-27 - 229 uL3

12 008 989

+ I12 H-27 - 229 uL I-3 + 6 u + 29 u2MM 52 441 -

8

229

I-1 + 3 u - 3 u2

- 15 u3M

4 .H-27 - 229 uL2

209 764

-

2

229

I-3 + 6 u + 29 u2M + I4 ´ 2

13 I-64 u + 48 u2

- 12 u3

+ u4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27 u6

-

-I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+

780 749 280 u7

- 197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+

222 588 u11

- 6183 u12MN

13

O + 1 I687 ´ 213M J6912 - 20 736 u +

23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27 u6

- -I47 775 744 -

286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

- 2 964 957 696 u4

+

3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

- 197 385 255 u8

+

33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

>,

:p2 ®

1

916

H27 + 229 uL +

1

2.

H-27 - 229 uL2

209 764

-

2

229

I-3 + 6 u + 29 u2M +

I4 ´ 213 I-64 u + 48 u

2- 12 u

3+ u

4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27

u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

O +

ass5solb.nb 5

Page 8: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

1 I687 ´ 213M J6912 - 20 736 u + 23 328 u

2- 12 528 u

3+ 3483 u

4- 486 u

5+

27 u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

+

1

2.

H-27 - 229 uL2

104 882

+

1

229

I3 - 6 u - 29 u2M -

3

229

I-3 + 6 u + 29 u2M -

I4 ´ 213 I-64 u + 48 u

2- 12 u

3+ u

4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27

u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

O -

1 I687 ´ 213M J6912 - 20 736 u + 23 328 u

2- 12 528 u

3+ 3483 u

4- 486 u

5+

27 u6

- -I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

-

197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

+

-

H-27 - 229 uL3

12 008 989

+ I12 H-27 - 229 uL I-3 + 6 u + 29 u2MM 52 441 -

8

229

I-1 + 3 u - 3 u2

- 15 u3M

4 .H-27 - 229 uL2

209 764

-

2

229

I-3 + 6 u + 29 u2M + I4 ´ 2

13 I-64 u + 48 u2

- 12 u3

+ u4MM

K229 J6912 - 20 736 u + 23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27 u6

-

-I47 775 744 - 286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

-

2 964 957 696 u4

+ 3 341 191 680 u5

- 2 038 188 096 u6

+

780 749 280 u7

- 197 385 255 u8

+ 33 096 924 u9

- 3 557 034 u10

+

222 588 u11

- 6183 u12MN

13

O + 1 I687 ´ 213M J6912 - 20 736 u +

23 328 u2

- 12 528 u3

+ 3483 u4

- 486 u5

+ 27 u6

- -I47 775 744 -

286 654 464 u + 752 467 968 u2

+ 671 293 440 u3

- 2 964 957 696 u4

+

3 341 191 680 u5

- 2 038 188 096 u6

+ 780 749 280 u7

- 197 385 255 u8

+

33 096 924 u9

- 3 557 034 u10

+ 222 588 u11

- 6183 u12MN

13

>>

Instead, let’s solve for p2 numerically for a range of values of u. The smallest u can be is zero, and the

largest is 4, so let’s loop over this range but not including the two limits. For each value of u, we can

numericaly solve for p2; because the function above is a fourth-order polynomial, we know that we will

obtain four roots. Not all of them need be real for all values of u. So the ‘If’ statement in the code below

checks if the imaginary part is zero. If so, then keep the solution for that value of u. Then dump the

values of u, p0, p1, p2, and p3 into arrays for plotting and manipulating later:

6 ass5solb.nb

Page 9: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

Instead, let’s solve for p2 numerically for a range of values of u. The smallest u can be is zero, and the

largest is 4, so let’s loop over this range but not including the two limits. For each value of u, we can

numericaly solve for p2; because the function above is a fourth-order polynomial, we know that we will

obtain four roots. Not all of them need be real for all values of u. So the ‘If’ statement in the code below

checks if the imaginary part is zero. If so, then keep the solution for that value of u. Then dump the

values of u, p0, p1, p2, and p3 into arrays for plotting and manipulating later:

Clear@uD; grain = 100;

umax = 4.0;

For@i = 1, i < grain,

u = umax * i grain;

Clear@p2D; ans = Solve@func 1.0, p2D;

For@j = 4, j ³ 1,

If@Im@p2 . ans@@jDDD 0, p2 = p2 . ans@@jDDD;

j--;

D;

uu@iD = u;

q0@iD = p0;

q1@iD = p1;

q2@iD = p2;

Print@u, " ", p0, " ", p1, " ", p2D;

i++;

D;

0.04 0.960009 0.0399884 2.8901 ´ 10-6

0.08 0.920156 0.0797919 0.0000520296

0.12 0.880875 0.118833 0.000291746

0.16 0.842969 0.156041 0.000989738

0.2 0.807439 0.190081 0.00247983

0.24 0.775069 0.219909 0.00502284

0.28 0.746106 0.245192 0.00870205

0.32 0.720326 0.266233 0.0134418

0.36 0.697273 0.283635 0.0190912

0.4 0.676469 0.298041 0.0254896

0.44 0.657491 0.310012 0.032497

0.48 0.64 0.32 0.04

0.52 0.623729 0.328362 0.0479096

0.56 0.60847 0.335374 0.0561565

0.6 0.59406 0.341253 0.0646867

0.64 0.580373 0.34617 0.0734575

0.68 0.567305 0.35026 0.082435

0.72 0.554776 0.353633 0.0915919

0.76 0.542717 0.356377 0.100906

0.8 0.531076 0.358566 0.110359

0.84 0.519805 0.36026 0.119935

0.88 0.508866 0.361512 0.129622

0.92 0.498228 0.362363 0.139409

ass5solb.nb 7

Page 10: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

0.96 0.487862 0.362851 0.149287

1. 0.477745 0.363007 0.159248

1.04 0.467855 0.362859 0.169285

1.08 0.458177 0.362431 0.179392

1.12 0.448692 0.361743 0.189564

1.16 0.439389 0.360814 0.199796

1.2 0.430255 0.359661 0.210085

1.24 0.421278 0.358296 0.220426

1.28 0.412449 0.356734 0.230816

1.32 0.40376 0.354986 0.241253

1.36 0.395203 0.353062 0.251734

1.4 0.386771 0.350972 0.262257

1.44 0.378457 0.348724 0.272819

1.48 0.370256 0.346325 0.283419

1.52 0.362163 0.343783 0.294054

1.56 0.354172 0.341104 0.304724

1.6 0.346279 0.338294 0.315426

1.64 0.338481 0.335358 0.32616

1.68 0.330774 0.332301 0.336925

1.72 0.323154 0.329128 0.347718

1.76 0.315619 0.325842 0.35854

1.8 0.308165 0.322447 0.369388

1.84 0.30079 0.318947 0.380263

1.88 0.293491 0.315345 0.391164

1.92 0.286267 0.311644 0.402089

1.96 0.279115 0.307847 0.413038

2. 0.272033 0.303956 0.424011

2.04 0.26502 0.299973 0.435007

2.08 0.258074 0.295902 0.446025

2.12 0.251193 0.291743 0.457064

2.16 0.244376 0.287498 0.468125

2.2 0.237623 0.28317 0.479208

2.24 0.230931 0.278759 0.49031

2.28 0.224299 0.274267 0.501433

2.32 0.217728 0.269696 0.512576

2.36 0.211215 0.265047 0.523738

8 ass5solb.nb

Page 11: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

2.4 0.20476 0.260319 0.53492

2.44 0.198363 0.255516 0.546121

2.48 0.192023 0.250637 0.557341

2.52 0.185738 0.245682 0.568579

2.56 0.17951 0.240654 0.579837

2.6 0.173337 0.235551 0.591112

2.64 0.167219 0.230375 0.602406

2.68 0.161155 0.225126 0.613718

2.72 0.155147 0.219804 0.625049

2.76 0.149193 0.214409 0.636398

2.8 0.143294 0.208942 0.647765

2.84 0.137449 0.203401 0.65915

2.88 0.13166 0.197787 0.670553

2.92 0.125925 0.1921 0.681975

2.96 0.120246 0.186338 0.693415

3. 0.114623 0.180502 0.704874

3.04 0.109057 0.174591 0.716352

3.08 0.103548 0.168603 0.727849

3.12 0.0980965 0.162538 0.739365

3.16 0.0927043 0.156394 0.750901

3.2 0.0873723 0.15017 0.762457

3.24 0.0821016 0.143865 0.774034

3.28 0.0768938 0.137475 0.785631

3.32 0.0717507 0.130999 0.79725

3.36 0.0666742 0.124434 0.808891

3.4 0.0616665 0.117778 0.820556

3.44 0.0567305 0.111026 0.832243

3.48 0.0518691 0.104175 0.843956

3.52 0.0470861 0.0972186 0.855695

3.56 0.0423857 0.0901524 0.867462

3.6 0.0377732 0.0829691 0.879258

3.64 0.0332546 0.0756605 0.891085

3.68 0.0288378 0.0682162 0.902946

3.72 0.0245324 0.0606235 0.914844

3.76 0.0203505 0.052866 0.926784

3.8 0.0163088 0.0449216 0.93877

ass5solb.nb 9

Page 12: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

3.84 0.01243 0.03676 0.95081

3.88 0.00874817 0.0283358 0.962916

3.92 0.00531965 0.0195738 0.975107

3.96 0.00225737 0.0103235 0.987419

OK, everything seems to be working. Now let’s plot the three probabilities as a function of u. I encode

p0 as red, p1 as blue, and p2 as green:

plotp0 = Table@8uu@iD, q0@iD<, 8i, 1, grain<D;

plotp1 = Table@8uu@iD, q1@iD<, 8i, 1, grain<D;

plotp2 = Table@8uu@iD, q2@iD<, 8i, 1, grain<D;

Show@8ListPlot@plotp0, PlotStyle ® RedD,

ListPlot@plotp1, PlotStyle ® BlueD, ListPlot@plotp2, PlotStyle ® GreenD<D

1 2 3 4

0.2

0.4

0.6

0.8

For very small u, all of the probability is in p0, which makes sense: for low energies all of the particles

are going to be in the lowest energy state. As u increases, p0 drops and p1 and p2 increase until at

u=5/3 they are all exactly 1/3 each. Beyond this u, the value of p2 continues to increase toward unity,

signifying that all particles are in the highest energy state.

(2b) Let’s return again to the entropy S.

Clear@u, p2D; S

-kB Num Hp2 Log@p2D + H1 + 3 p2 - uL Log@1 + 3 p2 - uD + H-4 p2 + uL Log@-4 p2 + uDL

To obtain the temperature (or rather 1/T), we need to take the derivative of the entropy with respect to

u. The problem is that we don’t know the explicit u-dependence of p2, only its numerical values at

various values of u. But we do know that p2 is some function of u, so let’s rewrite the entropy making

this u-dependence explicit. Then we can formally take the derivative of the entropy with respect to u:

S2 = -kB Num Hp2@uD Log@p2@uDD +

H1 + 3 p2@uD - uL Log@1 + 3 p2@uD - uD + H-4 p2@uD + uL Log@-4 p2@uD + uDLdS2 = FullSimplify@D@S2, uDD Num Ε1

-kB Num

HLog@u - 4 p2@uDD Hu - 4 p2@uDL + Log@p2@uDD p2@uD + Log@1 - u + 3 p2@uDD H1 - u + 3 p2@uDLL

-

1

Ε1

kB HLog@u - 4 p2@uDD H1 - 4 p2¢@uDL + Log@p2@uDD p2

¢@uD + Log@1 - u + 3 p2@uDD H-1 + 3 p2¢@uDLL

By the way, we really want the derivative with respect to U. Since u = U NΕ1 this means that d/dU =

H1 NΕ1)d/du. That’s why I divided by NΕ1 above. In any case, the expression now depends on p2¢@uD,

which we don’t know. One possibility would be to plot p2 as a function of u, and to try to extract the

numercal derivative. Thankfully, there is a nicer way. We know that the constitutive equation for p2 is:

10 ass5solb.nb

Page 13: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

By the way, we really want the derivative with respect to U. Since u = U NΕ1 this means that d/dU =

H1 NΕ1)d/du. That’s why I divided by NΕ1 above. In any case, the expression now depends on p2¢@uD,

which we don’t know. One possibility would be to plot p2 as a function of u, and to try to extract the

numercal derivative. Thankfully, there is a nicer way. We know that the constitutive equation for p2 is:

func

p2 H1 + 3 p2 - uL3

H-4 p2 + uL4

Again we can explicitly write this in terms of p2[u]:

func2 =

p2@uD H1 + 3 p2@uD - uL3

H-4 p2@uD + uL4

p2@uD H1 - u + 3 p2@uDL3

Hu - 4 p2@uDL4

Because the function equals unity, the derivative of this function with respect to u must be equal to zero:

ans = FullSimplify@D@func2, uDD

IH-1 + u - 3 p2@uDL2 IH-4 + uL p2@uD + Iu - u2

+ 12 p2@uDM p2¢@uDMM Hu - 4 p2@uDL5

ans2 = Solve@ans 0, p2¢@uDD

::p2¢@uD ®

H-4 + uL p2@uD

-u + u2

- 12 p2@uD>>

p2¢@uD = p2

¢@uD . ans2@@1DD

H-4 + uL p2@uD

-u + u2

- 12 p2@uD

So we have a nice analytical formula for the derivative of p2 with respect to u, even though we don’t

have an explicit form for p2[u]. We can susbstitute this back into the expression for dS/dU:

dS2b = FullSimplify@dS2D

-

1

Ε1 HH-1 + uL u - 12 p2@uDLkB HH-1 + uL u HLog@u - 4 p2@uDD - Log@1 - u + 3 p2@uDDL +

H-4 H-1 + uL Log@u - 4 p2@uDD + H-4 + uL Log@p2@uDD + 3 u Log@1 - u + 3 p2@uDDL p2@uDL

We can copy this, now again replacing p2[u] with p2:

dS3 = -

1

Ε1 HH-1 + uL u - 12 p2LkB HH-1 + uL u HLog@u - 4 p2D - Log@1 - u + 3 p2DL +

H-4 H-1 + uL Log@u - 4 p2D + H-4 + uL Log@p2D + 3 u Log@1 - u + 3 p2DL p2L

-

1

H-12 p2 + H-1 + uL uL Ε1

kB HH-1 + uL u H-Log@1 + 3 p2 - uD + Log@-4 p2 + uDL +

p2 HH-4 + uL Log@p2D + 3 u Log@1 + 3 p2 - uD - 4 H-1 + uL Log@-4 p2 + uDLL

Finally, we can generate a list of temperatures for each value of u:

ass5solb.nb 11

Page 14: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

Clear@uD; grain = 100;

umax = 4.0;

For@i = 1, i < grain,

u = umax * i grain;

p0 = q0@iD;

p1 = q1@iD;

p2 = q2@iD;

tt@iD = 1 dS3;

Print@u, " ", tt@iDD;

i++;

D;

0.04

0.314628 Ε1

kB

0.08

0.408978 Ε1

kB

0.12

0.499202 Ε1

kB

0.16

0.592835 Ε1

kB

0.2

0.691362 Ε1

kB

0.24

0.793815 Ε1

kB

0.28

0.898612 Ε1

kB

0.32

1.00469 Ε1

kB

0.36

1.11174 Ε1

kB

0.4

1.22003 Ε1

kB

0.44

1.3301 Ε1

kB

0.48

1.4427 Ε1

kB

0.52

1.5586 Ε1

kB

0.56

1.67869 Ε1

kB

0.6

1.80389 Ε1

kB

0.64

1.93521 Ε1

kB

0.68

2.07373 Ε1

kB

12 ass5solb.nb

Page 15: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

0.72

2.22072 Ε1

kB

0.76

2.37755 Ε1

kB

0.8

2.54587 Ε1

kB

0.84

2.72758 Ε1

kB

0.88

2.92491 Ε1

kB

0.92

3.1406 Ε1

kB

0.96

3.37792 Ε1

kB

1.

3.64096 Ε1

kB

1.04

3.93478 Ε1

kB

1.08

4.26585 Ε1

kB

1.12

4.64247 Ε1

kB

1.16

5.07558 Ε1

kB

1.2

5.57985 Ε1

kB

1.24

6.1754 Ε1

kB

1.28

6.89072 Ε1

kB

1.32

7.76739 Ε1

kB

1.36

8.86867 Ε1

kB

1.4

10.2958 Ε1

kB

1.44

12.2214 Ε1

kB

1.48

14.9662 Ε1

kB

1.52

19.2004 Ε1

kB

ass5solb.nb 13

Page 16: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

1.56

26.6 Ε1

kB

1.6

42.8631 Ε1

kB

1.64

107.876 Ε1

kB

1.68 -

217.111 Ε1

kB

1.72 -

54.5984 Ε1

kB

1.76 -

31.3716 Ε1

kB

1.8 -

22.0734 Ε1

kB

1.84 -

17.0611 Ε1

kB

1.88 -

13.9238 Ε1

kB

1.92 -

11.7734 Ε1

kB

1.96 -

10.2062 Ε1

kB

2. -

9.01234 Ε1

kB

2.04 -

8.07174 Ε1

kB

2.08 -

7.31089 Ε1

kB

2.12 -

6.68223 Ε1

kB

2.16 -

6.15359 Ε1

kB

2.2 -

5.70248 Ε1

kB

2.24 -

5.31264 Ε1

kB

2.28 -

4.9721 Ε1

kB

2.32 -

4.67179 Ε1

kB

2.36 -

4.40473 Ε1

kB

14 ass5solb.nb

Page 17: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

2.4 -

4.16546 Ε1

kB

2.44 -

3.94968 Ε1

kB

2.48 -

3.75388 Ε1

kB

2.52 -

3.57525 Ε1

kB

2.56 -

3.41147 Ε1

kB

2.6 -

3.26059 Ε1

kB

2.64 -

3.12103 Ε1

kB

2.68 -

2.9914 Ε1

kB

2.72 -

2.87056 Ε1

kB

2.76 -

2.75751 Ε1

kB

2.8 -

2.65141 Ε1

kB

2.84 -

2.55152 Ε1

kB

2.88 -

2.45718 Ε1

kB

2.92 -

2.36784 Ε1

kB

2.96 -

2.28299 Ε1

kB

3. -

2.2022 Ε1

kB

3.04 -

2.12506 Ε1

kB

3.08 -

2.05122 Ε1

kB

3.12 -

1.98035 Ε1

kB

3.16 -

1.91217 Ε1

kB

3.2 -

1.84641 Ε1

kB

ass5solb.nb 15

Page 18: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

3.24 -

1.7828 Ε1

kB

3.28 -

1.72112 Ε1

kB

3.32 -

1.66115 Ε1

kB

3.36 -

1.60266 Ε1

kB

3.4 -

1.54545 Ε1

kB

3.44 -

1.48931 Ε1

kB

3.48 -

1.43401 Ε1

kB

3.52 -

1.37934 Ε1

kB

3.56 -

1.32505 Ε1

kB

3.6 -

1.27086 Ε1

kB

3.64 -

1.21645 Ε1

kB

3.68 -

1.16145 Ε1

kB

3.72 -

1.10535 Ε1

kB

3.76 -

1.0475 Ε1

kB

3.8 -

0.986956 Ε1

kB

3.84 -

0.922253 Ε1

kB

3.88 -

0.850861 Ε1

kB

3.92 -

0.767586 Ε1

kB

3.96 -

0.657798 Ε1

kB

This is very interesting! The numerics clearly show that temperature initially increases monotonically

with u, but sharply rises as u approaches 5/3, the point at which all of the probabilities are equal.

Beyond this energy, the temperature goes negative!! This is unphysical, which means that the maxi-

mum (mean) energy occurs when the temperature goes to (positive) infinity, corresponding to equal

probabilities in all energy levels. The inference is that at high temperatures, the probabilities of occupy-

ing energy levels are all equal. This is precisely the ‘classical result’ found in the previous assignment

when we maximized the entropy for a d-dimensional coin. The assignment asked us to plot the mean

energy as a function of temperature, so here goes:

16 ass5solb.nb

Page 19: PHYS 449 - Statistical Mechanics I Assignment 5 …people.ucalgary.ca/~dfeder/449/ass5sol_combined.pdf · 2013-11-04 · PHYS 449 - Statistical Mechanics I Assignment 5 Solutions

This is very interesting! The numerics clearly show that temperature initially increases monotonically

with u, but sharply rises as u approaches 5/3, the point at which all of the probabilities are equal.

Beyond this energy, the temperature goes negative!! This is unphysical, which means that the maxi-

mum (mean) energy occurs when the temperature goes to (positive) infinity, corresponding to equal

probabilities in all energy levels. The inference is that at high temperatures, the probabilities of occupy-

ing energy levels are all equal. This is precisely the ‘classical result’ found in the previous assignment

when we maximized the entropy for a d-dimensional coin. The assignment asked us to plot the mean

energy as a function of temperature, so here goes:

lastplot = Table@8tt@iD * kB Ε1, uu@iD<, 8i, 1, 41<D;

ListPlot@lastplotD

5 10 15 20

0.5

1.0

1.5

The mean energy (u) clearly asymptotes at 5/3 at high temperatures.

ass5solb.nb 17