29
1 V2, A2, C2 V1, A1, C1 V3, A3, C3 V4, A4, C4 Physico-chemical drug properties and human CNS system characteristics: determinants of CNS PK at different locations in human CNS Elizabeth CM de Lange Professor in Predictive Pharmacology, LACDR, Leiden University, The Netherlands [email protected]

Physico-chemical drug properties and human CNS system

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

1

V2, A2, C2

V1, A1, C1

V3, A3, C3

V4, A4, C4

Physico-chemical drug properties and human CNS system characteristics: determinants of CNS PK at different

locations in human CNS

Elizabeth CM de Lange Professor in Predictive Pharmacology, LACDR,

Leiden University, The Netherlands [email protected]

BB

B

Drug Dosing

Brain PK Trans-duction EFFECT

Homeostatic feedback

Plasma PK

Trans-duction

Homeostatic feedback

E

2

Prediction of CNS drug effect in human

2

Drug concentrations at the site of action drives the effect of the drug

Which concentration in the human brain is most representative to the

brain target site concentration?

blood

What CNS sites in human are accessible to obtain

information about brain PK?

target

CSF CSF

3 De Lange. Utility of CSF in translational neuroscience. JPKPD. 2013

Prediction of CNS PK in human

Differences in rate of pharmacokinetic processes Differences in sizes of physiological compartments

4

BB

B

Drug Dosing

Brain PK Trans-duction EFFECT

Homeostatic feedback

Plasma PK

Trans-duction

Homeostatic feedback

E B

BB

Drug Dosing

Brain PK Trans-

duction EFFEC

T

Homeostatic feedback

Plasma PK

Trans-d

uction

Homeostatic

feedback

E

Prediction of CNS PK in human

Systems parameters: Blood flow

Barrier permeabilities

Transporter/ enzyme function

Volumes (intra- / extracellular)

Blood / tissue pH

Capillary surface area

Receptor density

Signal transduction

Homeostatic feedback

Drug characteristics: Molecular weight

LogP / logD

pKa / charge at pH 7.4

PSA (polar surface area)

H-bond donor / acceptor

P-gp / MRP (etc) substrate

Receptor affinity

etc

Pharmacokinetics • Plasma kinetics • Barrier transport

• Intractissue distribution

5

Drug versus system properties

6

V2, A2, C2

V1, A1, C1

V3, A3, C3

V4, A4, C4

Towards a comprehensive physiology-based pharmacokinetic (PBPK) CNS model

7

Cerebral blood

BCSFB BBB

CSF

, Cis

tern

a M

agn

a

CSF

, Lat

eral

Ven

tric

les

CSF

, Su

bar

ach

no

idal

Epen

dym

al

ce

ll la

yer

Cerebral blood

BCSFB BBB

BrainECF

BrainECF

CSF

, lu

mb

ar

Metabolism Faciliated /active transport

Diffusion Fluid flow

Physiological brain compartments, flows, membranes, active transporters,

metabolic enzymes, subcellular compartments, pH values, targets

7

BRAIN CELLS

Brain Cells

CNS properties

8 8

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7 Drug 8

Molecular weight

Lipophilicity

pKa

Polar Surface Area

H-bond donor

H-bond acceptor

Pgp substrate

Transporter X substrate

Drug physico-chemical properties

9

V2, A2, C2

V1, A1, C1

V3, A3, C3

V4, A4, C4

Experimental approach

10

Cerebral blood

BCSFB BBB

CSF

, Cis

tern

a M

agn

a

CSF

, Lat

eral

Ven

tric

les

CSF

, Su

bar

ach

no

idal

Epen

dym

al

ce

ll la

yer

Cerebral blood

BCSFB BBB

BrainECF

BrainECF

CSF

, lu

mb

ar

Metabolism Faciliated /active transport

Diffusion Fluid flow

10

BRAIN CELLS

Brain Cells

Experimental approach

Animal experiment Animal PK profiles

Translation to human model

Validation on human data

2.9 l

0.175 ml/min

0.4 ml/min

240 ml

22.5 ml

7.5 ml

22.5 ml

90 ml

0.4 ml/min

0.4 ml/min

0.4 ml/min

Animal PBPK model

0.2 ul/min

2.2 ul/min

10.6 ml

290 ul

50 ul

17 ul

50 ul

180 ul

2.2 ul/min

2.2 ul/min

2.2 ul/min

11

Experimental approach

12 12

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 Drug 6 Drug 7 Drug 8

Molecular weight

Lipophilicity

pKa

Polar Surface Area

H-bond donor

H-bond acceptor

Pgp substrate

Transporter X substrate

Extending in vivo data on multiple drugs

10.6 ml

Plasma

Periphery 1

CSFSAS

CSFCM

CSFTFV

CSFLV

Brain

ECF

QDIFF

QDIFF

Deep brain

Periphery 2

QDIFF

QDIFF

CLPL-ECF

QPL-PER1 QPL-PER2

CLE

QDIFF

CLCSF_PL

QECF_ICF

Generic drug translational model (for 9 drugs with distinctive phys-chem properties)

Individual drug translational models

Adaptation of the model

Yamamoto. A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations. Pharm Res. 2017

Yamamoto et al, A generic multi-compartmental CNS distribution model structure for 9 drugs allows prediction of human brain target site concentrations. Pharm Res, 2017

Prediction of the data

Plasma Better Brain ECF Worse Brain ECF

15

Adult TBI patients: morphine

Drug Data source Data condition Human plasma Human brainECF Human CSF

Morphine Bouw et al.. 2001; Ederoth et, al. 2003

healthy with TBI 2 individuals 2 individuals

Prediction of CNS PK in human

Patient 1 (focal TBI)

plasma brainECF plasma brainECF plasma brainECF

Patient 2 (Focal TBI) Patient 4 (Focal TBI)

16 Patient 5 (Focal TBI, only 2 blood samples) Patient 6 (Diffuse TBI)

Pedriatic TBI patients: morphine

Prediction of CNS PK in human

17

BrainECF CSFLV CSFCM CSFSAS

Yamamoto et al. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations.. AAPS J. 2017

18

BrainECF CSFLV CSFCM CSFSAS

Yamamoto et al. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations.. AAPS J. 2017

19

BrainECF CSFLV CSFCM CSFSAS

Relation between drug concentrations and their time course in brainECF, CSF in lateral ventricles, CSF in cisterna Magna, and CSF in lumbar region are • Drug dependent • Species dependent • Time dependent

Animal experiment Animal PK profiles

Translation to human model

Human prediction

0.2 ml/min

2.2 ml/min

10.6 ml

290 ml

50 ml

17 ml

50 ml

180 ml

2.2 ml/min

2.2 ml/min

2.2 ml/min

Animal PBPK model

100

1000

10000

100000

0 120 240 360 480 600 720

Pre

dic

ted

Hu

man

Ace

tam

ino

ph

en

Co

nce

ntr

atio

n (

ng/

ml)

Time (min)

Plasma observed

CSF (SAS) observed

Plasma predicted

SAS (CSF) predicted

Brain ECF predicted

LV

CM

2.9 l

0.175 ml/min

0.4 ml/min

240 ml

22.5 ml

7.5 ml

22.5 ml

90 ml

0.4 ml/min

0.4 ml/min

0.4 ml/min

20

Human prediction without in vivo data?

21 21

Comprehensive full PBPK CNS model

Yamamoto et al. Predicting PK profiles in multiple CNS compartments using a comprehensive PBPK model. CPT PSP 2017

22 22

Neutral compound

Zwitterionic compound

Neutral P-gp substrate

Acidic compound

Basic compounds

Basic P-gp substrates

Model prediction and actual data

Yamamoto et al. Predicting PK profiles in multiple CNS compartments using a comprehensive PBPK model. CPT PSP 2017

23

Model prediction and actual data

Yamamoto et al. Prediction of human CNS PK using a PBPK modeling approach. Eur J Pharm Sci. 2017

24

Simulations – systems changes

Yamamoto et al. Prediction of human CNS PK using a PBPK modeling approach. Eur J Pharm Sci. 2017

25

Phenytoin epileptic patients

Yamamoto et al. Prediction of human CNS PK using a PBPK modeling approach. Eur J Pharm Sci. 2017

26

The comprehensive CNS full PBPK drug distribution model is able to adequately predict PK in different CNS compartments in rats and human Relations between PK in brainECF, CSF in lateral ventricles, cisterna Magna and the subarachnoidal space (lumbar region) are

• Drug dependent • Species dependent • Time dependent

Mathematical modeling can substantially aid in understanding of PK at different locations in the brain. This provides the basis for further understanding of influence of drug-target binding kinetics and impact of disease conditions, and also paves the way for better understanding and prediction of CNS drug effects.

Summary

Dirk-Jan van den Berg

Francesco Bellanti

Willem vd Brink

Sinziana Cristea

Meindert Danhof

Nathalie Doorenweerd

Tony Figaji

Janna Geuer

Piet Hein van der Graaf

Margareta Hammarlund-Udenaes

Thomas Hankemeier

Robin Hartman

Sandra den Hoedt

Laura Kervezee

Naomi Ketharanathan

Maaike Labots

Victor Mangas

Ron Mathôt

Nick van Oijen

Shinji Shimizu

Jasper Stevens

Stina Syvanen

Dick Tibboel

Acknowledgements

Willem vd Brink Yumi Yamamoto Joost Westerhout Wilbert de Witte Eric Wong Ursula Rohlwink Enno Wildschut

9th Annual Course on the BBB in Drug Discovery and Development

Leiden, The Netherlands, 15-17 Oct 2018

www.bbbcourses.org

Elizabeth de Lange & Margareta Hammarlund-Udenaes

29

Yamamoto Y, Välitalo PA, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, van den Berg DJ, Hartman RH, Wong YC, Danhof M, Kokkif H, Kokkif M, Meindert Danhof M, van Hasselt JGC, de Lange ECM*. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci. 2017 Nov 11;112:168-179. doi: 10.1016/j.ejps.2017.11.011. [Epub ahead of print]

De Lange ECM*, van der Brink W, Yamamoto Y, de Witte W, Wong YC. Approaches to optimize CNS availability by novel CNS Drug Discovery. Exp Opin Drug Disc . 2017. Accepted

van den Brink WJ, Elassais-Schaap J, Gonzalez B, Harms A, van der Graaf PH, Hankemeier T, de Lange ECM*. Remoxipride causes multiple pharmacokinetic/pharmacodynamic response patterns in pharmacometabolomics in rats. Eur J Pharm Sci-2017 Accepted

van den Brink WJ, Elassaiss-Schaap J, Gonzalez-Amoros B, Harms AC, van der Graaf PH, Hankemeier T, de Lange ECM*. Multivariate pharmacokinetic/pharmacodynamic (PKPD) analysis with metabolomics shows multiple effects of remoxipride in rats . Eur J Pharm Sci 109C (2017) pp. 431-440

Yamamoto Y, Välitalo PA, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, van den Berg DJ, Hartman RH, Wong YC, Danhof M, van Hasselt JG, de Lange EC*. Predicting drug concentration-time profiles in multiple CNS compartments using a comprehensive physiologically-based pharmacokinetic model. CPT PSP 2017 Sep 11.

De Witte WEA, Vauquelin G, van der Graaf PH, de Lange EC* The influence of drug distribution and drug-target binding on target occupancy: The rate-limiting step approximation. Eur J Pharm Sci. 2017 May 12. pii: S0928-0987(17)30252-X.

Kervezee L, van der Berg DJ, Hartman RH, Meijer J, de Lange EC*. Diurnal variation in the pharmacokinetics and brain distribution of morphine. Eur J Pharm Sci. 2017 May 27. pii: S0928-0987(17)30277-4.

Yamamoto Y, Danhof M, de Lange EC*. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations.. AAPS J. 2017

Erdo-Pázmány F, Denes L, de Lange EC. Age-associated physiological and pathological changes at the blood- brain barrier – A review. J Cereb Blood Flow Metab. 2017 Jan;37(1):4-24

Yamamoto Y, Välitalo PA, van den Berg DJ, Hartman R, van den Brink W, Wong YC, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Bakshi S, Aranzana-Climent V, Marchand S, Dahyot-Fizelier C, Couet W, Danhof M, van Hasselt JG, de Lange EC*. A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations. Pharm Res. 2017 Feb;34(2):333-351.