105
Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg [email protected]

Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg [email protected] Prof. Robin D. Erbacher 343 Phy/Geo Bldg [email protected]

  • View
    247

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Physics 7A – ReviewWinter 2008

Physics 7A – ReviewWinter 2008

Prof. Robin D. Erbacher343 Phy/Geo Bldg

[email protected]

Prof. Robin D. Erbacher343 Phy/Geo Bldg

[email protected]

Page 2: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• 7A-A/B Final Exam Locations:- Last name A-G: Roessler 66- Last name H-Z: 123 Science Lecture Hall

• 7A-C/D Final Exam Locations:- Last name A-P: 194 Chemistry- Last name Q-Z: 179 Chemistry

• Final Exam reviews continue today, see website.

• No make-up finals! Final Exam Tues. 10:30-12:30.

• Turn off cell phones and pagers during lecture.

Page 3: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

•7A-A/B Final Exam Locations:- Last name A-G: Roessler 66- Last name H-Z: 123 Science Lecture Hall

Page 4: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

•7A-C/D Final Exam Locations:- Last name A-P: 194 Chemistry- Last name Q-Z: 179 Chemistry

Page 5: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

ReviewMultiple- Atom

Systems:Particle Model of Ebond ,Particle Model of Ethermal

ReviewMultiple- Atom

Systems:Particle Model of Ebond ,Particle Model of Ethermal

Page 6: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Typically every pair of atoms interacts

• Magnitude of Ebond for a substance is the amountof energy required to break apart “all” the bonds i.e. we define Ebond = 0 when all the atoms are separated

• We treat bonds as “broken” or “formed”. Bond energy (per bond ) exists as long as the bond exists.

• The bond energy of a large substance comes from adding all the potential energies of particles at their equilibrium positions.

Ebond = ∑all pairs(PEpair-wise)

Page 7: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

What is the change in bond energy (∆Ebond) by removing the red atom?

2.2 A

4.4 A

6.6 A

-8 x 10-21J

-0.5 x 10-21J

~ 0 J8.8 A

11 A~ 0 J

~ 0 J

Bond energy

Separation (10-10m)

Answer:~8.5x10-21 J

Page 8: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

What is the bond energy Ebond for the entire molecule?

-8 x 10-21J

Separation (10-10m)

-8.5 x 10-21J

-8.5 x 10-21J -8.5 x 10-21J

-8.5 x 10-21J

Ebond = -42 x 10-21 Joules

Page 9: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

What is the bond energy Ebond for the entire molecule?Separation (10-10m)

Ebond ≈ -40 x 10-21 Joules

Energy required to break a single pair of atoms apart: +8x10-21 J

=5 bonds.

Page 10: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Ebond for a substance: amount of energy requiredto break apart “all” the bonds (magnitude only) i.e. we define Ebond = 0 when all the atoms are separated

• The bond energy of a substance comes from adding all the potential energies of particles at their equilibrium positions. Ebond = ∑all pairs(PEpair-wise)

A useful approximation of the above relation is:Ebond~ - (total number of nearest neighbor pairs) x ()

Ebond of the system is negative, determined by:1) the depth of the pair-wise potential well (positive) 2) the number of nearest-neighbors.

Page 11: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

A pair of atoms are interacting via a atom-atom potential. Only these two atoms are around. In two different situations, the pair have a different amount of total energy. In which situation is Ethermal greater?a) Situation A has a greater Ethermal

b) Situation B has a greater Ethermal

c) Both have the same Ethermal

d) Impossible to tell

A

B

Page 12: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

A

BKE

A pair of atoms are interacting via a atom-atom potential. Only these two atoms are around. In two different situations, the pair have a different amount of total energy. In which situation is Ethermal greater?a) Situation A has a greater Ethermal

b) Situation B has a greater Ethermal

c) Both have the same Ethermal

d) Impossible to tell

KE

We increased Ethermal by putting more energy into the system

Page 13: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Initial

Final

Okay. Now let us look at the same problem from the perspective of the KE and PE of individual atoms.

Which situation is correct in going from initial to final states?

Page 14: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Initial

Final

Okay. Now let us look at the same problem from the perspective of the KE and PE of individual atoms.

Which situation is correct in going from initial to final states?

Page 15: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Ethermal is the energy associated with the random microscopic motions and vibrations of the particles.

• We increased Ethermal by putting more energy into the system.

• KE and PE keep changing into one another as the atoms vibrate, just like in the mass-spring system, so we cannot make meaningful statements about instantaneous KE and PE.

• We can make statements about average KE and PE.

• Increasing Ethermal increases both KEaverage and PEaverage .

Page 16: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

The energy associated with the random motion of particles is split

between PEoscillation and KE .

Page 17: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

As we increase Etot we increase PEavg and KEavg

PEavg = KEavg = Etot/2 (for mass on a spring)

En

erg

y

position

Etot

PE

KE

Page 18: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• The energy associated with the randommotion of particles is split between PEoscillation , KE.

• For particles in liquids and solids, let’s not forgetthe part that corresponds to Ebond of the system.

• Ebond of the system is determined by both the depth of the pair-wise potential well and the number of nearest neighbors (# NN) .

Page 19: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu
Page 20: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Initial

Final

Now: Using our knowledge of the KE and PE of individual atoms.

In the final state, what is the average KE for these two atoms?What is Peavg?

PEavg=KEavg=Ethermal/2

Eth= Etot-Ebond = 5x10-21 JKEavg= 2.5x10-21 J = PEavg

Page 21: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Potential Energy contributes to both Ebond andEthermal.

• Kinetic Energy contributes to Ethermal, but not Ebond.

• Number of bonds is important for Ebond,not really for Ethermal.

Page 22: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Equipartition of Energy

Equipartition of Energy

Page 23: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Energy associated with the component of Energy associated with the component of motions/vibrations (“modes”) in any motions/vibrations (“modes”) in any particular direction is (1/2)kparticular direction is (1/2)kBBT :T :

EEthermal per modethermal per mode = (1/2) k = (1/2) kBBTT

a.k.a. Equipartition of Energya.k.a. Equipartition of Energy

GasLiquids and Solids

Page 24: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Modes : Ways each particle has of storing energy.

Ex. Mass-spring has one KE mode

and one PE mode.

Page 25: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

KE modeKE mode PE modePE mode TotalTotalSolids 3 3 6

Liquids 3 3 6Monatomic gases 3 0 3Diatomic gases 3+2+1 1 7

When energy is added to a system, what does it mean to have more places (modes) to store it in?

Page 26: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

KE KE modemode

PE PE modemode

TotalTotal

Solids 3 3 6Liquids 3 3 6

Monatomic gases

3 0 3

Diatomic gases

3+2+1 1 7

Does it take more or less energy to raise the temperature of a diatomic gas than amonatomic gas?

1. More

C = ∆Ethermal / ∆T ∆ Ethermal per molecule = number of active modes (1/2)kB∆T

∆ Ethermal per N atoms = number of active modes (1/2)kB∆T N

Page 27: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

All measuremen

ts at 25 Cunless listed

otherwise

(-1

00

C)

(0C

)

kBNA = R = 8.31 J/moleK : Gas constant or Ideal gas constant

kB(Boltzmann constant) = 1.38 x 10-23 Joule/Kelvin

NA(Avogadro’s number) = 6.02 x 1023

6 modes

Page 28: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

All measuremen

ts at 25 Cunless listed

otherwise

diatomic(no vibrations)

(10

0 C

)

(50

0 C

)monatomic

Oops! What’s going on??!

3 (5) modes => 3 (5) x ½ kBNA = 12.42 (20.70) J/mol K

Page 29: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Closed box of gasOpen box of gas

Closed box: all heat goes into the gas’s energy

Open box: Some heat goes into pushing air out of the way

CV measurement

CP measurement

Page 30: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Closed box of gasOpen box of gas

Closed box: all heat goes into the gas’s energy

Open box: Some heat goes into pushing air out of the way

CV measurement

CP measurement

Question

So then does it takeMore energy to raise the

Temperature of

Closed box of gasOr

Open box of gas?

Page 31: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

All measuremen

ts at 25 Cunless listed

otherwise

diatomic(no vibrations)

(10

0 C

)

(50

0 C

)

monatomic

Whew! Now itMakes more sense.

Recall, Cp = Cv + PdV/T, orCp = Cv + R!

Page 32: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

“Constant volume” “Constant pressure”

“Process” seems to matter… => Chapter 4 Models of Thermodynamics

(definition of heat capacity)

In this example of thermal phenomena (i.e.,measuring heat capacity) ,In this example of thermal phenomena (i.e.,measuring heat capacity) ,

Page 33: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Equipartition tells us that the energy per modeIs ½ kbT.

• For solids and liquids, moving the atom in anydirection is like moving a mass on a spring. Threedirections means 3 KE modes/atom and 3 PEmodes/atom. Nothing to do with # of bonds!

• For gases things are more complicated: need to count carefully- some KE modes don’t have PE modes.

Page 34: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Thermodynamics: Microscopic to Macroscopic

Thermodynamics: Microscopic to Macroscopic

Page 35: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Depends only on properties of the system at a particular time

Example: Ethermal of a gas For an ideal gas, Ethermal depends only on:

• Temperature • Number of modes

Page 36: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Not a property of a particular object. Instead a property of a particular process, or

“way of getting from the initial state to the final state”

LHS: depends only on i and f

Q,W depend on process between i and f

Page 37: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

∆Etotal must include all changes of energy associated

with the system…

∆Etotal = ∆Ethermal+ ∆Ebond+ ∆Eatomic+ ∆Enuclear+ ∆Emechanical

Energy associated with the motion of a body

as a whole

∆ U

First law of Thermodynamics

∆U : Internal energyEnergy associated with the atoms/molecules inside the body of material

For an ideal gas,U = Ethermal = # modes*1/2 kBT

Page 38: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Depend only on what the object is doing at the time.

• Change in state function depends only on start and end points.

• Examples:

T, P, V, modes, bonds, mass, position, KE, PE...

State functions

• Depend on the process.

• Not a property of an object

• Examples:Q, W, learning , ......

Process-dependent

Page 39: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

initial

initial

finalfina

l

P

VV

P

Along any given segment:

W = -PV(if P constant)

OR

= - Area under curve (sign positive when V decreases, sign negative when V increases)

Page 40: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

initial

final

P

V

Is the work done in the process to the right positive or negative?

A) NegativeB) Positive C) Zero D) Impossible to tell.

Page 41: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

initial

final

P

VFirst section: W1 < 0 (volume expands)Second section: W2 = 0 (volume constant)Third section: W3 > 0 (volume contracts)

Page 42: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

initial

finalP

V

Here are two separate processes acting on two different ideal gases.

Which one has a greater magnitude of work? The initial and final points are the same.

initial

finalP

V

A) Magnitude of work in top

process greaterB) Magnitude of work in

lower process greaterC) Both the sameD) Need more info about the

gases.

Work = 0(V=0)

Page 43: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

initial

final

V

P

We can read work directly off this graph(i.e. don’t need to know anything about modes, U,

T, etc.)

If we know something about the gas, we can figure out Ui, Uf and Uf - UiFor an ideal gas,

U = Ethermal = # modes*1/2 kBT

Page 44: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

initial

final

V

P

Page 45: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

5 moles of an ideal monatomic gas has its pressure increased from 105 Pa to 1.5x105 Pa. This process occurs at a constant volume of 0.1 m3. Determine: * work * change in internal energy U * heat involved in this process.

initial

final

P

V

HW: There are twoways to solve this using the ideal gas law…

Page 46: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Heat depends on the process

Work depends on the process

U only depends on initial and final

W = 0 for all constant volume processes

U = 0 for all cycles, where the initial and final states are the same.

Page 47: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Microstates versusStates, and EntropyMicrostates versusStates, and Entropy

Page 48: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

ConstraintsConstraints StatesStatesMicrostatesMicrostates

Things we worry about:

Constraints:

States:

Tell us which microstates are allowed.Examples

•The volume of a box constraints the possible positions of gas atoms.•The energy of the box constraints the possible speeds of gas atoms.

Groups of microstates that share some average properties,i.e. A collection of states that “look” the same macroscopically.

Examplesgases: P ~ average density, V~volume filled, T~average KE

Page 49: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: Flipping a coin 3 times:

Microstates: all possible combinations of coin flips

Constraints: some combinations not possible (e.g. HHTHHH)

MicrostatesStates

States: total number of heads

Every Every microstatemicrostate is equally likely. is equally likely. The state that is most likely is the one with the most is the one with the most

microstatesmicrostates

Prob.

Page 50: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

1024 microstates, each microstate equal width

Define states by “total number of heads”

Different states contain different # of microstates

Therefore even though each microstate is equally likely, some states are more

likely than others.

Page 51: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

We can also consider our physical system to be two “sub-systems”: * Sub-system A: the first two coin flips * Sub-system B: the final eight coin flips

HHHHHTHTTHTHTTTT

Any of the 256 micro.Any of the 256 micro.

Any of the 256 micro.Any of the 256 micro.

Any of the 256 micro.Any of the 256 micro.

Any of the 256 micro.Any of the 256 micro.

Page 52: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

where kB is Boltzman’s constant

If our system is composed of two sub-systems A and B:

We can add the entropy of the subsystems to get the total entropy.

Page 53: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

We should divide our box up into “atom-sized” chuncks. But how

big should our velocity microstates be?

ice (0ice (000 C)C)

Water (0Water (000 C) C)

How can we get a definite answer for the number of

microstates in this system?

Relating entropy to microstates is useful for conceptually understanding what entropy is.

At this level, it is not useful for calculating the change in entropy

Page 54: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

For slow, reversible processes:

initial

final

final P

VS

T

initial

W > 0 when Delta V < 0W < 0 when Delta V > 0

Q > 0 when Delta S > 0Q < 0 when Delta S < 0

Page 55: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

For slow, reversible processes:

To get to entropy we can “turn this expression around”

If temperature is constant, then we can easily integrate:

This last equation is not generally true; as heat enters or leaves a system the temperature often

changes.

(isothermal only!) Q

Page 56: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Equilibrium is the most likely state

• Each microstate is equally likely, so the equilibrium state has the most microstates,

or the greatest entropy.

• Therefore the equilibrium state has the highest entropy.

• For large (i.e. moles of atoms) systems, the system is (essentially) always evolving toward equilibrium. Therefore the total entropy never decreases:

Second law of Thermodynamics

Page 57: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

This is only for total entropy!

iceice(0(000C=273KC=273K

))

air (200C)heat flows this way

Heat entering ice: dQice = Tice dSice > 0 =>Sice increasing Heat leaving air: dQair = Tair dSair < 0 =>Sair decreasing

This is okay, because dStot = dSice + dSair > 0

Page 58: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Physical systems have an equilibrium state (the one with the most microstates, and therefore the highest entropy)

If we wait “long enough” the system will most likely evolve to that equilibrium state. (by the laws of chance)

For large (i.e. moles of atoms) systems, the system is

(essentially) always evolving toward equilibrium.

Therefore the total entropy never decreases:

Second law of Thermodynamics

Page 59: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Tfinal

Energy leaves hot objects in the form of heat Energy enters cold objects in the form of heat

Low temp High temp

We need to determine the process… and the final state of the system.

Page 60: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

TA=150K

Ok, now we have found the equilibrium state.

TB=150K

TA = TB = 150 K

From our daily experience, and the activity in DL, we expect this process to be

irreversible and spontaneous….

How do we calculate the change in entropy?

Page 61: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

AA BB

The two blocks A and B are both made of copper, and have equal masses: ma = mb = 100 grams. The blocks exchange heat with each other, but a negligible amount with the environment.

a) What is the final state of the system?b) What is the change in entropy of block A?c) What is the change in entropy of block B?d) What is the total change in entropy?

(Heat of melting)

Temperature!

Page 62: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

AA BB

Okay, now we have found the equilibrium state.

How do we calculate the change in entropy?

a) What is the final state of the system?b) What is the change in entropy of block A?c) What is the change in entropy of block B?d) What is the total change in entropy?

Page 63: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

In this case Tf = 150 K = Tf,A = Tf,B

Ti,A = 100 K, Ti,B = 200 K

∆Stotal > 0 Irreversible and spontaneous process

∆Stotal = 0 Reversible process

Page 64: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

EnvironmentEnvironment

system

Note: reversible means that

(Ssystem can be +, -, or zero for a reversible process)

Stotal=0 NOT Ssystem=0

• State functions (S,H,U,P,V,T, …) depend only on the initial and final states of the system

• Therefore we can join our initial and final states by anyprocess. Most convenientto use reversible processes.

Page 65: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

For slow, reversible processes:

initial

final

final P

VS

T

initial

W > 0 when Delta V < 0W < 0 when Delta V > 0

Q > 0 when Delta S > 0Q < 0 when Delta S < 0

Rules of thumb, similar to Work case….

Page 66: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Back to the Beginning:

Three Phase Model

Back to the Beginning:

Three Phase Model

Page 67: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Tbp: Temperature at which a pure substance changes phase from liquid to gas (boiling point).• Tmp: Temperature at which a pure substance changes phase from solid to liquid (melting point).

Tbp

Tmp

Page 68: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

You take ice out of the freezer at -300C and place it in a sealed container and slowly heat it on the stove. You would find:

• the temperature of the ice rises,

• remains fixed at 00C for an extended time while it is a mixture of ice and water,

• the temperature rises again after it all melted,

• remains fixed at 1000C for an extended time while it is a mixture of liquid and gas,

• the temperature rises again after it is all gas (steam).

Page 69: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Q How do we change the phase of matter?

How do we change the temperature of matter?

A By adding or removing energy. Often this energy is transferred from, or to, the substance as heat, “Q”.

Example H2O

Page 70: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

The heat capacity, C, of a particular substance is defined as the amount of energy needed to raise the temperature of that sample by 1° C.

If energy (heat, Q) produces a change of temperature, T, then:

Heat capacity depends on the amount of a substance we have, since it will take more energy to change the temperature of a larger quantity of something.

It is thus called an extensive quantity, or dependent upon the quantity/mass of a substance (kg or mole).

Q = C TQ = C T

Page 71: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Heat capacity C – sort of the slope here of A, C, E

Heat of fusion Heat of vaporization

Q

C = Q

ΔT

Page 72: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

The specific heat capacity, often simply called specific heat, is a particular number for a given substance and does not depend on quantity.

Specific heat is thus an intensive property.

The specific heat of water

is one calorie per gram

per degree Celsius.

The specific heat of water

is one calorie per gram

per degree Celsius.

SI units for heat capacity and specific heat:• heat capacity J/K• specific heat J/kg•K, or J/mol•K (molar specific heat)

Page 73: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

In our notation, we always have E = Efinal - Einitial .

E negative: Energy is released from the system. (“Neg. energy added.”)

E positive: Energy is put into the system. Be sure to select the correct sign for all energy transfers!

=> Note also: T is always Tf - Ti .

Page 74: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Conservation of Energy,

Energy Interaction Model

Conservation of Energy,

Energy Interaction Model

Page 75: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Energy is both a thing (quantity) and a process. You & I contain energy, as do the chairs you sit on and the air we breathe. • We cannot see it, but we can measure the transformation of energy (or change, E).

Conservation of EnergyEnergy cannot be created nor destroyed, simply

converted from one form to another.

Conservation of EnergyEnergy cannot be created nor destroyed, simply

converted from one form to another.

• If the energy of an object increases, something else must have given that object its energy.

• If it decreases, it has given its energy to something else.

• A transfer of energy is when one object gives energy to another.There are 2 types of energy transfers -- Heat and Work.

Page 76: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Etherma

l

EbondEmovement

(KE)

Egravit

y

Eelectri

c

Esprin

g

There are many different types of energies called energy systems:

........

For each energy system, there is an indicator that tells us how that energy system can change:

Ethermal: indicator is temperatureEbond: indicator is the initial and final phases

Page 77: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

•Ethermal = C T, Temperature is the indicator.

• Between phase changes, only thermalenergy changes.

• Ebond = |m H|, m is the indicator.

• At a physical phase change, only the bond-energy system changes. H is the heat of the particular phase change. m is the amount that changed phase.

• In a chemical reaction, there are several bond energy changes corresponding to diff. molecular species (reactants or products). Here H is the heat of formation for a particular species.

Etherma

l

Ebond

Page 78: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: Melting IceTi= 0°C Tf = room temperature

Tem

pera

ture

Energy of substance

solid

liquid

gas

l-g coexist

s-l coexist

Initial

TMP

TBP

Final

Page 79: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: Melting IceProcess 1: Ice at T=0ºC Water at T=0ºC

Process 2: Water at T=0ºC Water at room temperatureTem

pera

ture

Energy of substance

solid

liquid

gas

l-g coexist

s-l coexist

Process 1Initial

TMP

TBP

Process 1Final /

Process 2Initial

Process 2Final

Page 80: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: Melting IceProcess 1: Ice at T=0ºC Water at T=0ºC

Ice

∆T=0

∆Eth=0

Initial phase Solid, Final phase Liquid

Etherm

al

Ebond

Heat

Page 81: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: Melting IceProcess 1: Ice at T=0ºC Water at T=0ºC

Ice

∆T=0

∆Eth=0

Initial phase Solid, Final phase Liquid

∆Eth + ∆Ebond= Q+W

∆Ebond= Q

Etherm

al

EbondHeat

Page 82: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: Melting IceProcess 2: Water at T=0ºC Water at room temperature

Ice

Initial phase Liquid, Final phase Liquid

Etherm

al

Ebond

Page 83: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: Melting IceProcess 2: Water at T=0ºC Water at room temperature

Ice

Initial phase Liquid, Final phase Liquid

∆Ebond= 0

Etherm

al

Ebond

T

Heat

∆Eth + ∆Ebond= Q+W

∆Eth= Q

Page 84: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: Melting Ice

Ice

Initial phase Liquid, Final phase Solid

Etherm

al

Ebond

Freezing (Water at T=0°C Ice at T=0°C)

∆T=0

∆Eth=0

Heat

NOTE: Heat is released when bonds are formed! (In general E is negative)

Page 85: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• For a closed system:

(Is it clear why there’s no Q or W for a closed system?)

• For an open system:

(Q and W can be positive or negative, as can Es.)

E total = ΔE1 + ΔE 2 + ΔE 3 + ... = 0

E total = ΔE1 + ΔE 2 + ΔE 3 + ... = Q + W

Page 86: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Mechanical Energy Systems

Mechanical Energy Systems

Page 87: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

EEmovementmovement

(KE)(KE)

EEgravitgravit

yy

(PEg)(PEg)

EEsprinsprin

gg

(PEm-s)(PEm-s)

Rear shock absorber and spring of

BMW R75/5Motorcycle

Page 88: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Kinetic energy is simply Emoving.

• For translational energy, the indicator is speed; the faster an object moves, the more KE it has.

•There is a quantitative relationship between KE and speed. Also, it is proportional to the mass of the object:

• The direction of motion of the object is unimportant.

KEtrans = ½ m v2KEtrans = ½ m v2

Baseball

WorkKEKE

SpeedSpeed

Page 89: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Potential energy due to gravity: Eheight. (There are other

types of PE, such as PE in a spring, or chemical PE.)

• For gravitational PE, the indicator is height; a higher object (with respect to something else) has more PEgravity. Can we show this?

• The quantitative relationship between PE and height:

(gE~10 m/s2 is the acceleration due to gravity on Earth.)

PEgravity = mgEhPEgravity = mgEh

Page 90: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

PEgrav

Height

PEgravity = KE PEgravity = KE

• ∆PEgravity depends on two quantities: the change in vertical distance that the object moved, and the mass of the object.

Crumpled PaperKE

SpeedNote: we are neglecting the friction

mgEh = ½ mv2 mgE(hf

2-hi2) = ½ m(vf

2-vi2)

Page 91: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

1) You throw a ball to the height of the first floor window.2) Now you want to throw a ball to the height of the 4th floor.

Question: How much faster do you need to throw it?

a) 2 times as fastb) Twice as fast• Thrice as fast• 4 times as fast• 16 times as fast

Page 92: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Springs contain energy when you stretch or compress them. We have used them a lot in Physics 7.

• The indicator is how much the spring is stretched or compressed, x, from its equilibrium (rest) state.

• k is a measure of the “stiffness” of the spring, with units [k] = kg/s2.

• x: Much easier to stretch a spring a little bit than a lot!

PEspring = ½ kx2PEspring = ½ kx2

x

Page 93: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Sometimes from the conservation of energy:

• We can also discuss PEmass-spring in terms of conservation of energy:

• (KE = ½ mvf2 – ½ mvi

2 & KE = ½ mxf2 – ½ mxi

2)

PEgravity = KEtranslational

mgh = ½ m v2)

KEtrans = ½ m v2 KEtrans = ½ m v2

PEgravity = Pem-s

mgh = ½ mx2

Page 94: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Displacement from equilibrium y[+][-]

direction of force

y

PEmass-spring

Page 95: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Displacement from equilibrium y[+][-]

PEmass-spring

Equilibrium

Potential Energy curve of a spring:

PE = ½ k (x)2

W (work) = PE = -F║ x

Force ≈ -PE / x ≈ - k x

• Force is always in direction that decreases PE.• Force is related to the slope -- NOT the value of PE.• The steeper the PE vs r graph, the larger the force.

Slope ofPE curveGives Strength of Force

Page 96: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Particle Model of Matter

Particle Model of Matter

Page 97: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

separation

r

Distance between the atoms, r

Equilibrium separation

ro

Po

ten

tial

En

erg

y

As the atom-atom separation increases from equilibrium, force from the potential increases. ~ attracting each other when

they area little distance apart

Page 98: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

This is what is This is what is meant by a “bond” - meant by a “bond” - the particles cannot the particles cannot escape from one escape from one anotheranother

Page 99: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Potential Energy between two atomsPotential Energy between two atoms“pair-wise potential” a.k.a. Lennard-“pair-wise potential” a.k.a. Lennard-

Jones PotentialJones Potential

Potential Energy between two atomsPotential Energy between two atoms“pair-wise potential” a.k.a. Lennard-“pair-wise potential” a.k.a. Lennard-

Jones PotentialJones PotentialEnergy

r (atomic diameters)

r

is the atomic diameter

ro

is the well depth

ro is the equilibrium separation

~ 10-21 J

~ 10-10m = 1Å

Page 100: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• If the atoms in the molecule do not move too far, the forces between them can be modeled as if there were springs between the atoms.

• The potential energy acts similar to that of a simple oscillator.

Page 101: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Example: H2O

What is Ebond in terms of KE and PE of individual atom (atom pair)?

What is Ethermal in terms of KE and PE of individual atom (atom pair)?

Page 102: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Ebond for a substance: amount of energy requiredto break apart “all” the bonds (magnitude only) i.e. we define Ebond = 0 when all the atoms are separated

• The bond energy of a substance comes from adding all the potential energies of particles at their equilibrium positions. Ebond = ∑all pairs(PEpair-wise)

A useful approximation of the above relation is:Ebond~ - (total number of nearest neighbor pairs) x ()

Ebond of the system is negative, determined by:1) the depth of the pair-wise potential well (positive) 2) the number of nearest-neighbors.

Page 103: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

Good Luck on your Final Exam!

Good Luck on your Final Exam!

Page 104: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• Ethermal is the energy associated with the random microscopic motions and vibrations of the particles.

• We increased Ethermal by putting more energy into the system.

• KE and PE keep changing into one another as the atoms vibrate, just like in the mass-spring system, so we cannot make meaningful statements about instantaneous KE and PE.

• We can make statements about average KE and PE.

• Increasing Ethermal increases both KEaverage and PEaverage .

Page 105: Physics 7A – Review Winter 2008 Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu Prof. Robin D. Erbacher 343 Phy/Geo Bldg erbacher@physics.ucdavis.edu

• The energy associated with the randommotion of particles is split between PEoscillation , KE.PEavg = KEavg = ½ Etotal

• For particles in liquids and solids, let’s not forgetthe part that corresponds to Ebond of the system.

• Ebond of the system is determined by both the depth of the pair-wise potential well and the number of nearest neighbors (# NN) .