94
Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ ıas 2015, Benasque, Sep 20 - Oct 02, 2015 2nd Lecture: September 29, 2015 J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 1 / 30

Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Physics of ultrarelativistic heavy-ion collisions

Jean-Philippe LansbergIPNO, Paris-Sud U.

Taller de Altas Energı́as 2015, Benasque, Sep 20 - Oct 02, 20152nd Lecture: September 29, 2015

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 1 / 30

Page 2: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Part I

Reminder

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 2 / 30

Page 3: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2Rγboost

cms c2 thermalisation: equilibrium is reached : t ≤ 1fm/c3 expansion and cooling : t ≤ 10− 15fm/c4 hadronisation5 Chemical freeze-out: the inelastic collisions stop

→ the yields are fixed6 Kinetic freeze-out : the elastic collisions stop

→ the spectra are fixed : t ≤ 3− 5fm/cMeasurement at stage 5 & 6 to learn about stage 3

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 3 / 30

Page 4: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2Rγboost

cms c

2 thermalisation: equilibrium is reached : t ≤ 1fm/c3 expansion and cooling : t ≤ 10− 15fm/c4 hadronisation5 Chemical freeze-out: the inelastic collisions stop

→ the yields are fixed6 Kinetic freeze-out : the elastic collisions stop

→ the spectra are fixed : t ≤ 3− 5fm/cMeasurement at stage 5 & 6 to learn about stage 3

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 3 / 30

Page 5: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2Rγboost

cms c2 thermalisation: equilibrium is reached : t ≤ 1fm/c

3 expansion and cooling : t ≤ 10− 15fm/c4 hadronisation5 Chemical freeze-out: the inelastic collisions stop

→ the yields are fixed6 Kinetic freeze-out : the elastic collisions stop

→ the spectra are fixed : t ≤ 3− 5fm/cMeasurement at stage 5 & 6 to learn about stage 3

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 3 / 30

Page 6: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2Rγboost

cms c2 thermalisation: equilibrium is reached : t ≤ 1fm/c3 expansion and cooling : t ≤ 10− 15fm/c

4 hadronisation5 Chemical freeze-out: the inelastic collisions stop

→ the yields are fixed6 Kinetic freeze-out : the elastic collisions stop

→ the spectra are fixed : t ≤ 3− 5fm/cMeasurement at stage 5 & 6 to learn about stage 3

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 3 / 30

Page 7: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2Rγboost

cms c2 thermalisation: equilibrium is reached : t ≤ 1fm/c3 expansion and cooling : t ≤ 10− 15fm/c4 hadronisation

5 Chemical freeze-out: the inelastic collisions stop→ the yields are fixed

6 Kinetic freeze-out : the elastic collisions stop→ the spectra are fixed : t ≤ 3− 5fm/c

Measurement at stage 5 & 6 to learn about stage 3

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 3 / 30

Page 8: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2Rγboost

cms c2 thermalisation: equilibrium is reached : t ≤ 1fm/c3 expansion and cooling : t ≤ 10− 15fm/c4 hadronisation5 Chemical freeze-out: the inelastic collisions stop

→ the yields are fixed

6 Kinetic freeze-out : the elastic collisions stop→ the spectra are fixed : t ≤ 3− 5fm/c

Measurement at stage 5 & 6 to learn about stage 3

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 3 / 30

Page 9: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2Rγboost

cms c2 thermalisation: equilibrium is reached : t ≤ 1fm/c3 expansion and cooling : t ≤ 10− 15fm/c4 hadronisation5 Chemical freeze-out: the inelastic collisions stop

→ the yields are fixed6 Kinetic freeze-out : the elastic collisions stop

→ the spectra are fixed : t ≤ 3− 5fm/c

Measurement at stage 5 & 6 to learn about stage 3

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 3 / 30

Page 10: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages of a nucleus-nucleus collision

1 initial collision: t ≤ tcoll ' 2Rγboost

cms c2 thermalisation: equilibrium is reached : t ≤ 1fm/c3 expansion and cooling : t ≤ 10− 15fm/c4 hadronisation5 Chemical freeze-out: the inelastic collisions stop

→ the yields are fixed6 Kinetic freeze-out : the elastic collisions stop

→ the spectra are fixed : t ≤ 3− 5fm/cMeasurement at stage 5 & 6 to learn about stage 3

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 3 / 30

Page 11: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Evolution stages: with or without QGP

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 4 / 30

Page 12: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

It is always good to recall some obvious things

Duration: about 10 fm/c (i.e. 3 10−23s)Impossible to throw a probe, simultaneously, in the plasma3-body collisions extremely rare between particlesthe probe should come from the collision itself ...

I would classify them in 3 categories:1 enhancement/creation/emission what’s the initial rate ?2 suppression/dissociation what’s the initial rate ?3 quenching/shift in spectra what’s the initial spectrum ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 5 / 30

Page 13: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

It is always good to recall some obvious things

Duration: about 10 fm/c (i.e. 3 10−23s)Impossible to throw a probe, simultaneously, in the plasma3-body collisions extremely rare between particlesthe probe should come from the collision itself ...

I would classify them in 3 categories:1 enhancement/creation/emission what’s the initial rate ?2 suppression/dissociation what’s the initial rate ?3 quenching/shift in spectra what’s the initial spectrum ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 5 / 30

Page 14: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Part II

How to probe the QGP from the inside

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 6 / 30

Page 15: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Probes to study the QCD phase diagram

Thermal emission: photons (as the black body radiation)

Color screening: quarkonium melting

Chemical equilibrium, ...: strangeness enhancement

Compression effect: azimuthal asymmetry(pressure gradient in the overlapping zone of the colliding nuclei)

Creation of a dense matter: jet quenching, heavy-quark energyloss, ...

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 7 / 30

Page 16: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Probes to study the QCD phase diagram

Thermal emission: photons (as the black body radiation)

Color screening: quarkonium melting

Chemical equilibrium, ...: strangeness enhancement

Compression effect: azimuthal asymmetry(pressure gradient in the overlapping zone of the colliding nuclei)

Creation of a dense matter: jet quenching, heavy-quark energyloss, ...

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 7 / 30

Page 17: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Probes to study the QCD phase diagram

Thermal emission: photons (as the black body radiation)

Color screening: quarkonium melting

Chemical equilibrium, ...: strangeness enhancement

Compression effect: azimuthal asymmetry(pressure gradient in the overlapping zone of the colliding nuclei)

Creation of a dense matter: jet quenching, heavy-quark energyloss, ...

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 7 / 30

Page 18: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Probes to study the QCD phase diagram

Thermal emission: photons (as the black body radiation)

Color screening: quarkonium melting

Chemical equilibrium, ...: strangeness enhancement

Compression effect: azimuthal asymmetry(pressure gradient in the overlapping zone of the colliding nuclei)

Creation of a dense matter: jet quenching, heavy-quark energyloss, ...

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 7 / 30

Page 19: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Probes to study the QCD phase diagram

Thermal emission: photons (as the black body radiation)

Color screening: quarkonium melting

Chemical equilibrium, ...: strangeness enhancement

Compression effect: azimuthal asymmetry(pressure gradient in the overlapping zone of the colliding nuclei)

Creation of a dense matter: jet quenching, heavy-quark energyloss, ...

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 7 / 30

Page 20: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Probes to study the QCD phase diagram

Thermal emission: photons (as the black body radiation)

Color screening: quarkonium melting

Chemical equilibrium, ...: strangeness enhancement

Compression effect: azimuthal asymmetry(pressure gradient in the overlapping zone of the colliding nuclei)

Creation of a dense matter: jet quenching, heavy-quark energyloss, ...

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 7 / 30

Page 21: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Need for proton-proton & proton-nucleus studies

18/67

proton-proton & proton-nucleus proton-proton & proton-nucleus baselinesbaselines

p-p:

p,d-A:

p-p = “QCD vacuum” (reference)

p,d-A = “cold QCD medium” (control)

A-A = “hot & dense QCD matter”

Plasma volume

dialed varying

impact parameter b

(“centrality”)

b

time

A-A:

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 8 / 30

Page 22: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Need for proton-proton & proton-nucleus studies

18/67

proton-proton & proton-nucleus proton-proton & proton-nucleus baselinesbaselines

p-p:

p,d-A:

p-p = “QCD vacuum” (reference)

p,d-A = “cold QCD medium” (control)

A-A = “hot & dense QCD matter”

Plasma volume

dialed varying

impact parameter b

(“centrality”)

b

time

A-A:

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 8 / 30

Page 23: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Need for proton-proton & proton-nucleus studies

18/67

proton-proton & proton-nucleus proton-proton & proton-nucleus baselinesbaselines

p-p:

p,d-A:

p-p = “QCD vacuum” (reference)

p,d-A = “cold QCD medium” (control)

A-A = “hot & dense QCD matter”

Plasma volume

dialed varying

impact parameter b

(“centrality”)

b

time

A-A:

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 8 / 30

Page 24: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Observables: nuclear modification factors

RAB =dNAB

〈Ncoll〉dNpp

∫b→ σAB

ABσpp

For that, we need to know/measure σpp – dNpp

RCP(y) =( dN

dy /〈Ncoll 〉)(dN60−80%

dy /〈N60−80%coll 〉

) (or as a function of pT )

[we could divide by the yield from another centrality bin or even do RPC(y)]

no need of pp reference, but only sensitive on the b dependence

for pA, one can also define RFB(|yCM |) ≡dNpA(yCM )

dNpA(−yCM )=

RpA(yCM )RpA(−yCM )

no need of pp reference, but only sensitive on the y dependenceThe reason to use RAB (or RpA) is that, for a rare/hard probe[σprobe

NN << σinelNN ], the yield per AB collisions is proportional to the

number of NN collisions.For a soft/frequent probe, the yield rather scales like Npart

[production on the surface rather than over the whole nuleus]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 9 / 30

Page 25: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Observables: nuclear modification factors

RAB =dNAB

〈Ncoll〉dNpp

∫b→ σAB

ABσpp

For that, we need to know/measure σpp – dNpp

RCP(y) =( dN

dy /〈Ncoll 〉)(dN60−80%

dy /〈N60−80%coll 〉

) (or as a function of pT )

[we could divide by the yield from another centrality bin or even do RPC(y)]

no need of pp reference, but only sensitive on the b dependence

for pA, one can also define RFB(|yCM |) ≡dNpA(yCM )

dNpA(−yCM )=

RpA(yCM )RpA(−yCM )

no need of pp reference, but only sensitive on the y dependenceThe reason to use RAB (or RpA) is that, for a rare/hard probe[σprobe

NN << σinelNN ], the yield per AB collisions is proportional to the

number of NN collisions.For a soft/frequent probe, the yield rather scales like Npart

[production on the surface rather than over the whole nuleus]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 9 / 30

Page 26: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Observables: nuclear modification factors

RAB =dNAB

〈Ncoll〉dNpp

∫b→ σAB

ABσpp

For that, we need to know/measure σpp – dNpp

RCP(y) =( dN

dy /〈Ncoll 〉)(dN60−80%

dy /〈N60−80%coll 〉

) (or as a function of pT )

[we could divide by the yield from another centrality bin or even do RPC(y)]

no need of pp reference, but only sensitive on the b dependence

for pA, one can also define RFB(|yCM |) ≡dNpA(yCM )

dNpA(−yCM )=

RpA(yCM )RpA(−yCM )

no need of pp reference, but only sensitive on the y dependence

The reason to use RAB (or RpA) is that, for a rare/hard probe[σprobe

NN << σinelNN ], the yield per AB collisions is proportional to the

number of NN collisions.For a soft/frequent probe, the yield rather scales like Npart

[production on the surface rather than over the whole nuleus]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 9 / 30

Page 27: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Observables: nuclear modification factors

RAB =dNAB

〈Ncoll〉dNpp

∫b→ σAB

ABσpp

For that, we need to know/measure σpp – dNpp

RCP(y) =( dN

dy /〈Ncoll 〉)(dN60−80%

dy /〈N60−80%coll 〉

) (or as a function of pT )

[we could divide by the yield from another centrality bin or even do RPC(y)]

no need of pp reference, but only sensitive on the b dependence

for pA, one can also define RFB(|yCM |) ≡dNpA(yCM )

dNpA(−yCM )=

RpA(yCM )RpA(−yCM )

no need of pp reference, but only sensitive on the y dependenceThe reason to use RAB (or RpA) is that, for a rare/hard probe[σprobe

NN << σinelNN ], the yield per AB collisions is proportional to the

number of NN collisions.

For a soft/frequent probe, the yield rather scales like Npart[production on the surface rather than over the whole nuleus]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 9 / 30

Page 28: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Observables: nuclear modification factors

RAB =dNAB

〈Ncoll〉dNpp

∫b→ σAB

ABσpp

For that, we need to know/measure σpp – dNpp

RCP(y) =( dN

dy /〈Ncoll 〉)(dN60−80%

dy /〈N60−80%coll 〉

) (or as a function of pT )

[we could divide by the yield from another centrality bin or even do RPC(y)]

no need of pp reference, but only sensitive on the b dependence

for pA, one can also define RFB(|yCM |) ≡dNpA(yCM )

dNpA(−yCM )=

RpA(yCM )RpA(−yCM )

no need of pp reference, but only sensitive on the y dependenceThe reason to use RAB (or RpA) is that, for a rare/hard probe[σprobe

NN << σinelNN ], the yield per AB collisions is proportional to the

number of NN collisions.For a soft/frequent probe, the yield rather scales like Npart

[production on the surface rather than over the whole nuleus]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 9 / 30

Page 29: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

pp baseline [jets, prompt γ, π, heavy-quarks, . . . ]

45/67TAE2010, Barcelona, 06/09/2010 David d'Enterria (CERN)

RHIC “QCD vacuum” (p-p) references vs. pQCDRHIC “QCD vacuum” (p-p) references vs. pQCD

■ Jets, high-pT hadrons,

prompt-γ, heavy-Q ...

High-quality

measurements

within pT~2-45 GeV/c

■ NLO [1], NLL [2] pQCD

+ recent PDFs, FFs

in good agreement

with all data.

DdE, JPG34 (2007) S53-S81

[1] W. Vogelsang et al.

[2] M. Cacciari et al.

p-p ⇒ X ,√s = 200 GeV

Slid

ebo

rrow

edfro

mD

.d’E

nter

ria

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 10 / 30

Page 30: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Part III

Thermal photons

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 11 / 30

Page 31: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Thermal photon to measure the QGP temperature

60/67TAE2010, Barcelona, 06/09/2010 David d'Enterria (CERN)

Thermal photon radiation = QGP temperatureThermal photon radiation = QGP temperature

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 12 / 30

Page 32: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Thermal photon to measure the QGP temperature

60/67TAE2010, Barcelona, 06/09/2010 David d'Enterria (CERN)

Thermal photon radiation = QGP temperatureThermal photon radiation = QGP temperature

Slid

ebo

rrow

edfro

mD

.d’E

nter

ria

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 12 / 30

Page 33: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Thermal photon to measure the QGP temperature

61/67TAE2010, Barcelona, 06/09/2010 David d'Enterria (CERN)

Thermal photon radiation from QGPThermal photon radiation from QGP

■ Hydrodynamical models vs. Au-Au γ,γ* excess over p-p & pQCD:

<T0>~350 MeV

Au-Au 200 GeV

NLO-pQCD

QGP temperature

■ Initial derived temperatures:

T0=0.3-0.6 GeV well above

latt. QCD Tcrit

~ 0.17-0.19 GeV

D.d'E, D.Peressounko, EPJC46 (2006) 451PHENIX, PRL 104 (2010) 132301

τ0

(GeV/c)T

p1 2 3 4 5 6 7

)3

c-2

(m

b G

eV

3/d

pσ3

) o

r E

d3

c-2

(GeV

3N

/dp

3E

d

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

4104AuAu Min. Bias x10

2AuAu 0-20% x10

AuAu 20-40% x10

p+p

Turbide et al. PRC69

Slid

ebo

rrow

edfro

mD

.d’E

nter

ria

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 13 / 30

Page 34: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Thermal photon to measure the QGP temperature

61/67TAE2010, Barcelona, 06/09/2010 David d'Enterria (CERN)

Thermal photon radiation from QGPThermal photon radiation from QGP

■ Hydrodynamical models vs. Au-Au γ,γ* excess over p-p & pQCD:

<T0>~350 MeV

Au-Au 200 GeV

NLO-pQCD

QGP temperature

■ Initial derived temperatures:

T0=0.3-0.6 GeV well above

latt. QCD Tcrit

~ 0.17-0.19 GeV

D.d'E, D.Peressounko, EPJC46 (2006) 451PHENIX, PRL 104 (2010) 132301

τ0

Slid

ebo

rrow

edfro

mD

.d’E

nter

ria

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 13 / 30

Page 35: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Part IV

Hard probes: Heavy-flavour,heavy-quarkonia and jets

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 14 / 30

Page 36: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Hard probes

44/67TAE2010, Barcelona, 06/09/2010 David d'Enterria (CERN)

Hard “tomographic” probes of QCD matterHard “tomographic” probes of QCD matter

■ Hard-probes of QCD matter:

♦ jets, γ, QQ ... well controlled experimentally & theoretically (pQCD)

♦ self-generated in collision at τ<1/Q~0.1 fm/c,

♦ tomographic probes of hottest

& densest phases of medium .

Z,

QCD probe in

QCD medium

(possible quark-gluon plasma)

Modification?

QCD probe out

_

Slid

ebo

rrow

edfro

mD

.d’E

nter

ria

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 15 / 30

Page 37: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Heavy-flavourKey points:

Conserved quantity (negligible thermal creation and late weak decay)Produced at early timesInteraction with nuclear/QGP matter might be tractable with pQCDAbundance (mainly at low PT ) :

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 16 / 30

Page 38: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Heavy-flavourKey points:

Conserved quantity (negligible thermal creation and late weak decay)

Produced at early timesInteraction with nuclear/QGP matter might be tractable with pQCDAbundance (mainly at low PT ) :

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 16 / 30

Page 39: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Heavy-flavourKey points:

Conserved quantity (negligible thermal creation and late weak decay)Produced at early times

Interaction with nuclear/QGP matter might be tractable with pQCDAbundance (mainly at low PT ) :

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 16 / 30

Page 40: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Heavy-flavourKey points:

Conserved quantity (negligible thermal creation and late weak decay)Produced at early timesInteraction with nuclear/QGP matter might be tractable with pQCD

Abundance (mainly at low PT ) :

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 16 / 30

Page 41: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Heavy-flavourKey points:

Conserved quantity (negligible thermal creation and late weak decay)Produced at early timesInteraction with nuclear/QGP matter might be tractable with pQCDAbundance (mainly at low PT ) :

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 16 / 30

Page 42: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Quarkonia (QQ̄) in the QGP

Two families:

= PC

J− +0 − −1 + +0 + +1+ −1 + +2

(2S) c

η

(1S) c

η

(2S)ψ

(4660)X

(4360)X

(4260)X

(4415)ψ

(4160)ψ

(4040)ψ

(3770)ψ

(1S) ψ/J

(1P) c

h

(1P) c2

χ

(2P) c2

χ(3872)X

?)­+

(2

(1P) c1

χ

(1P) c0

χ

π π

η

π πη

π π

π π

π π

π π

Thresholds:

DD

*D D

sD sD

*D*D

sD*sD

*sD*sD

2900

3100

3300

3500

3700

3900

4100

4300

4500

4700

Mass (MeV)

= PC

J− +0 − −1 + −1 + +0 + +1 + +2 − −2

(1S) b

η

(2S) b

η

(3S) b

η

(11020)ϒ

(10860)ϒ

(4S)ϒ

(3S)ϒ

(2S)ϒ

(1S)ϒ

(2P)bh

(1P)bh(1P)

b0χ

(1P) b1

χ (1P) b2

χ

(3P) b

χ

(2P) b0

χ (2P) b1

χ (2P) b2

χ

)2D3

(1 ϒ

BB

*B*B

sBsB

Thresholds:

η

ππ

ππππ

ππ

KK

ππ

ππ

ππ ππ

ππ

η

ππ ππωπ π

9300

9500

9700

9900

10100

10300

10500

10700

10900

11100

Mass (MeV)

Expected to melt in the QGP by Debye screeeningMatsui, Satz 1986

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 17 / 30

Page 43: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Quarkonia (QQ̄) in the QGP

Two families:

Expected to melt in the QGP by Debye screeeningMatsui, Satz 1986

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 17 / 30

Page 44: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Quarkonia (QQ̄) in the QGP

Two families:

Expected to melt in the QGP by Debye screeeningMatsui, Satz 1986

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 17 / 30

Page 45: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Quarkonia: the QGP thermometer

Different melting/dissociation (Td ) temperatures: depend on the size

the observation of a sequential melting (directly or via feed-down)could be used as a thermometer of the GQP

J/

J/

ψ

ψ

ψ χ

χ

c

c

ψ ’

T < Tc

ψΤ < Τ < Τ χ

J/

J/

ψ

ψ

ψ χ

χ

c

c

ψ ’

Τ > Τ

Τ < Τ < Τ ψχ

ψ

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 18 / 30

Page 46: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Quarkonia: the QGP thermometer

Different melting/dissociation (Td ) temperatures: depend on the size

the observation of a sequential melting (directly or via feed-down)could be used as a thermometer of the GQP

J/

J/

ψ

ψ

ψ χ

χ

c

c

ψ ’

T < Tc

ψΤ < Τ < Τ χ

J/

J/

ψ

ψ

ψ χ

χ

c

c

ψ ’

Τ > Τ

Τ < Τ < Τ ψχ

ψ

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 18 / 30

Page 47: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Quarkonia: the QGP thermometer

Different melting/dissociation (Td ) temperatures: depend on the size

the observation of a sequential melting (directly or via feed-down)could be used as a thermometer of the GQP

J/

J/

ψ

ψ

ψ χ

χ

c

c

ψ ’

T < Tc

ψΤ < Τ < Τ χ

J/

J/

ψ

ψ

ψ χ

χ

c

c

ψ ’

Τ > Τ

Τ < Τ < Τ ψχ

ψ

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 18 / 30

Page 48: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Quarkonia: LHC results

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 19 / 30

Page 49: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Part V

Some complications from “cold” nuclearmatter effects

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 20 / 30

Page 50: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Expected nuclear effects on (involved in) quarkoniumproduction in proton-nucleus collisions

Nuclear modification of the parton densities, nPDF: initial-state effect

Energy loss (w.r.t to pp collisions): initial-state or final-state effectBreak up of the meson in the nuclear matter: final-state effectBreak up by comoving particles: final-state effectColour filtering of intrinsic QQ pairs: initial-state effect. . .

I will not speak about any QGP-like effect in pA collisions here

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 21 / 30

Page 51: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Expected nuclear effects on (involved in) quarkoniumproduction in proton-nucleus collisions

Nuclear modification of the parton densities, nPDF: initial-state effectEnergy loss (w.r.t to pp collisions): initial-state or final-state effect

Break up of the meson in the nuclear matter: final-state effectBreak up by comoving particles: final-state effectColour filtering of intrinsic QQ pairs: initial-state effect. . .

I will not speak about any QGP-like effect in pA collisions here

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 21 / 30

Page 52: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Expected nuclear effects on (involved in) quarkoniumproduction in proton-nucleus collisions

Nuclear modification of the parton densities, nPDF: initial-state effectEnergy loss (w.r.t to pp collisions): initial-state or final-state effectBreak up of the meson in the nuclear matter: final-state effect

Break up by comoving particles: final-state effectColour filtering of intrinsic QQ pairs: initial-state effect. . .

I will not speak about any QGP-like effect in pA collisions here

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 21 / 30

Page 53: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Expected nuclear effects on (involved in) quarkoniumproduction in proton-nucleus collisions

Nuclear modification of the parton densities, nPDF: initial-state effectEnergy loss (w.r.t to pp collisions): initial-state or final-state effectBreak up of the meson in the nuclear matter: final-state effectBreak up by comoving particles: final-state effect

Colour filtering of intrinsic QQ pairs: initial-state effect. . .

I will not speak about any QGP-like effect in pA collisions here

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 21 / 30

Page 54: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Expected nuclear effects on (involved in) quarkoniumproduction in proton-nucleus collisions

Nuclear modification of the parton densities, nPDF: initial-state effectEnergy loss (w.r.t to pp collisions): initial-state or final-state effectBreak up of the meson in the nuclear matter: final-state effectBreak up by comoving particles: final-state effectColour filtering of intrinsic QQ pairs: initial-state effect

. . .

I will not speak about any QGP-like effect in pA collisions here

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 21 / 30

Page 55: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Expected nuclear effects on (involved in) quarkoniumproduction in proton-nucleus collisions

Nuclear modification of the parton densities, nPDF: initial-state effectEnergy loss (w.r.t to pp collisions): initial-state or final-state effectBreak up of the meson in the nuclear matter: final-state effectBreak up by comoving particles: final-state effectColour filtering of intrinsic QQ pairs: initial-state effect. . .

I will not speak about any QGP-like effect in pA collisions here

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 21 / 30

Page 56: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Expected nuclear effects on (involved in) quarkoniumproduction in proton-nucleus collisions

Nuclear modification of the parton densities, nPDF: initial-state effectEnergy loss (w.r.t to pp collisions): initial-state or final-state effectBreak up of the meson in the nuclear matter: final-state effectBreak up by comoving particles: final-state effectColour filtering of intrinsic QQ pairs: initial-state effect. . .

I will not speak about any QGP-like effect in pA collisions here

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 21 / 30

Page 57: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Typical gluon nuclear PDFs

0.25

0.5

0.75

1

1.25

1.5

0.0001 0.001 0.01 0.1 1

RgP

b(x

,µR

)

x

µR=mJ/ψ

EPS09LO envelope EPS09LO: central EPS09LO: min. EMC EPS09LO: max. EMC EPS09LO: max. shad.EPS09LO: min. shad.

nDSg

4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7),(iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)

For the gluons, only the shadowing depletion is established although itsmagnitude is still discussed

The gluon antishadowing not yet observed although used in many studies;absent in some nPDF fit

The gluon EMC effect is even less known, hence the uncertainty there

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 22 / 30

Page 58: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Typical gluon nuclear PDFs

0.25

0.5

0.75

1

1.25

1.5

0.0001 0.001 0.01 0.1 1

RgP

b(x

,µR

)

x

µR=mJ/ψ

EPS09LO envelope EPS09LO: central EPS09LO: min. EMC EPS09LO: max. EMC EPS09LO: max. shad.EPS09LO: min. shad.

nDSg

4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7),(iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)

For the gluons, only the shadowing depletion is established although itsmagnitude is still discussed

The gluon antishadowing not yet observed although used in many studies;absent in some nPDF fit

The gluon EMC effect is even less known, hence the uncertainty there

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 22 / 30

Page 59: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Typical gluon nuclear PDFs

0.25

0.5

0.75

1

1.25

1.5

0.0001 0.001 0.01 0.1 1

RgP

b(x

,µR

)

x

µR=mJ/ψ

EPS09LO envelope EPS09LO: central EPS09LO: min. EMC EPS09LO: max. EMC EPS09LO: max. shad.EPS09LO: min. shad.

nDSg

4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7),(iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)

For the gluons, only the shadowing depletion is established although itsmagnitude is still discussed

The gluon antishadowing not yet observed although used in many studies;absent in some nPDF fit

The gluon EMC effect is even less known, hence the uncertainty there

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 22 / 30

Page 60: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Typical gluon nuclear PDFs

0.25

0.5

0.75

1

1.25

1.5

0.0001 0.001 0.01 0.1 1

RgP

b(x

,µR

)

x

µR=mJ/ψ

EPS09LO envelope EPS09LO: central EPS09LO: min. EMC EPS09LO: max. EMC EPS09LO: max. shad.EPS09LO: min. shad.

nDSg

4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7),(iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)

For the gluons, only the shadowing depletion is established although itsmagnitude is still discussed

The gluon antishadowing not yet observed although used in many studies;absent in some nPDF fit

The gluon EMC effect is even less known, hence the uncertainty there

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 22 / 30

Page 61: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Typical gluon nuclear PDFs

0.25

0.5

0.75

1

1.25

1.5

0.0001 0.001 0.01 0.1 1

RgP

b(x

,µR

)

x

µR=mJ/ψ

EPS09LO envelope EPS09LO: central EPS09LO: min. EMC EPS09LO: max. EMC EPS09LO: max. shad.EPS09LO: min. shad.

nDSg

4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7),(iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)

For the gluons, only the shadowing depletion is established although itsmagnitude is still discussed

The gluon antishadowing not yet observed although used in many studies;absent in some nPDF fit

The gluon EMC effect is even less known, hence the uncertainty there

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 22 / 30

Page 62: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Generalities on the quarkonium break-up cross section

As aforementionned: σbreak−up ∝ r2meson

2S (and 3S states for Υ) should be more suppressed

. . . provided that what propagates in the nucleus is already formed: τf . L

Heisenberg inequalities tell us: τoniaf ' 0.3÷ 0.4 fm/c

[in the meson rest frame obviously]

At RHIC (200 GeV), for a particle with y = 0,γ = Ebeam,cms/mN ' 107 ! [= cosh(ybeam) = 5.36]It takes 30 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

At the LHC (5 TeV), still for a particle with y = 0,γ = Ebeam,cms/mN ' 2660 ! [= cosh(ybeam) = 8.58]It takes 800-1000 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

Naive high energy limit: σbreak−up ' π/m2Q ? ' 0.5 mb for charmonia ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 23 / 30

Page 63: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Generalities on the quarkonium break-up cross section

As aforementionned: σbreak−up ∝ r2meson

2S (and 3S states for Υ) should be more suppressed

. . . provided that what propagates in the nucleus is already formed: τf . L

Heisenberg inequalities tell us: τoniaf ' 0.3÷ 0.4 fm/c

[in the meson rest frame obviously]

At RHIC (200 GeV), for a particle with y = 0,γ = Ebeam,cms/mN ' 107 ! [= cosh(ybeam) = 5.36]It takes 30 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

At the LHC (5 TeV), still for a particle with y = 0,γ = Ebeam,cms/mN ' 2660 ! [= cosh(ybeam) = 8.58]It takes 800-1000 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

Naive high energy limit: σbreak−up ' π/m2Q ? ' 0.5 mb for charmonia ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 23 / 30

Page 64: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Generalities on the quarkonium break-up cross section

As aforementionned: σbreak−up ∝ r2meson

2S (and 3S states for Υ) should be more suppressed

. . . provided that what propagates in the nucleus is already formed: τf . L

Heisenberg inequalities tell us: τoniaf ' 0.3÷ 0.4 fm/c

[in the meson rest frame obviously]

At RHIC (200 GeV), for a particle with y = 0,γ = Ebeam,cms/mN ' 107 ! [= cosh(ybeam) = 5.36]It takes 30 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

At the LHC (5 TeV), still for a particle with y = 0,γ = Ebeam,cms/mN ' 2660 ! [= cosh(ybeam) = 8.58]It takes 800-1000 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

Naive high energy limit: σbreak−up ' π/m2Q ? ' 0.5 mb for charmonia ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 23 / 30

Page 65: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Generalities on the quarkonium break-up cross section

As aforementionned: σbreak−up ∝ r2meson

2S (and 3S states for Υ) should be more suppressed

. . . provided that what propagates in the nucleus is already formed: τf . L

Heisenberg inequalities tell us: τoniaf ' 0.3÷ 0.4 fm/c

[in the meson rest frame obviously]

At RHIC (200 GeV), for a particle with y = 0,γ = Ebeam,cms/mN ' 107 ! [= cosh(ybeam) = 5.36]It takes 30 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

At the LHC (5 TeV), still for a particle with y = 0,γ = Ebeam,cms/mN ' 2660 ! [= cosh(ybeam) = 8.58]It takes 800-1000 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

Naive high energy limit: σbreak−up ' π/m2Q ? ' 0.5 mb for charmonia ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 23 / 30

Page 66: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Generalities on the quarkonium break-up cross section

As aforementionned: σbreak−up ∝ r2meson

2S (and 3S states for Υ) should be more suppressed

. . . provided that what propagates in the nucleus is already formed: τf . L

Heisenberg inequalities tell us: τoniaf ' 0.3÷ 0.4 fm/c

[in the meson rest frame obviously]

At RHIC (200 GeV), for a particle with y = 0,γ = Ebeam,cms/mN ' 107 ! [= cosh(ybeam) = 5.36]It takes 30 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

At the LHC (5 TeV), still for a particle with y = 0,γ = Ebeam,cms/mN ' 2660 ! [= cosh(ybeam) = 8.58]It takes 800-1000 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

Naive high energy limit: σbreak−up ' π/m2Q ? ' 0.5 mb for charmonia ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 23 / 30

Page 67: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Generalities on the quarkonium break-up cross section

As aforementionned: σbreak−up ∝ r2meson

2S (and 3S states for Υ) should be more suppressed

. . . provided that what propagates in the nucleus is already formed: τf . L

Heisenberg inequalities tell us: τoniaf ' 0.3÷ 0.4 fm/c

[in the meson rest frame obviously]

At RHIC (200 GeV), for a particle with y = 0,γ = Ebeam,cms/mN ' 107 ! [= cosh(ybeam) = 5.36]It takes 30 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

At the LHC (5 TeV), still for a particle with y = 0,γ = Ebeam,cms/mN ' 2660 ! [= cosh(ybeam) = 8.58]It takes 800-1000 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

Naive high energy limit: σbreak−up ' π/m2Q ? ' 0.5 mb for charmonia ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 23 / 30

Page 68: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Generalities on the quarkonium break-up cross section

As aforementionned: σbreak−up ∝ r2meson

2S (and 3S states for Υ) should be more suppressed

. . . provided that what propagates in the nucleus is already formed: τf . L

Heisenberg inequalities tell us: τoniaf ' 0.3÷ 0.4 fm/c

[in the meson rest frame obviously]

At RHIC (200 GeV), for a particle with y = 0,γ = Ebeam,cms/mN ' 107 ! [= cosh(ybeam) = 5.36]It takes 30 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

At the LHC (5 TeV), still for a particle with y = 0,γ = Ebeam,cms/mN ' 2660 ! [= cosh(ybeam) = 8.58]It takes 800-1000 fm/c for a quarkonium to form and to becomedistinguishable from its excited states

Naive high energy limit: σbreak−up ' π/m2Q ? ' 0.5 mb for charmonia ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 23 / 30

Page 69: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Baseline: absorption and nPDFs in a collinear pQCD frameworkSee e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50

Parton densities in nuclei are modified (EMC effect);Mesons may scatter inelastically with nucleons in the nuclear matter;If the meson is formed, this should be described by σbreak−up ∝ r2

meson

Any differential cross section can then be obtained from the partonic one:

dσpA→QX

dy dPT d~b=∫

dx1dx2g(x1, µf )∫

dzAFAg (x2,~b, zB , µf )J

dσgg→Q+g

dt̂SA(~b, zA)

dσgg→Q+g

dt̂from any pQCD-like production model

the survival probability for a QQ produced at the point (~rA, zA) to pass through the’target’ unscathed can parametrised as

SA(~rA, zA) = exp(−A σbreak−up

∫ ∞

zA

dz̃ ρA(~rA, z̃))

the nuclear PDF (+ b dependence), FAg (x1,~rA, zA, µf ), assumed to be factorisable

in terms of the nucleon PDFs : S.R. Klein, R. Vogt, PRL 91 (2003) 142301.

FAg (x1,~rA, zA; µf ) = ρA(~rA, zA)×g(x1; µf )×(1 + [RA

g (x , µf )− 1]NρA

∫dz ρA(~rA, z)∫dz ρA(0, z)

)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 24 / 30

Page 70: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Baseline: absorption and nPDFs in a collinear pQCD frameworkSee e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50

Parton densities in nuclei are modified (EMC effect);

Mesons may scatter inelastically with nucleons in the nuclear matter;If the meson is formed, this should be described by σbreak−up ∝ r2

meson

Any differential cross section can then be obtained from the partonic one:

dσpA→QX

dy dPT d~b=∫

dx1dx2g(x1, µf )∫

dzAFAg (x2,~b, zB , µf )J

dσgg→Q+g

dt̂SA(~b, zA)

dσgg→Q+g

dt̂from any pQCD-like production model

the survival probability for a QQ produced at the point (~rA, zA) to pass through the’target’ unscathed can parametrised as

SA(~rA, zA) = exp(−A σbreak−up

∫ ∞

zA

dz̃ ρA(~rA, z̃))

the nuclear PDF (+ b dependence), FAg (x1,~rA, zA, µf ), assumed to be factorisable

in terms of the nucleon PDFs : S.R. Klein, R. Vogt, PRL 91 (2003) 142301.

FAg (x1,~rA, zA; µf ) = ρA(~rA, zA)×g(x1; µf )×(1 + [RA

g (x , µf )− 1]NρA

∫dz ρA(~rA, z)∫dz ρA(0, z)

)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 24 / 30

Page 71: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Baseline: absorption and nPDFs in a collinear pQCD frameworkSee e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50

Parton densities in nuclei are modified (EMC effect);Mesons may scatter inelastically with nucleons in the nuclear matter;

If the meson is formed, this should be described by σbreak−up ∝ r2meson

Any differential cross section can then be obtained from the partonic one:

dσpA→QX

dy dPT d~b=∫

dx1dx2g(x1, µf )∫

dzAFAg (x2,~b, zB , µf )J

dσgg→Q+g

dt̂SA(~b, zA)

dσgg→Q+g

dt̂from any pQCD-like production model

the survival probability for a QQ produced at the point (~rA, zA) to pass through the’target’ unscathed can parametrised as

SA(~rA, zA) = exp(−A σbreak−up

∫ ∞

zA

dz̃ ρA(~rA, z̃))

the nuclear PDF (+ b dependence), FAg (x1,~rA, zA, µf ), assumed to be factorisable

in terms of the nucleon PDFs : S.R. Klein, R. Vogt, PRL 91 (2003) 142301.

FAg (x1,~rA, zA; µf ) = ρA(~rA, zA)×g(x1; µf )×(1 + [RA

g (x , µf )− 1]NρA

∫dz ρA(~rA, z)∫dz ρA(0, z)

)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 24 / 30

Page 72: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Baseline: absorption and nPDFs in a collinear pQCD frameworkSee e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50

Parton densities in nuclei are modified (EMC effect);Mesons may scatter inelastically with nucleons in the nuclear matter;If the meson is formed, this should be described by σbreak−up ∝ r2

meson

Any differential cross section can then be obtained from the partonic one:

dσpA→QX

dy dPT d~b=∫

dx1dx2g(x1, µf )∫

dzAFAg (x2,~b, zB , µf )J

dσgg→Q+g

dt̂SA(~b, zA)

dσgg→Q+g

dt̂from any pQCD-like production model

the survival probability for a QQ produced at the point (~rA, zA) to pass through the’target’ unscathed can parametrised as

SA(~rA, zA) = exp(−A σbreak−up

∫ ∞

zA

dz̃ ρA(~rA, z̃))

the nuclear PDF (+ b dependence), FAg (x1,~rA, zA, µf ), assumed to be factorisable

in terms of the nucleon PDFs : S.R. Klein, R. Vogt, PRL 91 (2003) 142301.

FAg (x1,~rA, zA; µf ) = ρA(~rA, zA)×g(x1; µf )×(1 + [RA

g (x , µf )− 1]NρA

∫dz ρA(~rA, z)∫dz ρA(0, z)

)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 24 / 30

Page 73: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Baseline: absorption and nPDFs in a collinear pQCD frameworkSee e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50

Parton densities in nuclei are modified (EMC effect);Mesons may scatter inelastically with nucleons in the nuclear matter;If the meson is formed, this should be described by σbreak−up ∝ r2

meson

Any differential cross section can then be obtained from the partonic one:

dσpA→QX

dy dPT d~b=∫

dx1dx2g(x1, µf )∫

dzAFAg (x2,~b, zB , µf )J

dσgg→Q+g

dt̂SA(~b, zA)

dσgg→Q+g

dt̂from any pQCD-like production model

the survival probability for a QQ produced at the point (~rA, zA) to pass through the’target’ unscathed can parametrised as

SA(~rA, zA) = exp(−A σbreak−up

∫ ∞

zA

dz̃ ρA(~rA, z̃))

the nuclear PDF (+ b dependence), FAg (x1,~rA, zA, µf ), assumed to be factorisable

in terms of the nucleon PDFs : S.R. Klein, R. Vogt, PRL 91 (2003) 142301.

FAg (x1,~rA, zA; µf ) = ρA(~rA, zA)×g(x1; µf )×(1 + [RA

g (x , µf )− 1]NρA

∫dz ρA(~rA, z)∫dz ρA(0, z)

)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 24 / 30

Page 74: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Baseline: absorption and nPDFs in a collinear pQCD frameworkSee e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50

Parton densities in nuclei are modified (EMC effect);Mesons may scatter inelastically with nucleons in the nuclear matter;If the meson is formed, this should be described by σbreak−up ∝ r2

meson

Any differential cross section can then be obtained from the partonic one:

dσpA→QX

dy dPT d~b=∫

dx1dx2g(x1, µf )∫

dzAFAg (x2,~b, zB , µf )J

dσgg→Q+g

dt̂SA(~b, zA)

dσgg→Q+g

dt̂from any pQCD-like production model

the survival probability for a QQ produced at the point (~rA, zA) to pass through the’target’ unscathed can parametrised as

SA(~rA, zA) = exp(−A σbreak−up

∫ ∞

zA

dz̃ ρA(~rA, z̃))

the nuclear PDF (+ b dependence), FAg (x1,~rA, zA, µf ), assumed to be factorisable

in terms of the nucleon PDFs : S.R. Klein, R. Vogt, PRL 91 (2003) 142301.

FAg (x1,~rA, zA; µf ) = ρA(~rA, zA)×g(x1; µf )×(1 + [RA

g (x , µf )− 1]NρA

∫dz ρA(~rA, z)∫dz ρA(0, z)

)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 24 / 30

Page 75: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Baseline: absorption and nPDFs in a collinear pQCD frameworkSee e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50

Parton densities in nuclei are modified (EMC effect);Mesons may scatter inelastically with nucleons in the nuclear matter;If the meson is formed, this should be described by σbreak−up ∝ r2

meson

Any differential cross section can then be obtained from the partonic one:

dσpA→QX

dy dPT d~b=∫

dx1dx2g(x1, µf )∫

dzAFAg (x2,~b, zB , µf )J

dσgg→Q+g

dt̂SA(~b, zA)

dσgg→Q+g

dt̂from any pQCD-like production model

the survival probability for a QQ produced at the point (~rA, zA) to pass through the’target’ unscathed can parametrised as

SA(~rA, zA) = exp(−A σbreak−up

∫ ∞

zA

dz̃ ρA(~rA, z̃))

the nuclear PDF (+ b dependence), FAg (x1,~rA, zA, µf ), assumed to be factorisable

in terms of the nucleon PDFs : S.R. Klein, R. Vogt, PRL 91 (2003) 142301.

FAg (x1,~rA, zA; µf ) = ρA(~rA, zA)×g(x1; µf )×(1 + [RA

g (x , µf )− 1]NρA

∫dz ρA(~rA, z)∫dz ρA(0, z)

)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 24 / 30

Page 76: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

J/ψ suppression

: energy independent ?

Plot from the Sapore Gravis Network review: arXiv:1506.03981

y-3 -2 -1 0 1 2 3

Nuc

lear

mod

ifica

tion

fact

or

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ψRHIC, inclusive J/

SAT - Fujii et al.COH.ELOSS - Arleo et al.CEM EPS09 NLO - Vogt KPS - Kopeliovich et al.EXT EKS98 LO - Ferreiro et al.EXT EKS98 LO ABS - Ferreiro et al.

=200 GeVNN

sd-Au

y-4 -2 0 2 4

Nuc

lear

mod

ifica

tion

fact

or

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ψALICE, inclusive J/

ψLHCb, prompt J/

=5.02 TeVNN

sp-Pb

EXT EPS09 LO - Ferreiro et al.

Most models – except maybe the Eloss without shadowing predictedan increase of the suppression

Now . . . –although they were done with care– the LHC results rely on a ppcross section interpolation

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 25 / 30

Page 77: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

J/ψ suppression: energy independent ?Plot from the Sapore Gravis Network review: arXiv:1506.03981

y-3 -2 -1 0 1 2 3

Nuc

lear

mod

ifica

tion

fact

or

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ψRHIC, inclusive J/

SAT - Fujii et al.COH.ELOSS - Arleo et al.CEM EPS09 NLO - Vogt KPS - Kopeliovich et al.EXT EKS98 LO - Ferreiro et al.EXT EKS98 LO ABS - Ferreiro et al.

=200 GeVNN

sd-Au

y-4 -2 0 2 4

Nuc

lear

mod

ifica

tion

fact

or

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ψALICE, inclusive J/

ψLHCb, prompt J/

=5.02 TeVNN

sp-Pb

EXT EPS09 LO - Ferreiro et al.

Most models – except maybe the Eloss without shadowing predictedan increase of the suppression

Now . . . –although they were done with care– the LHC results rely on a ppcross section interpolation

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 25 / 30

Page 78: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

A puzzle with excited states ?

CMS PRL 109 222301 (2012), JHEP04(2014)103

Observation of Sequential ! Suppression in PbPb Collisions

S. Chatrchyan et al.*

(CMS Collaboration)

PRL 109, 222301 (2012)

Selected for a Viewpoint in Physics

PHY S I CA L R EV I EW LE T T E R Sweek ending

30 NOVEMBER 2012

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

200

400

600

800

1000

1200

1400 = 5.02 TeVNNsCMS pPb

-1L = 31 nb

datatotal fitbackground

| < 1.93CM

µη| > 4 GeV/cµ

Tp

In addition to QGP formation, differences between quarkonium production yields inPbPb and pp collisions can also arise from cold-nuclear-matter effects [21].However, such effects should have a small impact on the double ratios reportedhere. Initial-state nuclear effects are expected to affect similarly each of the three Υstates, thereby canceling out in the ratio. Final-state “nuclear absorption” becomesweaker with increasing energy [22] and is expected to be negligible at the LHC [23].

[Υ(nS)/Υ(1S)]ij[Υ(nS)/Υ(1S)]pp

2S 3S

PbPb 0.21± 0.07 (stat.)± 0.02 (syst.) 0.06± 0.06 (stat.)± 0.06 (syst.)

pPb 0.83± 0.05 (stat.)± 0.05 (syst.) 0.71± 0.08 (stat.)± 0.09 (syst.)

If the effects responsible for the relative nS/1S suppression in pPb collisionsfactorise, they could be responsible for half of the PbPb relative suppression !!!

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 26 / 30

Page 79: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

A puzzle with excited states ? CMS PRL 109 222301 (2012), JHEP04(2014)103

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

100

200

300

400

500

600

700

800 = 2.76 TeVsCMS pp

-1L = 5.4 pb

datatotal fitbackground

| < 1.93µCM

η| > 4 GeV/cµ

Tp

]2) [GeV/c-µ+µMass(7 8 9 10 11 12 13 14

)2Ev

ents

/ ( 0

.1 G

eV/c

0

100

200

300

400

500

600

700

800 = 2.76 TeVNNsCMS PbPb

Cent. 0-100%, |y| < 2.4 > 4 GeV/cµ

Tp

-1bµ = 150 intL

datatotal fitbackground

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

200

400

600

800

1000

1200

1400 = 5.02 TeVNNsCMS pPb

-1L = 31 nb

datatotal fitbackground

| < 1.93CM

µη| > 4 GeV/cµ

Tp

In addition to QGP formation, differences between quarkonium production yields inPbPb and pp collisions can also arise from cold-nuclear-matter effects [21].However, such effects should have a small impact on the double ratios reportedhere. Initial-state nuclear effects are expected to affect similarly each of the three Υstates, thereby canceling out in the ratio. Final-state “nuclear absorption” becomesweaker with increasing energy [22] and is expected to be negligible at the LHC [23].

[Υ(nS)/Υ(1S)]ij[Υ(nS)/Υ(1S)]pp

2S 3S

PbPb 0.21± 0.07 (stat.)± 0.02 (syst.) 0.06± 0.06 (stat.)± 0.06 (syst.)

pPb 0.83± 0.05 (stat.)± 0.05 (syst.) 0.71± 0.08 (stat.)± 0.09 (syst.)

If the effects responsible for the relative nS/1S suppression in pPb collisionsfactorise, they could be responsible for half of the PbPb relative suppression !!!

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 26 / 30

Page 80: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

A puzzle with excited states ? CMS PRL 109 222301 (2012), JHEP04(2014)103

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

100

200

300

400

500

600

700

800 = 2.76 TeVsCMS pp

-1L = 5.4 pb

datatotal fitbackground

| < 1.93µCM

η| > 4 GeV/cµ

Tp

]2) [GeV/c-µ+µMass(7 8 9 10 11 12 13 14

)2Ev

ents

/ ( 0

.1 G

eV/c

0

100

200

300

400

500

600

700

800 = 2.76 TeVNNsCMS PbPb

Cent. 0-100%, |y| < 2.4 > 4 GeV/cµ

Tp

-1bµ = 150 intL

datatotal fitbackground

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

200

400

600

800

1000

1200

1400 = 5.02 TeVNNsCMS pPb

-1L = 31 nb

datatotal fitbackground

| < 1.93CM

µη| > 4 GeV/cµ

Tp

In addition to QGP formation, differences between quarkonium production yields inPbPb and pp collisions can also arise from cold-nuclear-matter effects [21].However, such effects should have a small impact on the double ratios reportedhere. Initial-state nuclear effects are expected to affect similarly each of the three Υstates, thereby canceling out in the ratio. Final-state “nuclear absorption” becomesweaker with increasing energy [22] and is expected to be negligible at the LHC [23].

[Υ(nS)/Υ(1S)]ij[Υ(nS)/Υ(1S)]pp

2S 3S

PbPb 0.21± 0.07 (stat.)± 0.02 (syst.) 0.06± 0.06 (stat.)± 0.06 (syst.)

pPb 0.83± 0.05 (stat.)± 0.05 (syst.) 0.71± 0.08 (stat.)± 0.09 (syst.)

If the effects responsible for the relative nS/1S suppression in pPb collisionsfactorise, they could be responsible for half of the PbPb relative suppression !!!

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 26 / 30

Page 81: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

A puzzle with excited states ? CMS PRL 109 222301 (2012), JHEP04(2014)103

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

100

200

300

400

500

600

700

800 = 2.76 TeVsCMS pp

-1L = 5.4 pb

datatotal fitbackground

| < 1.93µCM

η| > 4 GeV/cµ

Tp

]2) [GeV/c-µ+µMass(7 8 9 10 11 12 13 14

)2Ev

ents

/ ( 0

.1 G

eV/c

0

100

200

300

400

500

600

700

800 = 2.76 TeVNNsCMS PbPb

Cent. 0-100%, |y| < 2.4 > 4 GeV/cµ

Tp

-1bµ = 150 intL

datatotal fitbackground

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

200

400

600

800

1000

1200

1400 = 5.02 TeVNNsCMS pPb

-1L = 31 nb

datatotal fitbackground

| < 1.93CM

µη| > 4 GeV/cµ

Tp

In addition to QGP formation, differences between quarkonium production yields inPbPb and pp collisions can also arise from cold-nuclear-matter effects [21].However, such effects should have a small impact on the double ratios reportedhere. Initial-state nuclear effects are expected to affect similarly each of the three Υstates, thereby canceling out in the ratio. Final-state “nuclear absorption” becomesweaker with increasing energy [22] and is expected to be negligible at the LHC [23].

[Υ(nS)/Υ(1S)]ij[Υ(nS)/Υ(1S)]pp

2S 3S

PbPb 0.21± 0.07 (stat.)± 0.02 (syst.) 0.06± 0.06 (stat.)± 0.06 (syst.)pPb 0.83± 0.05 (stat.)± 0.05 (syst.) 0.71± 0.08 (stat.)± 0.09 (syst.)

If the effects responsible for the relative nS/1S suppression in pPb collisionsfactorise, they could be responsible for half of the PbPb relative suppression !!!

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 26 / 30

Page 82: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

A puzzle with excited states ? CMS PRL 109 222301 (2012), JHEP04(2014)103

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

100

200

300

400

500

600

700

800 = 2.76 TeVsCMS pp

-1L = 5.4 pb

datatotal fitbackground

| < 1.93µCM

η| > 4 GeV/cµ

Tp

]2) [GeV/c-µ+µMass(7 8 9 10 11 12 13 14

)2Ev

ents

/ ( 0

.1 G

eV/c

0

100

200

300

400

500

600

700

800 = 2.76 TeVNNsCMS PbPb

Cent. 0-100%, |y| < 2.4 > 4 GeV/cµ

Tp

-1bµ = 150 intL

datatotal fitbackground

)2 (GeV/c-µ+µm7 8 9 10 11 12 13 14

)2E

vent

s / (

0.0

5 G

eV/c

0

200

400

600

800

1000

1200

1400 = 5.02 TeVNNsCMS pPb

-1L = 31 nb

datatotal fitbackground

| < 1.93CM

µη| > 4 GeV/cµ

Tp

In addition to QGP formation, differences between quarkonium production yields inPbPb and pp collisions can also arise from cold-nuclear-matter effects [21].However, such effects should have a small impact on the double ratios reportedhere. Initial-state nuclear effects are expected to affect similarly each of the three Υstates, thereby canceling out in the ratio. Final-state “nuclear absorption” becomesweaker with increasing energy [22] and is expected to be negligible at the LHC [23].

[Υ(nS)/Υ(1S)]ij[Υ(nS)/Υ(1S)]pp

2S 3S

PbPb 0.21± 0.07 (stat.)± 0.02 (syst.) 0.06± 0.06 (stat.)± 0.06 (syst.)pPb 0.83± 0.05 (stat.)± 0.05 (syst.) 0.71± 0.08 (stat.)± 0.09 (syst.)

If the effects responsible for the relative nS/1S suppression in pPb collisionsfactorise, they could be responsible for half of the PbPb relative suppression !!!

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 26 / 30

Page 83: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Comover-interaction model (CIM)

In a comover model, suppression from scatterings of the nascent ψ with comoving[no boost] particles S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella et al.PLB 393 (1997) 431

Stronger comover suppression where the comover densities are larger. Forasymmetric collisions as proton-nucleus, stronger in the nucleus-going direction

Rate equation governing the charmonium density at a given transverse coordinates, impact parameter b and rapidity y ,

τdρψ

dτ(b, s, y) = −σco−ψ ρco(b, s, y) ρψ(b, s, y)

where σco−ψ is the cross section of charmonium dissociation due to interactionswith the comoving medium of transverse density ρco(b, s, y).

Survival probability from integration over time (with τfin/τ0 = ρco(b, s, y)/ρpp(y))

Scoψ (b, s, y) = exp

{−σco−ψ ρco(b, s, y) ln

[ρco(b, s, y)

ρpp(y)

]}ρco(b, s, y) connected to the number of binary collisions and dNpp

ch /dy

σco−ψ fixed from fits to low-energy AA data N. Armesto, A. Capella, PLB 430 (1998) 23

[ σco−J/ψ = 0.65 mb for the J/ψ and σco−ψ(2S) = 6 mb for the ψ(2S)]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 27 / 30

Page 84: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Comover-interaction model (CIM)In a comover model, suppression from scatterings of the nascent ψ with comoving

[no boost] particles S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella et al.PLB 393 (1997) 431

Stronger comover suppression where the comover densities are larger. Forasymmetric collisions as proton-nucleus, stronger in the nucleus-going direction

Rate equation governing the charmonium density at a given transverse coordinates, impact parameter b and rapidity y ,

τdρψ

dτ(b, s, y) = −σco−ψ ρco(b, s, y) ρψ(b, s, y)

where σco−ψ is the cross section of charmonium dissociation due to interactionswith the comoving medium of transverse density ρco(b, s, y).

Survival probability from integration over time (with τfin/τ0 = ρco(b, s, y)/ρpp(y))

Scoψ (b, s, y) = exp

{−σco−ψ ρco(b, s, y) ln

[ρco(b, s, y)

ρpp(y)

]}ρco(b, s, y) connected to the number of binary collisions and dNpp

ch /dy

σco−ψ fixed from fits to low-energy AA data N. Armesto, A. Capella, PLB 430 (1998) 23

[ σco−J/ψ = 0.65 mb for the J/ψ and σco−ψ(2S) = 6 mb for the ψ(2S)]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 27 / 30

Page 85: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Comover-interaction model (CIM)In a comover model, suppression from scatterings of the nascent ψ with comoving

[no boost] particles S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella et al.PLB 393 (1997) 431

Stronger comover suppression where the comover densities are larger. Forasymmetric collisions as proton-nucleus, stronger in the nucleus-going direction

Rate equation governing the charmonium density at a given transverse coordinates, impact parameter b and rapidity y ,

τdρψ

dτ(b, s, y) = −σco−ψ ρco(b, s, y) ρψ(b, s, y)

where σco−ψ is the cross section of charmonium dissociation due to interactionswith the comoving medium of transverse density ρco(b, s, y).

Survival probability from integration over time (with τfin/τ0 = ρco(b, s, y)/ρpp(y))

Scoψ (b, s, y) = exp

{−σco−ψ ρco(b, s, y) ln

[ρco(b, s, y)

ρpp(y)

]}ρco(b, s, y) connected to the number of binary collisions and dNpp

ch /dy

σco−ψ fixed from fits to low-energy AA data N. Armesto, A. Capella, PLB 430 (1998) 23

[ σco−J/ψ = 0.65 mb for the J/ψ and σco−ψ(2S) = 6 mb for the ψ(2S)]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 27 / 30

Page 86: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Comover-interaction model (CIM)In a comover model, suppression from scatterings of the nascent ψ with comoving

[no boost] particles S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella et al.PLB 393 (1997) 431

Stronger comover suppression where the comover densities are larger. Forasymmetric collisions as proton-nucleus, stronger in the nucleus-going direction

Rate equation governing the charmonium density at a given transverse coordinates, impact parameter b and rapidity y ,

τdρψ

dτ(b, s, y) = −σco−ψ ρco(b, s, y) ρψ(b, s, y)

where σco−ψ is the cross section of charmonium dissociation due to interactionswith the comoving medium of transverse density ρco(b, s, y).

Survival probability from integration over time (with τfin/τ0 = ρco(b, s, y)/ρpp(y))

Scoψ (b, s, y) = exp

{−σco−ψ ρco(b, s, y) ln

[ρco(b, s, y)

ρpp(y)

]}ρco(b, s, y) connected to the number of binary collisions and dNpp

ch /dy

σco−ψ fixed from fits to low-energy AA data N. Armesto, A. Capella, PLB 430 (1998) 23

[ σco−J/ψ = 0.65 mb for the J/ψ and σco−ψ(2S) = 6 mb for the ψ(2S)]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 27 / 30

Page 87: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Comover-interaction model (CIM)In a comover model, suppression from scatterings of the nascent ψ with comoving

[no boost] particles S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella et al.PLB 393 (1997) 431

Stronger comover suppression where the comover densities are larger. Forasymmetric collisions as proton-nucleus, stronger in the nucleus-going direction

Rate equation governing the charmonium density at a given transverse coordinates, impact parameter b and rapidity y ,

τdρψ

dτ(b, s, y) = −σco−ψ ρco(b, s, y) ρψ(b, s, y)

where σco−ψ is the cross section of charmonium dissociation due to interactionswith the comoving medium of transverse density ρco(b, s, y).

Survival probability from integration over time (with τfin/τ0 = ρco(b, s, y)/ρpp(y))

Scoψ (b, s, y) = exp

{−σco−ψ ρco(b, s, y) ln

[ρco(b, s, y)

ρpp(y)

]}

ρco(b, s, y) connected to the number of binary collisions and dNppch /dy

σco−ψ fixed from fits to low-energy AA data N. Armesto, A. Capella, PLB 430 (1998) 23

[ σco−J/ψ = 0.65 mb for the J/ψ and σco−ψ(2S) = 6 mb for the ψ(2S)]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 27 / 30

Page 88: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Comover-interaction model (CIM)In a comover model, suppression from scatterings of the nascent ψ with comoving

[no boost] particles S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella et al.PLB 393 (1997) 431

Stronger comover suppression where the comover densities are larger. Forasymmetric collisions as proton-nucleus, stronger in the nucleus-going direction

Rate equation governing the charmonium density at a given transverse coordinates, impact parameter b and rapidity y ,

τdρψ

dτ(b, s, y) = −σco−ψ ρco(b, s, y) ρψ(b, s, y)

where σco−ψ is the cross section of charmonium dissociation due to interactionswith the comoving medium of transverse density ρco(b, s, y).

Survival probability from integration over time (with τfin/τ0 = ρco(b, s, y)/ρpp(y))

Scoψ (b, s, y) = exp

{−σco−ψ ρco(b, s, y) ln

[ρco(b, s, y)

ρpp(y)

]}ρco(b, s, y) connected to the number of binary collisions and dNpp

ch /dy

σco−ψ fixed from fits to low-energy AA data N. Armesto, A. Capella, PLB 430 (1998) 23

[ σco−J/ψ = 0.65 mb for the J/ψ and σco−ψ(2S) = 6 mb for the ψ(2S)]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 27 / 30

Page 89: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Comover-interaction model (CIM)In a comover model, suppression from scatterings of the nascent ψ with comoving

[no boost] particles S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella et al.PLB 393 (1997) 431

Stronger comover suppression where the comover densities are larger. Forasymmetric collisions as proton-nucleus, stronger in the nucleus-going direction

Rate equation governing the charmonium density at a given transverse coordinates, impact parameter b and rapidity y ,

τdρψ

dτ(b, s, y) = −σco−ψ ρco(b, s, y) ρψ(b, s, y)

where σco−ψ is the cross section of charmonium dissociation due to interactionswith the comoving medium of transverse density ρco(b, s, y).

Survival probability from integration over time (with τfin/τ0 = ρco(b, s, y)/ρpp(y))

Scoψ (b, s, y) = exp

{−σco−ψ ρco(b, s, y) ln

[ρco(b, s, y)

ρpp(y)

]}ρco(b, s, y) connected to the number of binary collisions and dNpp

ch /dy

σco−ψ fixed from fits to low-energy AA data N. Armesto, A. Capella, PLB 430 (1998) 23

[ σco−J/ψ = 0.65 mb for the J/ψ and σco−ψ(2S) = 6 mb for the ψ(2S)]

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 27 / 30

Page 90: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

CIM result vs. data

Theory: E.G. Ferreiro arXiv:1411.0549; Plot from the SGNR review:arXiv:1506.03981; PHENIX PRL 111, 202301 (2013); ALICE JHEP 02 (2014) 072

collN

0 2 4 6 8 10 12 14 16 18

pp]ψ(2

S)/

J/ψ

/ [

pPb

]ψ(2

S)/

J/ψ[

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 =200 GeVNN

sd-Au

(2S)ψ and ψPHENIX, inclusive J/

y-4 -2 0 2 4

pp]ψ(2

S)/

J/ψ

/ [

pPb

]ψ(2

S)/

J/ψ[

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 =5.02 TeVNN

sp-Pb

(2S)ψ and ψALICE, inclusive J/

COMOV - Ferreiro

Given that all the other models discussed so far predict no difference andthat the comover cross sections from AA data at SPS were re-used, this isencouraging. . .

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 28 / 30

Page 91: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Part VI

Competing “hot” nuclear effects vs. themelting ?

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 29 / 30

Page 92: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Competing “hot” nuclear effects vs. the melting ?

Opposite effect at high energy ?: recombination/regeneration

J/ P

roduct

ion P

robab

ilit

1

Energy Density

sequential suppression

statistical regeneration

Way out: pT cut: reduce recombination; look at bb̄: less recombinationCompeting suppression effect as well: comovers

(within a normal hadron phase)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 30 / 30

Page 93: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Competing “hot” nuclear effects vs. the melting ?

Opposite effect at high energy ?: recombination/regeneration

J/ P

roduct

ion P

robab

ilit

1

Energy Density

sequential suppression

statistical regeneration

Way out: pT cut: reduce recombination; look at bb̄: less recombination

Competing suppression effect as well: comovers(within a normal hadron phase)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 30 / 30

Page 94: Physics of ultrarelativistic heavy-ion collisions · 2019. 1. 18. · Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energ´ıas

Competing “hot” nuclear effects vs. the melting ?

Opposite effect at high energy ?: recombination/regeneration

J/ P

roduct

ion P

robab

ilit

1

Energy Density

sequential suppression

statistical regeneration

Way out: pT cut: reduce recombination; look at bb̄: less recombinationCompeting suppression effect as well: comovers

(within a normal hadron phase)

J.P. Lansberg (IPN Orsay, Paris-Sud U.) Physics of ultrarelativistic heavy-ion collisions September 29, 2015 30 / 30