31
Copyright R. Janow – Fall 2011 Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 – 9.7 New Concepts - Overview Linear Momentum, Isolated and Non-Isolated systems Newton’s Second Law in terms of the Momentum Conservation of Linear Momentum Impulse-Momentum Theorem What is a Collision? Momentum and Kinetic Energy in Collisions Inelastic Collisions in One Dimension Elastic Collisions in One Dimension Collisions in Two Dimensions Center of Mass Systems of Particles & Solid Bodies Linear Momentum for a System of Particles Newton’s Second Law for a System Momentum Conservation 9.1 Linear Momentum 9.2 Momentum in Isolated Systems 9.3 Momentum in Non-Isolated Systems 9.4 Collisions in One Dimension 9.5 Collisions in Two Dimensions 9.6 The Center of Mass 9.7 Systems of Many Particles 9.8 Deformable Systems 9.9 Rocket Propulsion

Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Physics 111 Lecture 08

Linear Momentum, Collisions, Systems of Particles

SJ 8th Ed.: Chap 9.1 –9.7

•New Concepts -Overview

•Linear Momentum, Isolated and Non-Isolated

systems

•Newton’s Second Law in terms of the

Momentum

•Conservation of Linear Momentum

•Impulse-M

omentum Theorem

•What is a Collision?

•Momentum and Kinetic Energy in Collisions

–Inelastic Collisions in One Dimension

–Elastic Collisions in One Dimension

–Collisions in Two Dimensions

•Center of Mass

–Systems of Particles & Solid Bodies

•Linear Momentum for a System of Particles

–Newton’s Second Law for a System

–Momentum Conservation

9.1

Lin

ear

Mo

men

tum

9.2

Mo

men

tum

in

Iso

late

d S

yste

ms

9.3

Mo

men

tum

in

No

n-I

so

late

d S

yste

ms

9.4

Co

llis

ion

s in

On

e D

imen

sio

n

9.5

Co

llis

ion

s in

Tw

o D

imen

sio

ns

9.6

Th

e C

en

ter

of

Mass

9.7

Syste

ms o

f M

an

y P

art

icle

s

9.8

Defo

rmab

le S

yste

ms

9.9

Ro

cket

Pro

pu

lsio

n

Page 2: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

New Concepts

Mom

ent

um:

•fo

r a p

art

icle

: m

ass

x v

elo

city

•co

nserv

ed in

isol

ate

d s

yst

em

sd

tPd

F ne

t

rr

= ===

Im

puls

e:

•m

oment

um c

hang

e f

or a

non

-is

olate

d s

yst

em

tPF a

ve

∆ ∆∆∆∆ ∆∆∆= ===

rr

tF

P

I

ave

∆ ∆∆∆= ===

∆ ∆∆∆≡ ≡≡≡

rr

r

Col

lisi

ons:

•m

any

part

icle

s in

tera

ctin

g in

a s

yst

em

collis

ions

may c

onse

rve m

oment

um a

nd e

nerg

y•

bro

adly

app

lica

ble

mod

el (e

.g,

pool

balls

, ato

ms,

gala

xie

s…)

Mass

cent

er:

O

ne p

oint

in

a b

ody o

r sy

stem

of

part

icle

s m

oves

as

if a

ll th

e m

ass

and

exte

rnal fo

rces

are

loc

ate

d t

here

•CM

is

an

ave

rage

pos

itio

n wit

h w

eig

hti

ng b

y p

art

icle

s’m

ass

es

•CM

is

rela

ted t

o ce

nter

of g

ravi

ty,

but

not

qui

te t

he s

am

e

App

lica

bilit

y:SINGLE

PARTICLES

MASS

ZERO SIZE

SYSTEMS OF

PARTICLES

INTERACTING

RIGID BODIES

FIXED SHAPE

CAN ROTATE &

VIBRATE

Page 3: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Linear Momentum of a Single Particle

How

do

you

measu

re “

quant

ity o

f m

otio

n”fo

r a b

ody

•Pr

opor

tion

al to

mass

and

velo

city

vm

pr

r≡ ≡≡≡

v

to

pa

ralle

l

Ve

cto

rr

mvr

•U

nits

: s

lug

.ft/

s

gm

.cm

/s,

k

g.m

/s,

] p [

= ===

Newto

n’s

Seco

nd L

aw f

or 1

pa

rtic

le,

in t

erm

s of

mom

ent

um

dtp

dF

ne

t

rr

= ===

Th

e n

et

forc

e o

n a

part

icle

eq

uals

th

e r

ate

of

ch

an

ge o

f it

s m

om

en

tum

Abov

e h

olds

als

o fo

r sy

stem

s of

part

icle

s & r

igid

bod

ies

Deri

vati

on:

dtv

dm

vd

tm d

dt

]v

[m d

dtp

d

rr

rr

+ +++= ===

≡ ≡≡≡

usually zero, as

no mass is lost

ne

tF

a

m

d

tpd

rr

r

= ==== ===

gd

x

df

dx

dg

f

g

(x)]

[f

(x)

dxd

+ +++≡ ≡≡≡R

ule

C

ha

in

Page 4: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Momentum Conservation –An isolated pair of particles

m1

m2

1vr

2vr

12

Fr2

1Fr

Two

part

icle

s in

tera

ctin

g vi

a f

orce

F(a

ny k

ind).

•F

21

and

F12

are

IN

TERN

AL “

thir

d law”

act

ion-

react

ion

forc

es

02

11

2

F

F

= ===+ +++

rr

Seco

nd L

aw:

] p

p [

dtd

dtp

d

d

tpd

02

1

rr

rr

+ +++= ===

+ +++= ===

21

dtp

dF

dtp

dF

12

21

21

rr

rr

= ==== ===

Tot

al m

oment

um o

f th

e s

yst

em

:

p

p

p2

1

tot

rr

v+ +++

≡ ≡≡≡

dt

pd

tot

0= ===

∴ ∴∴∴

rT

he t

ota

l li

near

mo

men

tum

of

an

iso

late

d

sys

tem

of

two

or

mo

re p

art

icle

s is c

on

sta

nt

When

the s

yst

em

chang

es

state

:f

fi

ip

p

p

p2

12

1

rr

rr

+ +++= ===

+ +++

Mom

ent

um a

long

each

Cart

esi

an

axis

is

cons

erv

ed

sepa

rate

ly

fxfx

xixi

p

p

p

p

21

21

+ +++= ===

+ +++

p

p

p

pfy

fyyi

yi2

12

1+ +++

= ===+ +++

p

p

p

pfz

fzzi

zi2

12

1+ +++

= ===+ +++

“Isolated”means momentum

transfer across system

boundary = 0.

Energy may be flowing by

non-m

echanical means

The internal forces alwayscancel in pairs

Page 5: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Newton’s Second Law for a System of Particles

NET E

XTERN

AL f

orce

act

s on

each

part

icle

. Syst

em

is

NO

T I

SO

LATED n

ow

F21

and

F12

are

sti

ll in

tern

al, a

ctio

n-re

act

ion

forc

es,

so

02

11

2

F

F= ===

+ +++r

r

App

ly S

eco

nd L

aw t

o in

div

idua

l pa

rtic

les

dtp

dF

F

F

dtp

dF

F

F

(2)

12

ext,

2n

et,

2

(1)

21

ext,

1n

et,

1

21

rr

rr

rr

rr

= ===+ +++

= ===

= ===+ +++

= ===

d

t

pd

F to

t

ext

net,

rv

= ===T

he n

et

ex

tern

al

forc

e o

n a

sys

tem

eq

uals

th

e r

ate

of

ch

an

ge o

f to

tal

lin

ear

mo

me

ntu

m (

mass c

en

ter

mo

men

tum

)

c

on

sta

nt

is

tot

the

ne

xt

,n

et

If

p

,

F

rr

0= ===

MOMENTUM CONSERVATION:

m1

m2

1vr

2vr

12

Fr2

1Fr

ext,

1Fr

ext,

2Fr

] p

p [

dtd

dtp

d

d

tpd

F

F

F

F2

1ext,

2ext,

1n

et,

2n

et,

1

rr

rr

rr

rr

+ +++= ===

+ +++= ===

+ +++= ===

+ +++2

1

p

p

p

to

t2

1

vr

r= ===

+ +++

Repl

ace

:

F F

F

ext

net,

ext,

2ext,

1

rr

r≡ ≡≡≡

+ +++

Add (

1)

to (

2),

not

ing

that

inte

rnal fo

rces

canc

el

d

t

pd

F

tot

ext

net,

rv

= ===∴ ∴∴∴

Page 6: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Exam

ple -

Line

ar

Mom

ent

um in

an

Isol

ate

d S

yst

em

An

ast

rona

ut p

ushes

a b

ox h

ard

eno

ugh t

ogi

ve it

a s

peed v

2f=

0.3

m/s

rela

tive

to

a t

hir

dob

serv

er.

Bot

h a

stro

naut

and

box

are

in

itally

at

rest

rela

tive

to

the s

am

e o

bse

rver.

What

is t

he a

stro

naut

’s f

inal sp

eed

v1f?

m1

= 6

0 k

g

m2

= 8

0 k

g

•Syst

em

(ast

rona

ut +

box

) is

iso

late

d.

•The p

ush o

n th

e b

ox is

an

inte

rnal fo

rce.

Tot

al line

ar

mom

ent

um is

cons

tant

acti

on

-reacti

on

inte

rnal

forc

es a

ct

2f

1f

2i

1i

to

tp

p

0

p

p

pr

rr

rv

+ +++= ===

= ===+ +++

= ===

Ch

oo

se +

x a

lon

g v

22

f2

1f

1v

m

v

m

0

+ +++

= ===

s/m

.

.

v

mm

v

60

80

2f

121f

40

30

− −−−= ===

× ×××− −−−

= ===− −−−

= ===

min

us s

ign

mean

s o

pp

os

ite

to

v2f

Is

the k

ineti

c ene

rgy o

f th

e s

yst

em

als

o co

nserv

ed?

0

K

K

K

2i

1i

i= ===

+ +++= ===

23

080

24

060

2 22

2 11

.21

.21

f21

f21

2f

1f

f

v

mv

m

K

K

K

× ×××× ×××

+ +++= ===

+ +++= ===

+ +++= ===

Jo

ule

s

8.4

K

f= ===

Where

did

the e

nerg

y c

ome f

rom

?

Page 7: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Exam

ple:

Ball h

itti

ng a

wall

A 2

kg

ball m

ovin

g hor

izon

tally

hit

s a v

ert

ical wall a

nd r

ebou

nds.

W

hat

is t

he b

all’

s m

oment

um c

hang

e∆ ∆∆∆

palo

ng

x

Wh

at

frac

tio

n f

o

f th

e i

nit

ial

kin

eti

c e

nerg

y i

s lo

st?

mv

0

m

vf

Can

rega

rd s

yst

em

as

eit

her:

•is

olate

d (

ball +

wall)

� ���co

llis

ion

forc

e is

inte

rnal

•no

n-is

olate

d (

ball

only

) � ���

collis

ion

forc

e is

exte

rnal

a)

Let

v0

= +

5.0

m/s

an

d

vf=

-2

.5 m

/s

5

.0)

-2

(-2

.5

)v

v(m

p

p

p

f0

f= ===

− −−−= ===

− −−−= ===

∆ ∆∆∆0

kg

.m/s

15

p

− −−−

= ===∆ ∆∆∆

decreased

Where

did

the m

oment

um g

o?

Wall g

ain

ed it

75

00

5

52

1

2

1

2

02

22

0

.

..

vv

v

vv

K

KK

f f

0

f0

f0

los

t= ===

− −−−= ===

− −−−

= ===− −−−

= ===− −−−

≡ ≡≡≡KE n

ot c

onse

rved.

75%

con

vert

ed t

o heat

(int

ern

al ene

rgy)

b)

Let

v0

= +

5.0

m/s

an

d

vf=

-5

.0 m

/s

5

.0)

-2

(-5

.0

)v

v(m

p

p

p

f0

f= ===

− −−−= ===

− −−−= ===

∆ ∆∆∆0

kg

.m/s

20

p

− −−−

= ===∆ ∆∆∆

0.0

vv

f

flo

st

= ===

− −−−

= ===

2

1

0

Ball r

efl

ect

ed p

erf

ect

ly e

last

ically

c)

Let

v0

= +

5.0

m/s

an

d

vf=

0.0

m/s

kg

m/s

1

0-

)

v(

m

p

= ===

− −−−= ===

∆ ∆∆∆0

0.0

f lo

st

1= ===

Ball r

efl

ect

ed c

ompl

ete

ly in-

ela

stic

ally

100%

of

KE

conv

ert

ed t

o heat

Page 8: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Impulse: Momentum transfer in a non-isolated system

Impulse is the effect of collision forces acting over time, transferring momentum

Re-arr

ang

e t

he S

eco

nd L

aw:

d

tF

pd

ext

net,

tot

vr

= ===

FOR A SYSTEM:

FOR A PARTICLE:

d

tF

pd

n

et

vr

= ===

Int

egr

ate

ove

r a f

init

e t

ime int

erv

al

∆ ∆∆∆t:

d

tF

p

t

n

et

∫ ∫∫∫ ∆ ∆∆∆= ===

∆ ∆∆∆v

r

dt

F

p

t

ext

net,

tot

∫ ∫∫∫ ∆ ∆∆∆= ===

∆ ∆∆∆v

r

The r

ight

sides

of t

he a

bov

e a

re c

alled t

he “

Im

puls

e”

Th

e I

mp

uls

e-M

om

en

tum

Th

eo

rem

:

Th

e c

han

ge i

n m

om

en

tum

of

a p

art

icle

or

syste

m e

qu

als

th

e i

mp

uls

e o

f th

e

net

forc

e a

cti

ng

on

it.

•Im

pu

lse i

s a

ve

cto

r•

If a

syste

m is

iso

late

d,

the I

mp

uls

e t

ran

sfe

rred

to

it

via

fo

rces =

0•

If t

he

ne

t ex

tern

al

forc

e a

cti

ng

on

a s

ys

tem

is

no

n-z

ero

, th

e I

mp

uls

e i

sn

on

-zero

an

d t

he s

yste

m is

no

tis

ola

ted

.

p

rr

∆ ∆∆∆= ===

Ι ΙΙΙ

p

to

t

rr

∆ ∆∆∆= ===

Ι ΙΙΙ

Page 9: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

The “Impulse Approximation”

FOR A SYSTEM:

FOR A PARTICLE:

Wor

k wit

h t

ime a

vera

ge f

orce

. fo

rce(t

ime)

deta

ils

may n

ot b

e k

nown.

d

tF

t1

F t

n

et

avg

net,

∫ ∫∫∫ ∆ ∆∆∆∆ ∆∆∆

≡ ≡≡≡v

r

dt

F t1

F

t

ext

net,

avg

ext,

net,

∫ ∫∫∫ ∆ ∆∆∆∆ ∆∆∆

≡ ≡≡≡v

r

p

t

F

avg

net,

rr

r∆ ∆∆∆

= ===∆ ∆∆∆

= ===Ι ΙΙΙ

tot

avg

ext,

net,

p

t

F

rr

r∆ ∆∆∆

= ===∆ ∆∆∆

= ===Ι ΙΙΙ

THE TIME AVERAGED FORCE PRODUCES THE SAME IMPULSE AS THE TIME DEPENDENT FORCE

Ass

ume o

ne larg

e f

orce

act

s fo

r a s

hor

t ti

me,

as

in a

col

lisi

on.

Oth

er

forc

es

(lik

e g

ravi

ty)

have

negl

igib

le e

ffect

dur

ing

the c

ollisi

on.

vm

p

t

F

avg

rr

rr

∆ ∆∆∆= ===

∆ ∆∆∆= ===

∆ ∆∆∆= ===

Ι ΙΙΙ

net

Fr

are

a

= ===Ι ΙΙΙr

t∆ ∆∆∆

Ac

tual

Imp

uls

e

net

Fr

t∆ ∆∆∆

t

F

avg

∆ ∆∆∆= ===

Ι ΙΙΙr

r

Imp

uls

e A

pp

roxim

ati

on

tF

p

p

tF

p

p

tm

a

v

m

mv

ta

v

v

avg

if

avg

if

avg

if

avg

if

∆ ∆∆∆= ===

− −−−= ===

Ι ΙΙΙ

∆ ∆∆∆+ +++

= ===

∆ ∆∆∆+ +++

= ===

∆ ∆∆∆+ +++

= ===Can

deri

ve a

lso

usin

g k

inem

ati

cs

Page 10: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Exam

ples

app

lyin

g th

e I

mpu

lse A

ppro

xim

ati

on

Ball h

itti

ng a

wall

(see a

n earl

ier

slid

e)

In parts a,b,& c the impulse delivered to the ball was ∆ ∆∆∆p(negative)

The impulse delivered to the wall would be –

∆ ∆∆∆p(positive)

Bum

per

Test

A c

ar

of m

ass

1500 k

g co

llides

wit

h a

wall a

ndre

bou

nds

wit

h v

elo

city

show

n. f

ind t

he im

puls

e o

f th

e c

ollisi

on,

whic

h last

s 0.1

50 s

and

the a

vera

ge

net

forc

e e

xert

ed o

n th

e c

ar

Ign

ore f

orce

s ot

her

than

the w

all’s.

Nand

Fghave

no e

ffect

–ig

nore

the y

-dir

ect

ion.

Let

the s

yst

em

(no

n-is

olate

d)

be j

ust

the c

ar.

)v

v(m

pp

p

xi

xf

xi

xf

xx

− −−−= ===

− −−−= ===

∆ ∆∆∆= ===

Ι ΙΙΙr

kg

.m/s

10

2.6

4

))

1(

.2(

4x

× ×××= ===

− −−−− −−−

= ===Ι ΙΙΙ

560

1500

t

F

avg

∆ ∆∆∆= ===

Ι ΙΙΙr

r

Use

:

N 10

1.7

6

.

10

2.6

4 t

F

64

xavg

net,

x,

× ×××= ===

× ×××= ===

∆ ∆∆∆Ι ΙΙΙ= ===

15

00

If the car crumples up and does not bounce back, is the force larger or smaller?

Page 11: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Exam

ple:

Mach

ine g

un b

ulle

ts h

itti

ng a

targ

et

A s

tream

of

ident

ical bul

lets

hit

s th

e t

arg

et

At

a s

teady r

ate

. W

hat

is t

he a

vera

ge f

orce

on t

he t

arg

et,

ass

umin

g it

is

very

mass

ive a

nddoe

s no

t m

ove t

o th

e r

ight.

Bul

lets

+ t

arg

et

form

an

isol

ate

d s

yst

em

Ign

ore y

-dir

ect

ion

forc

es

as

they d

o no

t aff

ect

mot

ion

alo

ng x

Bu

lle

t m

ass =

mB

ulle

t s

peed

= v

i =

+v

Bu

lle

t ra

te =

ρ

ρ

ρ

ρ =

N/∆ ∆∆∆

t

Fav,t

arg

Two

case

s:a)

Bu

lle

ts b

ou

nce

back w

ith

sp

ee

d

vf

=

-v

(perf

ectl

y e

las

tic

)b

)B

ulle

ts s

tick t

o t

he t

arg

et:

vf

=

0

(perf

ec

tly i

ne

lasti

c)

vi

vf ∆ ∆∆∆p

on

eb

ull

et

Usi

ng I

mpu

lse A

ppro

xim

ati

on:

t

p

t

F

arg

tta

rga

vg

targ

,∆ ∆∆∆

∆ ∆∆∆= ===

∆ ∆∆∆

Ι ΙΙΙ= ===

bu

ll

on

eb

ull

o

ne

bu

lla

vg

targ

,p

t

pN

t

p

F

∆ ∆∆∆ρ ρρρ

− −−−= ===

∆ ∆∆∆

∆ ∆∆∆− −−−

= ===∆ ∆∆∆

∆ ∆∆∆− −−−

= ===)

vm

(v

v

m

p

if

bu

ll

on

e− −−−

= ===∆ ∆∆∆

= ===∆ ∆∆∆

Use

3rd

Law:

0

p

pb

ull

arg

t= ===

∆ ∆∆∆+ +++

∆ ∆∆∆O

r:0

bu

lla

rgt

= ===Ι ΙΙΙ

+ +++Ι ΙΙΙ

Case a

:

Case b

:

ρ ρρρ= ===

ρ ρρρ= ===

2m

v

v)

-m

(-v

-

Fa

vg

targ

,

ρ ρρρ= ===

ρ ρρρ= ===

m

v

v)

-m

(0

-

F

avg

targ

,

Page 12: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

What is a collision?

An event:several bodies exert forces on each other.

There is a clear-cut “before”and “after”the event.

Dir

ect

co

nta

ct

No

n-c

on

tact

The system is isolated (for duration of collision).

Total momentum is conserved.

Interactions are 3rd Law internal forces.

BEFORE

DURING

AFTER

De

tails

ma

y

no

t b

e k

no

wn

Ca

n k

no

w

mo

me

nta

an

de

nerg

ies

Ca

n k

no

w

mo

me

nta

an

de

nerg

ies

The “impulse approximation”can be applied:

•The collision duration is usually “short”.

•The collision forces are assumed to be overwhelmingly

larger than any external forces present during the collision.

We ask only about initial and final state information.

Ass

umpt

ions

valid f

or:

Sub

ato

mic

part

icle

s -

10

-18

sec

10

-27

kgCol

lidin

g ga

laxie

s -

10

+8

yr.

10

+40

kg

Page 13: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Types of collisions (2 particle examples)

p

p in

itia

l,

tot

fin

al

,to

t

rr

= ===

Use

kin

eti

c ene

rgy c

onse

rvati

on a

lso

if c

ollisi

on is

“perf

ect

ly e

last

ic”

When

collis

ion

forc

es

are

kno

wn,

can

use s

eco

nd law t

o extr

act

deta

il.

Oth

er

tim

es

“sca

tteri

ng e

xpe

rim

ent

s”are

don

e t

o pr

obe a

nd inf

er

forc

es

from

co

llis

ion

resu

lts

Partially Inelastic Collision: Some KE lost. Particles reboundpart way

Perfectly Elastic Collision: Particles rebound fully. KE conserved.

p

p p

p i

if

f2

12

1

rr

rr

+ +++= ===

+ +++

Perfectly Inelastic Collision: Particles stick together. Some KE lost.

ff

fv

v

v

21

rr

r= ===

= ===

i2

i1

ff

1v

m v

m

vm

vm

21

22

1

rr

rr

+ +++= ===

+ +++

Use

mom

ent

um c

onse

rvati

on.

Defi

ne c

ollidin

g sy

stem

to

be iso

late

d f

or p r

Page 14: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Perfectly Inelastic Collisions

fin

al

,to

tin

itia

l,

tot

p p

rr

= ===

Iso

late

d s

yst

em

. M

oment

um is

cons

erv

ed

ff

fv

v

v

rr

r≡ ≡≡≡

= ===2

1Pa

rtic

les

stic

k to

geth

er � ���

one u

nkno

wn � ���

fewer

equ

ati

ons

Kin

eti

c Ene

rgy is

NO

T c

onse

rved,

ene

rgy los

s is

not

spe

cifi

ed

f2

1i

i1

v )m

m(

vm

vm

rr

r+ +++

= ===+ +++

22

1

Sp

ecia

l cases:

a)

m2

is s

tati

on

ary

targ

et � ���

v2

i =

0

b)

m1

= m

2, v

1i=

-v

2i.

� ���

Pto

t=

0, v

f=

0

mm

vm

v

21

i1

f+ +++

= ===1

rr

mm

vm

vm

v

21

ii

1f

+ ++++ +++= ===

22

1

rr

r

1,2

, o

r 3

D

v

mp

mp

v f

totf

tot,

toti

tot,

cm

r

rr

r= ===

≡ ≡≡≡≡ ≡≡≡

The m

ass

cent

er

of a

syst

em

is

the p

oint

whic

h a

cts

as

if a

ll t

he m

ass

is

conc

ent

rate

d t

here

. In

this

pro

ble

m v

f= v

cm:

Gene

rally:

Mass

cent

er

velo

city

is

cons

tant

in

an

isol

ate

d s

yst

em

Fra

ctio

n of

kin

eti

c ene

rgy r

em

ain

ing

2 22

2 11

2

21

iv)

m(21

iv)

m(21

fv)

mm(

21

ifre

mKK

f

+ +++= ===

≡ ≡≡≡+ +++

Sp

ecia

l cases:

a)

b)

21

1 mm

m

rem

f + +++

= ===

0

f re

m= ===

What if the direction of time is reversed? Explosion!

Page 15: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Exam

ple:

Cra

shin

g air

-tr

ack

cars

An

air

cart

of

mass

m1and

spe

ed v

1i

mov

es

alo

ng t

he x

-axis

tow

ard

and

co

llid

es

wit

h a

seco

nd a

ir c

art

of

mass

m

2th

at

is a

t re

st.

The c

art

s st

ick

toge

ther.

Fin

d t

he v

elo

city

of

the

cent

er

of m

ass

of

this

syst

em

(a)

befo

re a

nd (

b)

aft

er

the c

art

s co

llid

e.

m1

m1

m2

m2

v1

iv

2i=

0

vf

•Ine

last

ic c

ollisi

on,

isol

ate

d s

yst

em

•M

oment

um is

cons

erv

ed,

1 d

imens

iona

l i2

1

1f

21

ii

1f

v m

m

m

v

mm

vm

vm

v

1

22

1

+ +++= ===

⇒ ⇒⇒⇒+ ++++ +++

= ===

rr

r

v

mm

p

v

;v

mm

pv

f,cm

1

ito

t,i,

cm

f1

fto

t,f

cm

,= ===

+ +++≡ ≡≡≡

= ===+ +++

≡ ≡≡≡

22

a)

& b

) M

ass

cent

er

velo

city

is

the s

am

e b

efo

re a

nd

aft

er

the c

ollisi

on,

beca

use m

oment

um is

cons

erv

ed.

vf=

½v

1iif

m1

= m

2

∑ ∑∑∑∑ ∑∑∑≡ ≡≡≡

iii

cm

m

vm

v

For many

particles:

Page 16: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Example: Ballistic Pendulum

The b

ulle

t (m

ass

m1,

velo

city

v1

A)

collid

es

wit

h t

he h

ang

ing

blo

ck a

nd b

eco

mes

em

bedded in

it.

The b

lock

+ b

ulle

t sw

ings

up

to

a m

axim

um h

eig

ht

h a

bov

e it’s

init

ial

posi

tion

. G

iven

h,

find

the ini

tial sp

eed o

f th

e b

ulle

t.

Ste

p 1:

Dur

ing

the c

ollisi

on (

A t

o B)

•Syst

em

= b

ulle

t + b

lock

is

isol

ate

d•

Perf

ect

ly ine

last

ic c

ollisi

on,

1 d

imens

ion

•Lin

ear

mom

ent

um is

cons

erv

ed,

not

KE

•Im

puls

e A

ppro

xim

ati

on h

olds

A2

1

1B

v m

m

m

v

1+ +++

= ===

m1

= 9

.5 g

mm

2=

5.4

kg

h =

6.3

cm

C

g

hm

mm

v

A2

1

21

1

+ +++= ===

Eva

luate

:

s/

m

v

A633

1= ===

gh

v

B2

2= ===

)(

UK

)(

UK

E

CC

BB

mech

+ +++= ===

+ +++= ===

gh

)m

m(

v)m

m(

B21

21

2

21

00

+ ++++ +++

= ===+ +++

+ +++

Ste

p 2:

Aft

er

collis

ion

end

s (a

t B)

•Syst

em

= b

ulle

t + b

lock

+ E

art

h•

Tens

ion

doe

s no

wor

k –

norm

al to

mot

ion

•M

ech

ani

cal ene

rgy is

cons

erv

ed

Page 17: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Perfectly Elastic Collisions

p

p in

itia

l,

tot

fin

al

,to

t

rr

= ===

Iso

late

d s

yst

em

. M

oment

um is

cons

erv

ed

Part

icle

s m

ove s

epa

rate

ly a

fter

collis

ion

–do

not

stic

k to

geth

er

Abov

e p

rovi

des

only

1 e

quati

on (

in 1

D b

elo

w a

long

x-axis

)

i2

i1

ff

1v

m v

m

vm

vm

21

22

1

rr

rr

+ +++= ===

+ +++

(1)

i2

i1

ff

1

vm

vm

vm

vm

21

22

1+ +++

= ===+ +++

1 equation, 2 unknowns if initial v’sgiven.

Need 1 more equation to solve

Perf

ect

ly E

last

ic � ���

Tot

al Kin

eti

c Ene

rgy is

cons

erv

ed,

part

icle

KE’s

may c

hang

e

if

K

K = ===

(2)

f21

f1

21i

21i

121

v

m

vm

vm

v

m2 2

2

2 1

2 22

2 1+ +++

= ===+ +++

Fra

ctio

n of

kin

eti

c ene

rgy r

em

ain

ing

ela

sti

c

perf

ectl

y

if

ifre

m

1

KK

f

= ===≡ ≡≡≡

Sol

ve E

quati

ons

(1)

and

(2)

sim

ulta

neou

sly (

see t

ext,

page

244)

(9

.21)

ii

1f

v Mm

v

M

mm

v 2

2

1

2

1

2

+ +++

− −−−

= ===

(9.2

2)

i1

i1

f

v M

mm

v

M

2m

v 2

2

12

− −−−+ +++

= ===

2m

m

M

1+ +++

≡ ≡≡≡

Page 18: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Exam

ples

of E

last

ic C

ollisi

ons

1)

Balls

have

equ

al m

ass

:m

1=

m2

= m

Eq

uati

on

s9.2

1/9

.22 i

mp

ly:

v

v

if

21

0+ +++

= ===

0v

v i

f+ +++

= ===1

2

BALLS EXCHANGE MOMENTA

v1

iv

2i

= 0

2)

Targ

et

ball

m2

is a

t re

st b

efo

re c

ollisi

onEqu

ati

ons

9.2

1/9

.22 im

ply:

i1

fv

M

mm

v 1

2

1

− −−−

= ===i

1f

vM

2m

v 1

2

= ===

2.1

) Cue

ball

stri

king

ano

ther

pool

ball

at

rest

. m

1=

m2

= m

Abov

e im

ply:

v

f

01

= ===

if

v v

1

2= ===

Cu

e b

all

sto

ps

[n

o d

raw

or

foll

ow

]

Str

uck b

all

carr

ies o

ff a

ll m

om

en

tum

2.2

) M

ass

ive t

arg

et

ball.

m2>

> m

1

Abov

e im

ply:

v

v

if

11

− −−−= ===

02

v

f

≈ ≈≈≈

Refl

ec

ted

off

targ

et]

Targ

et

mo

ves o

ff w

ith

neg

lig

ible

sp

eed

2.3

) M

ass

ive p

roje

ctile b

all.

m1>

> m

2

Abov

e im

ply:

v

v

if

11

= ===

1i

fv

v

2

2≈ ≈≈≈

Mo

me

ntu

m u

nc

han

ged

by c

oll

isio

n w

ith

targ

et]

Refl

ec

ts o

ff m

1as i

t sw

eep

s t

hro

ug

h

Page 19: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Ela

stic

Col

lisi

on E

xam

ple:

Two

meta

l sp

here

s su

spend

ed b

y c

ords

just

to

uch w

hen

they a

re a

t re

st.

Sph

ere

1 is

rele

ase

d f

rom

rest

at

heig

ht

h1.

It

collid

es

ela

stic

ally

wit

h S

phere

2 w

hic

h is

at

rest

in

itally

and

ris

es

to h

eig

ht

h2 a

fter

the

collis

ion.

Sph

ere

1 r

ises

to h

eig

ht

h1’aft

er

the c

ollisi

on.

h2

T

path

to

te

nsio

n

mech

E

)(

⊥ ⊥⊥⊥

= ===∆ ∆∆∆

0

1

path

to

te

nsio

n

mech

E

)(

⊥ ⊥⊥⊥

= ===∆ ∆∆∆

0

3

co

llis

ion

ela

sti

c

(2)

(1)

v

m21

gh

m 2 i

11

11

= ===AT BOTTOM

BEFORE

COLLISION

g

h

v i

11

2= ===

(3)

v

m21

gh

m 2

f2

22

2= ===

v

m21

gh

m 2 f

1'

11

1= ===

v

2g1

h

2f

22

= ===

v2

g1

h 2 f

'1

1= ===

(2)

i11

fv

mm

mm

v 1

22

1

+ +++− −−−= ===

TO THE LEFT

IF

m2> m

1

i1

fv

mm

2m

v 1

21

2

+ +++= ===

ela

sti

cc

oll

isio

ne

qu

ati

on

sw

ith

v2i=

0

Eva

lua

tio

n

m1 =

30 g

m

m2

= 7

5 g

m h

1=

8.0

cm

v1i =

1.2

5 m

/sv

1f=

-0

.54 m

/sv

2f =

0.7

15 m

/s

h2 =

2.6

cm

h

1’

= 1

.5 c

m

Sp

ecia

l C

ase

m1

= m

2

01

= ===f

v

vv

if

12

= ===

h h

1= ===

2

Sys

tem

co

nti

nu

es in

de

fin

ite

ly

0= ===

1h

'

Page 20: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Page 21: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Elastic Collisions in Two Dimensions

Iso

late

d s

yst

em

of

2 p

art

icle

s.

Mom

ent

um is

cons

erv

ed s

epa

rate

ly f

or x

and

y

Spe

cial ca

se:

Mot

ion

is in

x-y

plane

, m

2= t

arg

et

at

rest

,“g

lanc

ing”

impa

ct,

perf

ect

ly e

last

ic.

θ θθθ φ φφφm

1

x

y m2

iv

vi

i1

1= ===

r

02

= ===i

vr

fv

2

r

fv

1

r

m2

“im

pa

ct

pa

ram

ete

r” BEFORE

AFTERm

1

i1

ff

1v

m )

co

s(

vm

)co

s(

vm

12

21

= ===φ φφφ

+ +++θ θθθ

(1) For x:

(2) For y:

p

vm

py,

init

,to

ti

1x,

init

,to

t0

1= ===

= ===

02

21

)

sin

(v

m)

sin

(v

m f

f1

= ===φ φφφ

− −−−θ θθθ

Conserve momentum separately for x and y:

Elastic collision � ���

Kinetic energy conserved

2 1

2 22

2 1i

121

f21

f1

21v

m

v

m

v

m

r= ===

+ +++(3):

K

K in

itia

l,

tot

fin

al

,to

t= ===

Thre

e E

quati

ons

foun

d

-Seve

n Pa

ram

ete

rs in

them

v

v

v

m

m 2f

1f

1i

21

φ φφφθ θθθ

If

any

4 o

f th

em

are

kno

wn,

the p

roble

m c

an

be s

olve

d n

umeri

cally

p

p in

itia

l,

tot

fin

al

,to

t

rr

= ===

p p

p p

ii

ff

21

21

rr

rr

+ +++= ===

+ +++i

2i

1f

f1

vm

vm

v

mv

m 2

12

21

rr

rr

+ +++= ===

+ +++

Page 22: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Exam

ple:

Inela

stic

col

lisi

on in

2 d

imens

ions

CA

R:

m1

= 1

200 k

g, v

1i

= 60 k

m/h

r

A c

ar

dri

ving

East

col

lides

wit

h a

tru

ck d

rivi

ngN

orth

. T

he t

wo

vehic

les

stic

k t

ogeth

er.

Fin

dth

eir

fin

al co

mm

on s

peed a

nd d

irect

ion

x

y

TR

UC

K

CA

R

CA

R +

TR

UC

K

m1,

v1i

m2,

v2i

vf

θ θθθ

TR

UC

K:

m2

= 3

000 k

g, v

2i

= 40 k

m/h

r

Ine

last

ic c

ollisi

on,

isol

ate

d s

yst

em

mom

ent

um is

cons

erv

ed

p

p in

itia

l,

tot

fin

al

,to

t

rr

= ===i

2i

1f

1v

m v

m v ]

m[m

21

2

rr

r+ +++

= ===+ +++

Wor

k x &

y d

irect

ions

sepa

rate

ly

i1

fx1

vm

v ]

m[m

12

= ===+ +++

i2

fy1

vm

v ]m

[m 2

2= ===

+ +++

iv

mm

m

v

1

1fx

12

+ +++= ===

v

m

m

m

v i

1

2fy

2

2+ +++

= ===

CO

NV

ER

T:

v1

i=

60 k

m/h

r x 1

/3600 h

r/s x

1000 m

/km

v1

i =

16.6

7 m

/sV

2i

= 11.1

1 m

/sm

/s

4.7

6

v fx

= ===m

/s

7.9

4

v fy

= ===

km

/s

33

.3

m

/s

9.2

5

]v

[v v

1/2

2 fy2 fx

f= ===

= ===+ +++

= ===

5

9

]/v

[vta

n

o

fxfy

-1= ===

= ===θ θθθ

Num

eri

cal Eva

luati

on:

Fra

ctio

n of

kin

eti

c ene

rgy r

em

ain

ing

47

.4%

KK

f

iv)

m(21

iv)

m(21

fv)

mm(

21

ifre

m= ===

+ +++= ===

≡ ≡≡≡+ +++

2 22

2 11

2

21

Page 23: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Systems -Mass Center

The c

ent

er

of m

ass

of a

bod

y o

r sy

stem

of

bod

ies

is t

he p

oint

that

mov

es

as

if a

ll of

the m

ass

were

con

cent

rate

d t

here

and

all

exte

rnal

forc

es

were

app

lied t

here

The hammer spins about its CM as

CM follows projectile trajectory

Page 24: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Mass Center motion for an exploding sky-rocket

(Inelastic collision run in reverse)

Page 25: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Mass Center: Average Position W

eighted by Mass

Con

cept

: Ave

rage

sco

re o

n a c

lass

exam

50 s

tud

en

ts4 q

uesti

on

s o

nth

e t

est

Sco

re%

#

Stu

den

ts0 0

25 5

50 15

75 20

100 1

0

stu

den

ts#

T

ota

l

stu

den

ts]

#x

[s

co

re ∑ ∑∑∑

= ===A

VE

RA

GE

SC

OR

E

67.5

50

xx

xx

= ==== ===

+ ++++ +++

+ +++1

01

00

20

75

15

50

52

5

Exam

ple:

Two

part

icle

s on

x-axis

x =

0m

1m

2

x1

x2

∑ ∑∑∑∑ ∑∑∑= ===

+ ++++ +++= ===

iii

21

cm

m

xm

m

m

xm

xm

x

21

21

Beco

mes s

imp

le a

vera

ge if

m1

= m

2

Mass

cent

er

of a

syst

em

of

N p

art

icle

s

kz

jy

ix

rcm

cm

cm

cm

+ ++++ +++

= ===v

tot

N jj

j

cm

M

x m

x∑ ∑∑∑

= ===≡ ≡≡≡

1

m

MN j

jto

t∑ ∑∑∑

= ===≡ ≡≡≡

1

M

rm

r

tot

N jj

j

cm

∑ ∑∑∑= ===

≡ ≡≡≡1

r

rIn

vect

or

form

(3D):

Alo

ng x

:

Page 26: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Mass

Cent

er

Exam

ples

Equ

al m

ass

es

alo

ng a

lin

e

m1 =

m2

= m

3=

m4

= m

5 =

m

x1 =

1, x

2=

2,

x3

= 3

, x

4=

-1,

x5 =

-2

53

m

mm

mm

m

m

xm

x

iii

cm

= ===× ×××

− −−−× ×××

− −−−× ×××

+ +++× ×××

+ +++× ×××

= ==== ===

∑ ∑∑∑∑ ∑∑∑5

21

32

1

Une

qual m

ass

es

at

vert

ices

of e

quilate

ral tr

iang

le

m1

m2

m3

aa

a

m1 =

1.2

kg

, m

2=

2.5

kg

, m

3=

3.4

kg

2 dimensional problem

r 1 =

(0,0

), r 2

= (

a,0

),

r 3=

(a/2

,asin

(60

o))

,

sin

(60

) =

.866

m 0.8

3

.

..

..

..

.

m

xm

x

iii

cm

= ===+ +++

+ +++

× ×××+ +++

× ×××+ +++

× ×××= ===

= ===∑ ∑∑∑∑ ∑∑∑

43

52

21

70

43

41

52

02

1

Sid

e a

= 1

.4 m

m 0.5

8

.

..

)sin

(.

..

.

m

ym

y

o

iii

cm

= ===+ +++

+ +++

× ×××+ +++

× ×××+ +++

× ×××= ===

= ===∑ ∑∑∑∑ ∑∑∑

43

52

21

60

41

43

05

20

21

Une

qual m

ass

es,

sam

e loc

ati

ons

as

abov

e

m1 =

m,

m2

= 2

m,

m3

= 4

m,

m4

= 5

m,

m5 =

6m

0

m

mm

mm

m

m

xm

x

iii

cm

= ===× ×××

− −−−× ×××

− −−−× ×××

+ +++× ×××

+ +++× ×××

= ==== ===

∑ ∑∑∑∑ ∑∑∑1

8

26

15

34

22

1!!

CM

at

orig

in

Page 27: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Mass Center of a Solid Body

App

roach

:•

Div

ide c

onti

nuou

s bod

y int

o N

chun

ks,

each

wit

h m

ass

∆ ∆∆∆m

k.

•W

rite

∆ ∆∆∆m

kas

a m

ath

fun

ctio

n•

App

ly t

he m

ass

cent

er

form

ulas

for

a s

yst

em

of

N p

art

icle

s (s

umm

ati

ons)

•Take

the lim

it a

s th

e m

ass

chun

ks b

eco

me

infi

nite

sim

ally

sm

all.

•Pe

rfor

m t

he r

esu

ltin

g in

tegr

ati

on(s

)

x

y

z

V

ol

x

en

sit

yd

m

k∆ ∆∆∆

= ===∆ ∆∆∆

len

gth

)

(ma

ss

/un

it

de

ns

ity

m

as

s

lin

ea

r

(x

)d

x

)

x(

d

m≡ ≡≡≡

λ λλλλ λλλ

= ===For

1D b

ody:

For

2D b

ody:

For

3D b

ody:

)

y)

(x,

d

yd

x

)y,

x(

d

ma

rea

(m

as

s/u

nit

d

en

sit

y

ma

ss

s

urf

ac

e≡ ≡≡≡

σ σσσσ σσσ

= ===

vo

lum

e)

(m

as

s/u

nit

d

en

sit

y

ma

ss

vo

lum

ez

y,

x,

)

(

d

z

dy

dx

)z,

y,x(

dm

≡ ≡≡≡ρ ρρρ

ρ ρρρ= ===

3D OBJECT

tot

N jj

j

cm

M

xm

x∑ ∑∑∑

= ===≡ ≡≡≡

1∫ ∫∫∫

≡ ≡≡≡

bo

dy

tot

cm

xd

mM

1

x

∫ ∫∫∫∫ ∫∫∫

ρ ρρρ= ===

≡ ≡≡≡

bo

dy

bo

dy

tot

dV

dm

Mwhere

d

m r

M

1

r

vo

lto

tcm

∫ ∫∫∫≡ ≡≡≡

rv

•OFTEN CAN USE SYMMETRY TO AVOID

ONE OR MORE INTEGRATIONS

•OFTEN CAN ASSUME DENSITY IS UNIFORM

Page 28: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Exam

ple:

Mass

Cent

er

of a

Rod

•O

ne D

imens

iona

l bod

y•

By s

ym

metr

y,

ycm

and

zcm

equ

al zero

•Lin

ear

mass

dens

ity is

cons

tant

Mass M

, L

en

gth

L

λ

λ

λ

λ =

M

/L

dx

)x(

dm

λ λλλ= ===

∫ ∫∫∫∫ ∫∫∫

λ λλλ= ===

≡ ≡≡≡L

bo

dy

tot

cm

x

dx

M1

x

dm

M

1

x0

20

2

0

Lx

L1

xd

xM

x

L

21L

cm

= ==== ===

λ λλλ= ===

∫ ∫∫∫As

expe

cted b

y s

ym

metr

y

•W

hat

if t

he lin

ear

mass

dens

ity is

NO

T U

NIFO

RM

?

•For

exam

ple c

hoo

se:

2w

ith

M/L

x

)x(

≡ ≡≡≡

α αααα ααα

= ===λ λλλ

33

313

0

3

0

2

0

L

L

M

x

M

d

xx

M

x

dx

)x(

M1

x

LL

L

cm

= ===α ααα

= ===α ααα

= ===α ααα

= ===λ λλλ

= ===∫ ∫∫∫

∫ ∫∫∫Shif

ted

dx

)x(

dm

λ λλλ= ===

Page 29: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Systems of Particles

System

boundary

Now generalize the momentum principles to N particles

•Int

ern

al co

llisi

on f

orce

s•

Exte

rnal fo

rces

can

act

dir

ect

lyon

part

icle

s in

the s

yst

em

Rig

id b

odie

s add f

ixed p

osit

ions

due

to

inte

rnal fo

rces

Exte

rnal

forc

e e

xam

ple

s:

•G

ravit

y,

Ele

ctr

osta

tic,

Mag

neti

c f

orc

es

•C

on

tact

or

co

llis

ion

fo

rces w

ith

exte

rnal ag

en

ts

Inte

rnal

forc

e E

xam

ple

s:

•C

oll

isio

ns b

etw

een

part

icle

s w

ith

in t

he s

yste

m•

Mo

lecu

lar

forc

es g

ivin

g t

he t

he

syste

m s

hap

e a

nd

fo

rm•

New

ton

’s 3

rdL

aw

im

plies t

hese c

an

cel

an

d h

ave n

o n

et

eff

ect

on

mo

tio

n o

f th

e s

yste

m a

s a

wh

ole

Page 30: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Mass Center Velocity and Acceleration for a System

of Particles

M

r m

r

tot

N jj

j

cm

∑ ∑∑∑= ===

≡ ≡≡≡1

r

rM

ass

Cent

er

Defi

niti

onAss

ume t

otal m

ass

Mto

tis

con

stant

and

each

mass

mjre

main

s in

the s

yst

em

Dif

fere

ntia

te b

oth s

ides

–te

rm b

y t

erm

for

the s

um o

n th

e r

ight

tot

N jj

jc

mto

tc

mp

v

m

vM

p

rr

vv

= ==== ===

= ===∑ ∑∑∑

= ===1

d

t

rd

v c

mve

loc

ity

c

en

ter

m

as

sc

m

rr

≡ ≡≡≡= ===

d

trd

v

jj

part

icle

o

f

velo

cit

yj

r

r≡ ≡≡≡

= ===

MASS CENTER

MOMENTUM

v

m1

v

N jj

jM

cm

tot

∑ ∑∑∑= ===

≡ ≡≡≡∴ ∴∴∴

1

rv

a

m

a

MN j

jj

cm

tot

∑ ∑∑∑= ===

≡ ≡≡≡1

vv

EACHTERM EQUALS

F

j

rIS THE NET FORCE ON PARTICLE j INCLUDING EXTERNAL AND INTERNAL FORCES

F

j

r

INTERNAL FORCES ALWAYS CANCEL IN 3rd LAW PAIRS

dt

pd

F

aM

c

me

xt

ne

t,c

mto

t

rv

v= ===

≡ ≡≡≡∴ ∴∴∴

Dif

fere

ntia

te b

oth s

ides

aga

in –

term

by t

erm

for

the s

um o

n th

e r

ight

d

t

vd

a cm

on

accele

rati

cen

ter

m

ass

cm

rv

= ==== ===

jjj

j

pa

rtic

le

of

o

na

cc

ele

rati

jmF

d

tvd

a

rr

r= ===

= ==== ===

a

m

a

N jj

jM

cm

tot

∑ ∑∑∑= ===

≡ ≡≡≡∴ ∴∴∴

1

1v

v

Page 31: Physics 111 Lecture 08 - web.njit.edujanow/Physics 111 Spring 2012/Lectures... · Physics 111 Lecture 08 Linear Momentum, Collisions, Systems of Particles SJ 8th Ed.: Chap 9.1 –9.7

Co

pyri

gh

t R

. J

an

ow

–F

all

2011

Newton’s Second Law for the Mass Center

F

aM

ext

net,

cm

tot

vv

≡ ≡≡≡

v

Mp

p cm

tot

cm

tot

rr

r= ===

= ===

IF MASS is CONSTANT

For

a b

ody o

r sy

stem

of

part

icle

s:The m

ass

cent

er

mov

es

as

if it

is a

part

icle

wit

h a

ll th

e m

ass

co

ncent

rate

d t

here

, act

ed o

n by t

he n

et

exte

rnal fo

rce.

•Int

ern

al fo

rces

canc

el due

to

the 3

rdLaw

•Int

ern

al co

llisi

ons,

expl

osio

ns,

etc

do

not

aff

ect

CM

mot

ion

•Sin

gle p

art

icle

s re

spon

d t

o bot

h int

ern

al and

exte

rnal fo

rces.

The m

ass

cent

er

obeys

the S

eco

nd L

aw a

s st

ate

d a

bov

e

Resu

lts

of p

revi

ous

slid

e:

d

t

pd

F

cm

ext

net,

rv

= ===

EVEN IF MASS is NOT CONSTANT

THE NET EXTERNAL FORCE EQUALS THE RATE OF CHANGE OF MASS CENTER MOMENTUM