15
Physical Planning for the Architectural Exploration of Large- Scale Chip Multiprocessors Javier de San Pedro, Nikita Nikitin, Jordi Cortadella and Jordi Petit Universitat Politècnica de Catalunya (Barcelona) Project funded by Intel Corp.

Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

  • Upload
    dandre

  • View
    35

  • Download
    0

Embed Size (px)

DESCRIPTION

Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors. Javier de San Pedro , Nikita Nikitin, Jordi Cortadella and Jordi Petit Universitat Politècnica de Catalunya (Barcelona ) Project funded by Intel Corp. Outline. Introduction - PowerPoint PPT Presentation

Citation preview

Page 1: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Physical Planning for the Architectural Exploration of

Large-Scale Chip Multiprocessors

Javier de San Pedro, Nikita Nikitin,Jordi Cortadella and Jordi Petit

Universitat Politècnica de Catalunya (Barcelona)

Project funded by Intel Corp.

Page 2: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Outline• Introduction

– Architectural exploration of CMPs

• Physical planning– Integration with architectural exploration– Floorplanning and wire planning technology

• Results and conclusions

NOCS 2013 2

Page 3: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Designing a Chip Multiprocessor

NOCS 2013 3

CMP Off-ChipMemory

DSP

Graphics

Data Mining

Bioinformatics

• How many cores?• How much L2/L3 on-chip cache?• Interconnect: mesh/ring/bus?• How many memory controllers?

Page 4: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Automated exploration

Models(performance/power)

Cores

On-chip caches

Off-chip memories

Interconnect fabrics

Cache protocol

Workloads

Architectural configuration

Number of cores

Cluster size

L2/L3 size

Hierarchical interconnect

Memory controllers

Exploration tool

Constraints

Area

Throughput

Power

NOCS 2013 4

Huge design space:Billions of configurations

Page 5: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Our exploration flow

NOCS 2013

Simulation

AnalyticalModeling*

5

Architecturalconfigurations

Promisingconfigurations

*N. Nikitin et al. "Analytical Performance Modeling of Hierarchical Interconnect Fabrics.“NOCS 2012

Page 6: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Configuration example

NOCS 2013 6

MC

MC

MC

MCC2

L2C2

L2C2

L2

L3

Bus

C2L2

C2L2

NIR

C1

L2

- 6x4 mesh, 24 clusters- total 144 cores- 6 cores/cluster - 1 C1, 128K L1, 256K L2 - 5 C2, 64K L1, 96K L2- 146 Mb total shared L3

Throughput = 85.71 IPC

Page 7: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

• Min area, but …• Unbalanced aspect ratio• L2 not adjacent to cores• Uneven distribution of ring routers

Motivation for physical planning

NOCS 2013 7

C

L2

C

L2

C

L2

C

L2

r r

r r

r

r

R

L3

NSWE • Block area is used during exploration

Page 8: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Abutability in tiled CMPs

NOCS 2013

N

S

EW

8

Page 9: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Over-the-cell routing

ISPD 2013 Tiled CMPs

Cache

Core

9

500-1000 wires

Router

1000 wires 10 µm

Page 10: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Physical planning

NOCS 2013

Simulation

AnalyticalModeling

L3 R

Local IC

L2CC L2C C

R

L3

L2

10

PhysicalPlanning

Estimations:• Area• Wirelength• Routability

Page 11: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Floorplanner• Slicing structures & Simulated Annealing*• Lightweight maze router• Constraints:

– Adjacency (Core L2)– Balanced links (rings)– Maximum length for critical nets

NOCS 2013 11

• D.F. Wong and C.L. Liu, “A New Algorithm for Floorplan Design”DAC 1986, pages 101-107.

13

24 5

V

H H

V1 2 3

4 5

Page 12: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Wire planner• SAT-based approach for gridded routing• Grid unit: link width ( 500 - 1000 wires)• Customizable for any type of Boolean-encoded

constraints (abutability, 1D/2D routing, …)

NOCS 2013

Top view

Cross-section view

12

Page 13: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Filtering floorplans

320

330

340

350

360

370

380

390

400

100 101 102 103 104 105 106 107 108

Area

[mm

2]

Throughput [IPC]

Block areaBest floorplan

Best routable floorplan

NOCS 2013 13

320

330

340

350

360

370

380

390

400

100 101 102 103 104 105 106 107 108

Area

[mm

2]

Throughput [IPC]

Block areaBest floorplan

Best routable floorplan

Area limit

Page 14: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

After physical planning

NOCS 2013 14

Page 15: Physical Planning for the Architectural Exploration of Large-Scale Chip Multiprocessors

Conclusions• Physical planning has significant impact during

architectural exploration of tiled CMPs

• Future work:– New topologies (mesh of rings)– Multi-module memory floorplanning– Regularity and choppability

NOCS 2013 15