Physics Thermo

Embed Size (px)

Citation preview

  • 8/12/2019 Physics Thermo

    1/57

    PHYSICS CHAPTER 16

    1

    The study of relationships

    involving heat,heat,

    mechanical work, andmechanical work, and

    other aspects of ener!other aspects of ener!and ener! transferand ener! transferfor

    the system.

    Thermod!namic s!stemThermod!namic s!stemisany collection of objects that is

    convenient to regard as a unit,

    and that ma! ha"e thema! ha"e the

    potential ener! to e#chanepotential ener! to e#chane

    ener! with its s$rro$ndinsener! with its s$rro$ndins.

    CHAPTER 16%CHAPTER 16%Thermod!namicsThermod!namics

    &' Ho$rs(&' Ho$rs(

  • 8/12/2019 Physics Thermo

    2/57

  • 8/12/2019 Physics Thermo

    3/57

    PHYSICS CHAPTER 16

    3

    At the end of this chapter, st$dents sho$ld )e a)le to%At the end of this chapter, st$dents sho$ld )e a)le to%

    *istin$ish*istin$ish)etween thermod!namic work done on the)etween thermod!namic work done on the

    s!stem and work done )! the s!stem+s!stem and work done )! the s!stem+

    *eri"e*eri"ee#pression for work,e#pression for work,

    andand determinedeterminework from the area $nder thework from the area $nder the p-Vp-Vraph+raph+

    State and $seState and $sefirst law of thermod!namics,first law of thermod!namics,

    earnin -$tcome%

    16+1 .irst law of thermod!namics &/ ho$rs(

    WUQ +=

    = PdVW

  • 8/12/2019 Physics Thermo

    4/57

    PHYSICS CHAPTER 16

    4

    16+1 .irst law of thermod!namics16+1+1 Sins for heat, Qand work, W Sign convention for heat, Q:

    Q= positi"epositi"evalue

    Q= neati"eneati"evalue Sign convention for work, W:

    W= positi"epositi"evalueW= neati"eneati"evalue

    Figures !. show a thermodynamic system may e"changeenergy with its surroundings #environment$.

    Heat flow into the s!stemHeat flow into the s!stem

    Heat flow o$t of the s!stemHeat flow o$t of the s!stem

    0ork done )! the s!stem0ork done )! the s!stem

    0ork done on the s!stem0ork done on the s!stem

    Surroundings

    #environment$

    System

    0>Q 0=W

    #a$

    Surroundings

    #environment$

    System

    0

  • 8/12/2019 Physics Thermo

    5/57

    PHYSICS CHAPTER 16

    5

    Surroundings

    #environment$

    System

    0=Q 0>W

    Surroundings

    #environment$

    System

    0

    =Q

    0Q 0>W

    Surroundings

    #environment$

    System

    0

  • 8/12/2019 Physics Thermo

    6/57

    PHYSICS CHAPTER 16

    6

    %"ample for work done by the system and work done on thesystem are shown in Figure !.&.

    'hen the air is e#pandede#panded, the molecule loses kineticloses kinetic

    ener!ener!and does positi"e workpositi"e workon piston.

    'hen the air is compressedcompressed, the molecule ains kineticains kineticener!ener!and does neati"e workneati"e workon piston.

    (ir

    )ompression

    (ir

    %"pansion

    (ir

    *nitially

    .i$re 16+/.i$re 16+/

    +otion ofpiston

    +otion ofpiston

  • 8/12/2019 Physics Thermo

    7/57

    PHYSICS CHAPTER 16

    7

    asA

    A

    dx

    *nitial

    Final

    )onsider the infinitesimal work done by the gas #system$ during

    the small e"pansion, dxin a cylinder with a movable piston asshown in Figure !.-.

    Suppose that the cylinder has a cross sectional area,Aand the

    pressure e"erted by the gas #system$ at the piston face isP.

    16+1+/ 0ork done in the thermod!namics s!stem

    .i$re 16+.i$re 16+

    F

  • 8/12/2019 Physics Thermo

    8/57

    PHYSICS CHAPTER 16

    8

    The work, dWdone by the gas is given by

    *n a finite change of volume from V1to V

    2,

    PAF

    =

    0=cosFdxdW= where andPAdxdW= and dVAdx=PdVdW=

    =2

    1

    V

    VPdVW

    donework:Wwhere

    =2

    1

    V

    V PdVdW

    pressuregas:P

    gastheofvolumeinitial:1Vgastheofvolumefinal:2V

    #!.$

  • 8/12/2019 Physics Thermo

    9/57

    PHYSICS CHAPTER 16

    9

    For a change in volume at constant pressure,P

    For any process in the system which the volume is constant #no

    change in volume$, the work done is

    Figures !. show the pressure,Pagainst volume, Vgraph

    #PVdiagram$ where

    ( )12

    VVPW =

    VPW =0ork done at constant0ork done at constant

    press$repress$re

    0=W 0ork done at constant0ork done at constant"ol$me"ol$me

    Area $nder theArea $nder the PPVVraph 2 0ork doneraph 2 0ork done

  • 8/12/2019 Physics Thermo

    10/57

    PHYSICS CHAPTER 16

    10

    .i$re 16+3.i$re 16+3

    #a$ #b$

    1V 2V

    1P

    2P

    P

    V0

    1

    2

    0>W2V 1V

    2P

    1P

    P

    V0

    2

    1

    0= VVPW

    P

    V0

    2P

    1P

    1V

    1

    2

    0=W

    Stimulation !.

    http://media/S3A6595D003/Pengajaran/2010_11_2/fizik%202/Notes_Semester1/G:%5CP&P%5CSemester1%5CLatest%5Cp11_01_01_01a.swfhttp://media/S3A6595D003/Pengajaran/2010_11_2/fizik%202/Notes_Semester1/G:%5CP&P%5CSemester1%5CLatest%5Cp11_01_01_01a.swfhttp://af_2005.html/
  • 8/12/2019 Physics Thermo

    11/57

    PHYSICS CHAPTER 16

    11

    states : /The heat &The heat &QQ( s$pplied to a s!stem is e4$al to the( s$pplied to a s!stem is e4$al to theincrease in the internal ener! & increase in the internal ener! &UU( of the s!stem( of the s!stempl$s the work done & pl$s the work done &WW( )! the s!stem on its( )! the s!stem on itss$rro$ndins s$rro$ndins.0

    12

    For infinitesimal change in the energy,

    16+1+ .irst law of thermod!namics

    WUQ +=suppliedheatofquantity:Q

    energyinternalinitial:1U

    where

    energyinternalfinal:2U

    donework:W

    and 12 UUU =

    energyinternalin thechange:U

    dWdUdQ +=

    #!.&$

  • 8/12/2019 Physics Thermo

    12/57

    PHYSICS CHAPTER 16

    12

    2P

    The first law of thermodynamics is a enerali5ation of theenerali5ation of the

    principle of conser"ation of ener!principle of conser"ation of ener!to include energy transfer

    through heat as well as mechanical work. The chane in the internal ener!chane in the internal ener!&&UU((of a system during

    any thermodynamic process is independent of pathindependent of path. Fore"ample a thermodynamics system goes from state to state &as shown in Figure !.3.

    23124121 == UUU

    1V

    3

    4

    1P

    2V.i$re 16+'.i$re 16+'

    2

    1

    P

    V0

  • 8/12/2019 Physics Thermo

    13/57

    PHYSICS CHAPTER 16

    13

    The internal ener! dependsinternal ener! dependsonly on temperat$retemperat$reof thesystem. *f the initial and final temperat$re &state(initial and final temperat$re &state(of the

    system is the samesame, hence

    because

    thus

    The chane in the internal ener!chane in the internal ener!also 5ero in the c!clic5ero in the c!clic

    thermod!namic process &repeated process(thermod!namic process &repeated process(because the

    initial and final state of the system is the same. The internal ener!internal ener! isnot dependnot dependon the "ol$me"ol$meof the

    system.

    nRT2

    fU

    =

    012 == UUU

    12 UU =

  • 8/12/2019 Physics Thermo

    14/57

    PHYSICS CHAPTER 16

    14

    ( vessel contains an ideal gas at pressure 34 k5a. 'hen the gas

    is heated it e"pands at constant pressure until the temperature

    increases by 44 6. The amount of heat absorbed by the

    gas is

    .-! k7. 8owever, if the gas at its initial condition is heated at

    constant volume until the temperature increases by 44 6, theamount of heat absorbed is -. k7. 9etermine

    a. the value of ,

    b. the work done by the gas when it e"pands at constant

    pressure,c. the change in volume of the gas when the gas is heated at

    constant pressure and the temperature rises by 44 6.

    E#ample 1 %

  • 8/12/2019 Physics Thermo

    15/57

    PHYSICS CHAPTER 16

    15

    Sol$tion %Sol$tion %

    a. y applying the e;uation for molar heat capacities, For constant pressure:

    For constant volume:

    #&$ #$:

    PPP TnCQ =

    K;100a;101!0 3 ==== VPVP TTPP";1011#3";103$#4 33 == VP QQ

    ( )100PP nCQ = #$

    VVV TnCQ =( )100VV nCQ = #&$

    V

    P

    V

    P

    C

    C

    Q

    Q=

    3

    3

    1011#3103$#4

    == VP

    CC

    40#1=

  • 8/12/2019 Physics Thermo

    16/57

    PHYSICS CHAPTER 16

    16

    Sol$tion %Sol$tion %

    b. y using the stlaw of thermodynamics, For constant pressure:

    For constant volume:

    #&$ %#$:

    c. The change in the volume of the constant pressure process is

    K;100a;101!0 3 ==== VPVP TTPP";1011#3";103$#4 33 == VP QQ

    VV WUQ +=VQU= #&$

    and 0=VW

    PPV WQQ =

    PW=33 103$#41011#3

    "102!#1

    3

    =PWPPP VPW =

    ( ) PV=33 101!0102!#1

    33

    m1033#&

    = PV

    PP WUQ +=PP WQU = #$

  • 8/12/2019 Physics Thermo

    17/57

    PHYSICS CHAPTER 16

    17

    ( vessel contains an ideal gas in condition (, as shown in Figure

    !.!. 'hen the condition of the gas changes from ( to that of ,

    the gas system undergoes a heat transfer of 4.3 k7. 'hen the gas

    in condition changes to condition ), there is a heat transfer of-.& k7. )alculate

    a. the work done in the process (),

    b. the change in the internal energy of the gas in the process (),

    c. the work done in the process (9),

    d. the total amount of heat transferred in the process (9).

    E#ample / %

    0#2

    'ka(P

    'm10(32

    V0#4

    300

    0)

    *+

    ,

    1!0.i$re 16+6.i$re 16+6

  • 8/12/2019 Physics Thermo

    18/57

    PHYSICS CHAPTER 16

    18

    Sol$tion %Sol$tion %

    a. The work done in the process () is given by

    b. y applying the stlaw of thermodynamics for (), thus

    )*,),)* WWW +=

    a;10300a;101!0 3+*3

    ), ==== PPPP32

    *)

    32

    +, m100#4;m100#2 ==== VVVV

    "102#3";10!#10 3)*3,) +=+= QQ

    but 0)*=W( )

    ,),,)*

    VVPW =( )223,)* 100#2100#4101!0

    =W"3000,)*=W

    ,)*,)*,)* WUQ += ( ) ,)*)*,),)* WQQU +=

    "100-#1

    4

    ,)* =U

    ( ) 3000102#310!#10 33,)* +=U

  • 8/12/2019 Physics Thermo

    19/57

    PHYSICS CHAPTER 16

    19

    Sol$tion %Sol$tion %

    c. The work done in the process (9) is given by

    d. y applying the stlaw of thermodynamics for (9), thus

    +*,+,+* WWW +=

    a;10300a;101!0 3+*3

    ), ==== PPPP32

    *)

    32

    +, m100#4;m100#2 ==== VVVV

    "102#3";10!#10 3)*3,) +=+= QQ

    but 0,+=W( )

    +*+,+*

    VVPW =( )223,+* 100#2100#410300

    =W"$000,+*=W

    ,+*,+*,+* WUQ +=,+*,)*,+* WUQ +=

    "10$-#1

    4

    ,+* =Q

    $000100-#1 4,+* +=Q

    and,)*,+* UU =

  • 8/12/2019 Physics Thermo

    20/57

    PHYSICS CHAPTER 16

    20

    E#ercise 16+1 %

    ivenR= (during process

    ( is &4.4 7, no energy is transferred asheat during process ), and the nett work

    done during the cycle is 3.4 7.

    AS+ %AS+ % '+7 8'+7 8.i$re 16+:.i$re 16+:

  • 8/12/2019 Physics Thermo

    21/57

    PHYSICS CHAPTER 16

    21

    At the end of this chapter, st$dents sho$ld )e a)le to%At the end of this chapter, st$dents sho$ld )e a)le to% State and e#plainState and e#plainthermod!namics processes%thermod!namics processes%

    Isothermal,Isothermal, UU= 0= 0

    Adia)atic,Adia)atic, QQ= 0= 0 Iso"ol$metric,Iso"ol$metric, WW= 0= 0 Iso)aric,Iso)aric, PP= 0= 0

    SketchSketchPPVVraph toraph to distin$ishdistin$ish)etween isothermal)etween isothermalprocess and adia)atic process+process and adia)atic process+

    *etermine*eterminethe initial and final state of thermod!namicthe initial and final state of thermod!namicprocesses )! $sin the followin form$la%processes )! $sin the followin form$la%

    earnin -$tcome%

    16+/ Thermod!namics processes &/ ho$rs(

    constant=PV.or isothermal process%.or isothermal process%

    .or adia)atic process %.or adia)atic process % constant=

    PV andand constant1

    =

    TV

  • 8/12/2019 Physics Thermo

    22/57

    PHYSICS CHAPTER 16

    22

    16+/ Thermod!namics processes There are four specific kinds of thermodynamic processes. *t is

    *sothermalprocess (diabatic process

    *sochoric#isovolumetric$ process

    *sobaric process

    16+/+1 Isothermalprocess is defined as a process that occ$rs at constant temperat$rea process that occ$rs at constant temperat$re.

    i.e.

    ThusIsothermal chanesIsothermal chanes

    'hen a gas e"pands or compresses isothermally #constanttemperature$ thus

    0=U

    WQ=WUQ +=

    constant=PV #!.-$

  • 8/12/2019 Physics Thermo

    23/57

    PHYSICS CHAPTER 16

    23

    %;uation #!.-$ can be e"pressed as

    *f the gas e#pand isothermall!e#pand isothermall!, thus V2.V

    1

    *f the gas compress isothermall!compress isothermall!, thus V2/V

    1

    16+/+/ Adia)atic process is defined as a process that occ$rs witho$t heat transfer intoa process that occ$rs witho$t heat transfer into

    or o$t of a s!stemor o$t of a s!stemi.e.

    For e"ample, the compression stroke in an internal combustionengine is an appro"imately adiabatic process.

    2211 VPVP =WW 2 positi"e2 positi"e

    WW 2 neati"e2 neati"e

    (nimation !.

    WUUU

    == 12

    0=Q WUQ +=thus

    http://media/S3A6595D003/Pengajaran/2010_11_2/fizik%202/Notes_Semester1/G:%5CP&P%5CSemester1%5CLatest%5Cp11_01_01_01a.swfhttp://media/S3A6595D003/Pengajaran/2010_11_2/fizik%202/Notes_Semester1/G:%5CP&P%5CSemester1%5CLatest%5Cp11_01_01_01a.swfhttp://isothermal.html/
  • 8/12/2019 Physics Thermo

    24/57

    PHYSICS CHAPTER 16

    24

    ?ote :

    For (diabatic e"pansion #V2.V

    1$, W2 positi"e "al$e2 positi"e "al$ebut

    U2neati"e "al$e2neati"e "al$ehence the internal ener!internal ener!of thesystem decreasesdecreases.

    For (diabatic compression #V2/V

    1$, W2 neati"e "al$eneati"e "al$ebut

    U2positi"e "al$epositi"e "al$ehence the internal ener!internal ener!of the

    system increasesincreases.Adia)atic chanesAdia)atic chanes

    )onsider the stlaw of thermodynamics written in differential#infinitesimal$ form:

    Since that the internal ener!internal ener!is independent of the "ol$meindependent of the "ol$meand is related to the temperat$re )! the molar heat capacit!related to the temperat$re )! the molar heat capacit!

    at constant "ol$meat constant "ol$me, therefore

    dWdUdQ +=

    dTnCdQdU VV==

    #!.$

  • 8/12/2019 Physics Thermo

    25/57

    PHYSICS CHAPTER 16

    25

    Then e;uation #!.$ can be e"pressed as

    E4$ation of adia)atic chanes in temperat$re and "ol$meE4$ation of adia)atic chanes in temperat$re and "ol$me

    From the e;uation of state for an ideal gas,

    Therefore

    dWdTnCdQV

    += PdVdW=#!.3$

    where and 0

    =dQ

    0=+PdVdTnCV

    nRTPV= then VnRT

    P= substitute in e;. #!.3$

    0=

    + dVV

    nRTdTnCV

    0=

    +

    V

    dV

    C

    R

    T

    dT

    V

    dVV

    RT

    dTCV

    =VP CCR =and

  • 8/12/2019 Physics Thermo

    26/57

    PHYSICS CHAPTER 16

    26

    For finite changes in temperature and volume, integrate e;.#!.!$, hence

    0=

    +

    V

    dV

    C

    CC

    T

    dT

    V

    VP

    and01 =

    +

    V

    dV

    C

    C

    T

    dT

    V

    P =V

    P

    C

    C

    ( ) 01 =+ VdV

    T

    dT #!.!$

    ( )

    =+ 01

    V

    dV

    T

    dT

    ( ) constantlnln 1 =+ VT( ) constantln1ln =+ VT

    ( ) constantln 1 =TV

  • 8/12/2019 Physics Thermo

    27/57

    PHYSICS CHAPTER 16

    27

    ?ote :

    Adia)atic e#pansion &Adia)atic e#pansion &dVdV > 0> 0((always occurs with adrop in temperat$re &drop in temperat$re &dTdT < 0< 0((.

    Adia)atic compression &Adia)atic compression &dVdV < 0< 0((always occurs with a

    rise in temperat$re &rise in temperat$re &dTdT > 0> 0((.

    constant1 =TV

    12

    1

    22

    1

    11

    = VTVT

    #!.$

    where

    retemperatuasoluteinitial:1Tretemperatuasolutefinal:2T

    volumeinitial:1V volumefinal:2V

  • 8/12/2019 Physics Thermo

    28/57

    PHYSICS CHAPTER 16

    28

    E4$ation of adia)atic chanes in press$re and "ol$meE4$ation of adia)atic chanes in press$re and "ol$me

    2earrange the e;uation of state for an ideal gas,

    Therefore

    nRTPV= thennRPVT= substitute in e;. #!.$

    constant1 =

    V

    nR

    PV

    constant=PV

    12

    2211 VPVP =

    where pressureinitial:1P

    pressurefinal:2P

    #!.

  • 8/12/2019 Physics Thermo

    29/57

    PHYSICS CHAPTER 16

    29

    is defined as a process that occ$rs at constant "ol$mea process that occ$rs at constant "ol$mei.e.

    *n an isochoric process, all the ener! addedener! addedas heat remainsin the system as an

    increaseincrease in the

    internal ener!internal ener!thus the

    temperat$retemperat$reof the system increasesincreases. For e"ample, heating a gas in a closed constant volume

    container is an isochoric process.

    16+/+3 Iso)ar)aric is defined as a process that occ$rs at constant press$rea process that occ$rs at constant press$rei.e.

    For e"ample, boiling water at constant pressure is an isobaricprocess.

    16+/+ Isochoric &Iso"ol$metric"ol$metric(

    WUQ +=0=W thus

    12 UUUQ ==

    WUQ +=VPW = thus

    VPUQ +=

    (nimation !.&

    (nimation !.-

    0=P and

    http://media/S3A6595D003/Pengajaran/2010_11_2/fizik%202/Notes_Semester1/G:%5CP&P%5CSemester1%5CLatest%5Cp11_01_01_01a.swfhttp://media/S3A6595D003/Pengajaran/2010_11_2/fizik%202/Notes_Semester1/G:%5CP&P%5CSemester1%5CLatest%5Cp11_01_01_01a.swfhttp://media/S3A6595D003/Pengajaran/2010_11_2/fizik%202/Notes_Semester1/G:%5CP&P%5CSemester1%5CLatest%5Cp11_01_01_01a.swfhttp://media/S3A6595D003/Pengajaran/2010_11_2/fizik%202/Notes_Semester1/G:%5CP&P%5CSemester1%5CLatest%5Cp11_01_01_01a.swfhttp://isobaric.html/http://isochoric.html/
  • 8/12/2019 Physics Thermo

    30/57

    PHYSICS CHAPTER 16

    30

    1V

    2P

    3P

    3V

    Figure !.< shows aPVdiagram for each thermodynamicprocess for a constant amount of an ideal gas.

    16+/+3 Press$re;,

    .i$re 16+=.i$re 16+=

    *

  • 8/12/2019 Physics Thermo

    31/57

    PHYSICS CHAPTER 16

    31

    From the Figure !.>$ andadiabatic e"pansions #AACC$: The temperat$re falltemperat$re fall&&TT

    CC

  • 8/12/2019 Physics Thermo

    32/57

    PHYSICS CHAPTER 16

    32

    (ir is contained in a cylinder by a frictionless gas@tight piston.

    a. )alculate the work done by the air as it e"pands from a volume of

    4.43 m- to a volume of 4.4& m- at a constant pressure of

    &.4 435a.

    b. 9etermine the final pressure of the air if it starts from the same

    initial conditions as in #a$ and e"panding by the same amount, the

    change occurs

    i. isothermally,

    ii. adiabatically.

    #iven for air is .4$

    E#ample %

  • 8/12/2019 Physics Thermo

    33/57

    PHYSICS CHAPTER 16

    33

    Sol$tion %Sol$tion %

    a. iven

    The work done by the air is

    b. i. The final pressure for the isothermal process is

    ii. The final pressure for the adiabatic process is given by

    a100#2;m02-#0;m01!#0 !13

    2

    3

    1 === PVV

    ( )121 VVPW =( )01!#002-#0100#2 ! =W

    "2400=W

    2211 VPVP =( )( ) ( )02-#001!#0100#2 2

    ! P=a1011#1 !2 =P

    2211 VPVP =( )( ) ( ) 40#12

    40#1! 02-#001!#0100#2 P=

    a10-&

    4

    2 =P

  • 8/12/2019 Physics Thermo

    34/57

    PHYSICS CHAPTER 16

    34

    ( vessel contains an ideal gas of volume &.4 cm-at pressure

    44 k5a and temperature &3 ). The gas e"pands adiabatically

    until the volume becomes .4 cm-. (fter that, it is compressed

    isothermally until the volume becomes -.4 cm-.

    a. )alculate

    i. the pressure and ii. the temperature of the gas in the final condition.

    b. Sketch and label a graph of gas pressure #P$ against gas volume

    #V$ to show how the pressure and volume changes when the

    condition of the gas changes from the initial condition to finalcondition.

    #iven for gas is .!$

    E#ample 3 %

  • 8/12/2019 Physics Thermo

    35/57

    PHYSICS CHAPTER 16

    35

    Sol$tion %Sol$tion %

    a. i. For the adiabatic e"pansion,

    For the isothermal compression,

    K1!#2&a;10100;m100#2 13

    1

    3$

    1 === TPV

    $-#1;m100#3;m100#4 3$33$

    2 === VV

    2V

    2T2P

    Adia)aticAdia)atic

    e#pansione#pansion

    IsothermalIsothermal

    compressioncompression

    1V

    1T1P

    InitialInitial

    3V

    23 TT =3P

    .inal.inal

    2211 VPVP =

    a1014#3 42 =P( )( ) ( ) $-#1$2

    $-#1$3 100#4100#210100 = P

    3322 VPVP =

    a101#4

    4

    3 =P

    ( )( ) ( )$3$4 100#3100#41014#3 = P

  • 8/12/2019 Physics Thermo

    36/57

    PHYSICS CHAPTER 16

    36

    Sol$tion %Sol$tion %

    a. ii. For the adiabatic e"pansion,

    For the isothermal compression, the temperature along the

    process remains $nchaned$nchanedhence

    K1!#2&a;10100;m100#2 13

    1

    3$

    1 === TPV

    $-#1;m100#3;m100#4 3$33$

    2 === VV

    1

    22

    1

    11

    = VTVT

    K1&-2=T

    ( ) ( ) ( ) 1$-#1$21$-#1$ 100#4100#21!#2& = T

    K1&-23 == TT

  • 8/12/2019 Physics Thermo

    37/57

    PHYSICS CHAPTER 16

    37

    Sol$tion %Sol$tion %

    b. The graph of gas pressure #P$ against gas volume #V$ is shown

    in Figure !.A.

    K1!#2&a;10100;m100#2 13

    1

    3$

    1 === TPV

    $-#1;m100#3;m100#4 3$33$

    2 === VV

    0#3

    1#4

    0#2

    a'10( 4P

    'm10( 3$V0

    00#10

    1T

    2T

    3

    1

    14#3

    0#4

    2

    .i$re 16+?.i$re 16+?

    S CS C 6

  • 8/12/2019 Physics Thermo

    38/57

    PHYSICS CHAPTER 16

    38

    At the end of this chapter, st$dents sho$ld )e a)le to%At the end of this chapter, st$dents sho$ld )e a)le to% *eri"e*eri"ethe e4$ation of work done in isothermal,the e4$ation of work done in isothermal,

    iso"ol$metric and iso)aric processes+iso"ol$metric and iso)aric processes+

    Calc$lateCalc$latework done inwork done in

    isothermal process and $seisothermal process and $se

    iso)aric process, $seiso)aric process, $se

    iso"ol$metric process, $seiso"ol$metric process, $se

    earnin -$tcome%16+ Thermod!namics work &1 ho$r(

    =

    =

    2

    1

    1

    2 lnlnP

    PnRT

    V

    VnRTW

    ( )12 VVPPdVW ==

    0==

    PdVW

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    39/57

    PHYSICS CHAPTER 16

    39

    16+ Thermod!namics work

    16++1 0ork done in Isothermalprocess From the e;uation of state for an ideal gas,

    Therefore the work done in the isothermal process which

    change of volume from V1to V2, is given by

    nRTPV=V

    nRTP=then

    =2

    1

    V

    VPdVW

    =2

    1

    V

    V dVV

    nRTW

    = 21

    1V

    VdV

    VnRTW

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    40/57

    PHYSICS CHAPTER 16

    40

    For isothermal process, the temperature of the system remains

    unchanged, thus

    The e;uation #!.A$ can be e"pressed as

    =

    1

    2lnV

    VnRTW

    ( )12 lnln VVnRTW =

    #!.A$

    2211 VPVP =2

    1

    1

    2

    P

    P

    V

    V=

    =

    2

    1lnP

    PnRTW #!.4$

    [ ] 21

    ln V

    VVnRTW=

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    41/57

    PHYSICS CHAPTER 16

    41

    y applying the stlaw of thermodynamics, thus

    16++/ 0ork done in iso)ar)aric process The work done during the isobaric process which change of

    volume from V1

    to V2

    is given by

    WUQ

    +=0=Uand

    WQ=

    =

    =

    2

    1

    1

    2 lnln

    P

    PnRT

    V

    VnRTQ

    =2

    1

    V

    VPdVW and constant=P

    = 2

    1

    V

    V

    dVPW

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    42/57

    PHYSICS CHAPTER 16

    42

    16++ 0ork done in Iso"ol$metric"ol$metric process Since the volume of the system in isovolumetric process remains

    unchanged, thus

    Therefore the work done in the isovolumetric process is

    ( )12 VVPW =

    12

    VPW =

    0== PdVW

    0=dV

    #!.4$

    #!.$

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    43/57

    PHYSICS CHAPTER 16

    43

    ( ;uantity of ideal gas whose ratio of molar heat capacities is !3has a temperature of -44 6, volume of ! 4-m- and pressure of

    &- k5a. *t is made to undergo the following three changes in order:

    : adiabatic compression to a volume & 4-m-,

    & : isothermal e"pansion to ! 4-m- ,

    - : a return to its original state.a. )alculate

    i. the pressure on completion of process ,

    ii. the temperature at which the process & occurs.

    b. 9escribe the process -.

    c. Sketch and label a graph of pressure against volume for the

    changes described.

    E#ample ' %

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    44/57

    PHYSICS CHAPTER 16

    44

    Sol$tion %Sol$tion %

    a. i. The pressure on completion of the adiabatic compression is

    2V

    2T2P

    ;m10$4K;300a;10243 33113

    1

    === VTP

    3

    !;m102- 332 ==

    V

    2211 VPVP =

    Adia)aticAdia)atic

    compressioncompression

    &Process 1(&Process 1(

    IsothermalIsothermal

    e#pansione#pansion

    &Process /(&Process /(

    1V

    1T1P

    InitialInitial

    13 VV =23 TT =

    3P

    .inal.inal

    &Process (&Process (

    ( )( ) ( ) 3!

    3!

    3

    2

    33 102-10$410243 = P

    a1002#1 $2 =P

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    45/57

    PHYSICS CHAPTER 16

    45

    Sol$tion %Sol$tion %

    a. ii. y applying the e;uation of adiabatic changes in temperature

    and volume for process ,

    b. 5rocess - is a process at constant "ol$me known asprocess at constant "ol$me known as

    iso"ol$metric &isochoric(iso"ol$metric &isochoric(.

    ;m10$4K;300a;10243 33113

    1

    === VTP

    3

    !;m102- 332 ==

    V

    1

    22

    1

    11

    = VTVT( ) ( ) ( )

    13

    2

    13 3!3! 102-10$4300 = TK!332=T

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    46/57

    PHYSICS CHAPTER 16

    46

    Sol$tion %Sol$tion %

    c. The graph of gas pressure #P$ against gas volume #V$ for the

    changes described is shown in Figure !.4.

    ;m10$4K;300a;10243 33113

    1

    === VTP

    3

    !;m102- 332 ==

    V

    3

    P

    2-

    a'10( 4P

    'm10( 33V0

    102

    K!33

    K3003#24

    $4

    .i$re 16+17.i$re 16+17

    1

    2

    3

    Process /Process /

    Process Process

    Process 1Process 1

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    47/57

    PHYSICS CHAPTER 16

    47

    ( vessel of volume

  • 8/12/2019 Physics Thermo

    48/57

    PHYSICS CHAPTER 16

    48

    Sol$tion %Sol$tion %

    a. 'hen the gas e"pands adiabatically, it does positi"e workpositi"e work.

    Thus

    The internal ener!internal ener!of the gas is red$cedred$cedto provide thenecessary energy to do work. Since the internal ener!internal ener!is

    proportionalproportionalto the a)sol$te temperat$rea)sol$te temperat$rehence the

    temperat$re decreasestemperat$re decreasesand resulting a temperature change.

    WUQ +=

    Adia)aticAdia)atic

    e#pansione#pansionIsochoricIsochoric

    processprocess

    1V

    1T1P

    InitialInitial

    23 VV =13 TT =

    3P.inal.inal

    WU =

    2V

    2T2P

    ;m1000#&a;1014#1 331!

    1

    == VPa100$#1a;1001#1 !3

    !

    2 == PP

    0=Qand

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    49/57

    PHYSICS CHAPTER 16

    49

    Sol$tion %Sol$tion %

    b. From the adiabatic e"pansion:

    From the isochoric #constant volume$ process:

    y substituting e;. #-$ into e;. #&$,

    2211 VPVP =

    ;m1000#&a;1014#1 331!

    1

    == VPa100$#1a;1001#1 !3

    !

    2 == PP

    =2

    1

    1

    2

    V

    V

    P

    P#$

    122

    111

    = VTVT1

    2

    1

    1

    2

    =

    VV

    TT #&$

    3

    3

    2

    2

    T

    P

    T

    P

    = 32

    1

    2

    P

    P

    T

    T

    =13 TT =and #-$1

    2

    1

    3

    2

    =

    V

    V

    P

    P#$

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    50/57

    PHYSICS CHAPTER 16

    50

    Sol$tion %Sol$tion %

    b. #$ #$ :

    1

    2

    1

    2

    1

    3

    2

    1

    2

    =

    V

    V

    V

    V

    P

    P

    P

    P

    ;m1000#&a;1014#1 331!

    1

    == VPa100$#1a;1001#1 !3

    !

    2 == PP

    2

    1

    1

    3

    V

    V

    P

    P

    =

    2

    3

    !

    ! 1000#&

    1014#1

    100$#1

    V

    =

    33

    2 m10$0#& =V

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    51/57

    PHYSICS CHAPTER 16

    51

    Sol$tion %Sol$tion %

    c. y substituting the value of V2 into the e;. #$, therefore thevalue is

    d. The gas is monatomicmonatomic.

    ;m1000#&a;1014#1 331!

    1

    == VPa100$#1a;1001#1 !3

    !

    2 == PP

    =

    2

    1

    1

    2

    ln

    ln

    V

    V

    PP

    =

    2

    1

    1

    2 lnlnV

    V

    P

    P

    =

    3

    3

    !

    !

    10$0#&

    1000#&

    ln

    1014#11001#1ln

    $-#1=

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    52/57

    PHYSICS CHAPTER 16

    52

    a. 'rite an e"pression representing

    i. the stlaw of thermodynamics and state the meaning of all the

    symbols.

    ii. the work done by an ideal gas at variable pressure. C- marksD

    b. Sketch a graph of pressurePversus volume Vof mole of ideal

    gas. Eabel and show clearly the four thermodynamics process. C3

    marksD

    c. ( monatomic ideal gas at pressurePand volume Vis compressed

    isothermally until its new pressure is -P. The gas is then allowedto e"pand adiabatically until its new volume is AV. *fP, Vand for

    the gas is .& 435a,.4 4&m-and 3- respectively, calculate

    i. the final pressure of the gas.

    ii. the work done on the gas during isothermal compression.

    #%"amG>uesGintake &44-&44$ C marksD

    E#ample : %

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    53/57

    PHYSICS CHAPTER 16

    53

    Sol$tion %Sol$tion %

    a. i. stlaw of thermodynamics:

    ii. 'ork done at variable pressure:

    b. 5H diagram below represents four thermodynamic processes:

    WUQ +=ferredheat transofquantity:Q

    energyinternalinchange:Uwherewhere

    donework:W

    =

    1

    2lnVVnRTW=

    2

    1

    V

    VPdVW -R-R

    3T

    1T

    P

    V

    AP

    0 AV

    4T

    2TB

    E

    DC

    A

    *sobaric process*sobaric process

    *sochoric*sochoric

    processprocess

    *sothermal process*sothermal process

    adiabaticadiabatic

    processprocess

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    54/57

    PHYSICS CHAPTER 16

    54

    Sol$tion %Sol$tion %

    c. iven

    From the isothermal compression process:

    i. y using the e;uation of adiabatic changes in pressure and

    volume, hence

    IsothermalIsothermal

    compressioncompressionAdia)aticAdia)atic

    e#pansione#pansion

    VT

    PInitialInitial

    VV 2=2T

    2P.inal.inal

    1VTT=1PP 31=

    $-#13

    !;m100#1a;102#1 32! ==== VP

    11VPPV=( ) 13 VPPV=

    31

    VV =

    2211 VPVP =

    ( )

    =

    2

    112

    V

    VPP

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    55/57

    PHYSICS CHAPTER 16

    55

    Sol$tion %Sol$tion %

    c. i.

    ii. The work done during the isothermal compression is

    a104-#1 32 =P( )

    = V

    V

    PP332 ( )

    $-#1

    !2

    2-1102#13 =

    P

    =V

    VnRTW 1ln

    "1032#1 3=W

    =V

    V

    PVW 3ln

    PVnRT=and

    ( )( )

    =

    31ln100#1102#1 2!W

    PHYSICS CHAPTER 16

  • 8/12/2019 Physics Thermo

    56/57

    PHYSICS CHAPTER 16

    56

    E#ercise 16+/ %

    ivenR=

  • 8/12/2019 Physics Thermo

    57/57

    PHYSICS CHAPTER 16

    THE END

    Good luck

    For

    stsemester e"amination