35
Physics 150 Electromagne5c induc5on Chapter 20

Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Physics  150    

Electromagne5c  induc5on  

Chapter  20  

Page 2: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Mo5onal  electromo5ve  force  

Physics  150,  Prof.  M.  Nikolic   2  

Consider  a  conductor  in  a  B-­‐field  moving  to  the  right.  

The  electrons  in  the  conductor  will  experience  a  downward  magne5c  force  

|!FB |= evBsinθ = evB

-­‐  -­‐  

+  +  

The  electrons  in  the  bar  will  move  toward  the  boJom  of  the  bar.  

This  creates  an  electric  field  in  the  bar  and  results  in  a  poten5al  difference  (EMF)  between  the  top  and  boJom  of  the  bar  è  electric  force  that  tries  to  push  nega5ve  charges  up  

|!FE |= eE

Page 3: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Mo5onal  EMF  

Physics  150,  Prof.  M.  Nikolic   3  

-­‐  -­‐  

+  +   Charges  will  con5nue  to  separate  un5l  electric  force  become  equal  to  the  magne5c  force  è  equilibrium  

L   evB = eE

Electric  field  is  also  (Chapter  17)  

E = ΔVL

ΔV = vBL

If  we  connect  the  rod  to  a  closed  circuit,  we  could  produce  current  in  it.   I =

ΔVR

=vBLR

L  –  length  of  a                    conductor  

Page 4: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Faraday’s  law  

Physics  150,  Prof.  M.  Nikolic   4  

The  English  physicist  Michael  Faraday  was  the  first  to  observe  that  moving  a  conductor  through  a  magne5c  field  will  generate  an  EMF.  

It  turned  out  that  this  is  not  the  only  case  when  magne5c  fields  can  produce  EMF  and  currents.  

If  the  magne5c  field  changes,  or  if  the  magnet  and  conductor  in  closed  circuit  are  in  rela*ve  mo*on,  there  will  be  an  induced  EMF  

(and  therefore  current)  in  the  conductor.  

Faraday also discovered that: A static magnet will produce no current in a stationary coil.

Page 5: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Magne5c  flux  

Physics  150,  Prof.  M.  Nikolic   5  

Similarly  to  electric  flux   ΦE = EAcosθ

we  can  define  a  magne*c  flux   ΦB = BAcosθ

SI  units:    1  T·∙m2  =  1  Weber  =  1  Wb  

We  always  look  at  the  angle  between  the  B  field  and  the  normal  to  the  area.  

Page 6: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Physics  150,  Prof.  M.  Nikolic   6  

Exercise:  Flux  A  magne5c  field  is  oriented  at  an  angle  of  320  to  the  normal  of  a  rectangular  area  5.5  cm  by  7.2  cm.    If  the  magne5c  flux  through  this  surface  has  a  magnitude  of  4.8  ×  10-­‐5  T·∙m2,  what  is  the  strength  of  the  magne5c  field?  

ΦB = BAcosθ B = ΦB

Acosθ

Area  of  a  rectangle  is  A  =  lw     l = 5.5 cmw = 7.2 cm B = ΦB

lwcosθ

B = 4.8×10−5Tm2

5.5×10−2 × 7.2×10−2m2 cos320

T 3102.14 −×=B

ΦB = BAcosθ

What  is  given:  θ  =  320  l  =  5.5  cm  w  =  7.2  cm  Φ  =  4.8  ×  10-­‐5  T·∙m2  

Page 7: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Faraday’s  law  

Physics  150,  Prof.  M.  Nikolic   7  

The  change  in  magne*c  flux  will  induce  electromo5ve  force  (EMF)  in  a  conduc5ng  loop.    

ε = −N ΔΦB

Δt N  –  is  number  of  turns  in  the  loop    

The  minus  sign  just  indicates  the  direc*on  of  the  induced  emf.    To  calculate  the  magnitude,  we  will  use:  

ε = N ΔΦB

Δt= N

ΦBf −ΦBi

t f − ti

ε = −ΦBf −ΦBi

t f − ti= −

Bf Af cosθ f −BiAi cosθit f − ti

Page 8: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Ways  to  induce  EMF  

Physics  150,  Prof.  M.  Nikolic   8  

The  magne5c  flux  can  change  due  to  any  combina5on  of  the  following  reasons:    1.  The  size  of  the  magne5c  field  changes.  

2.  The  area  of  the  loop  changes.  

3.  The  rela5ve  orienta5on  of  the  field  and  the  loop  changes.  

ε = − NAcosθBf −Bit f − ti

tNBA ωωε sin=

ε = vBw

Page 9: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Physics  150,  Prof.  M.  Nikolic   9  

Exercise:  EMF  with  changing  B  field  A  0.25  T  magne5c  field  into  the  page  is  perpendicular  to  a  circular  loop  of  wire  with  50  turns  and  a  radius  15  cm.    The  magne5c  field  is  reduced  to  zero  in  0.12  s.    What  is  the  magnitude  of  the  induced  emf?

ε = N ΔΦB

ΔtOnly  B  field  is  changing  

ε = NAcosθBf −Bit f − ti

Area  of  the  circle  is  A  =  πr2  

A = 3.14 ⋅0.152m2 = 0.071m2

Magne5c  field  is  perpendicular  to  the  loop  è  θ  =  0  è  cosθ  =  1  

ε = 50 ⋅0.071m2 0− 0.25T0.12s− 0

= 7.36V

What  is  given:  Bi  =  0.25  T  N  =  50    r  =  15  cm  Δt  =  0.12  s  

Page 10: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Electric  generators  

Physics  150,  Prof.  M.  Nikolic   10  

A  generator  is  a  device  that  converts  mechanical  energy  to  electrical  energy.      

Consider  a  current  loop  which  rotates  in  a  constant  magne5c  field  è  the  angle  between  magne5c  field  and  area  of  the  loop  is  changing  è  EMF  and  current  are  produced  

tNBA ωωε sin=A  –  area    N  –  number  of  turns    ω  –  angular  speed  

If  this  loop  is  part  of  a  circuit,  this  EMF  will  induce  an  Alterna*ng  Current  (AC)  in  the  circuit.  

Page 11: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Electric  generators  

Physics  150,  Prof.  M.  Nikolic   11  

A  coil  of  wire  turns  in  a  magne5c  field.    The  flux  in  the  coil  is  constantly  changing,  genera5ng  an  EMF  in  the  coil.  

tNBA ωωε sin=

Page 12: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Exercise:  Generators  

Physics  150,  Prof.  M.  Nikolic   12  

AC  generator  consists  of  a  circular  coil  with  50  turns  and  radius  of  3  cm.  When  the  coil  rotates  at  350  rpm,  the  maximum  EMF  in  the  coil  is  17  V.  What  is  the  strength  of  the  magne5c  field?  Assume  uniform  magne5c  field.  

tNBA ωωε sin=

Maximum  (amplitude)  EMF  is  when  sinωt  =  1  è  εmax  =  NBAω   B = εmaxNAω

Area  of  the  circle  is  A  =  πr2  

A = 3.14 ⋅0.032m2 = 0.00283m2

Angular  speed  is  given  in  revolu5ons  per  minute    è  we  have  to  convert  it  to  rad/s    

ω = 350 revmin

= 350 2πrad60s

= 36.63 rads

B = 17V50 ⋅0.00283m2 ⋅36.63rad / s

B = 3.28T

tNBA ωωε sin=

What  is  given:  N  =  50                              ω  =  350  rpm  r  =  3  cm                          εmax  =  17  V  

Page 13: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Lenz’s  law  

Physics  150,  Prof.  M.  Nikolic   13  

The  direc5on  of  induced  EMFs  and  currents  always  oppose  the  change  in  flux  that  produced  them.  

•  The  change  in  magne5c  flux  will  induce  EMF  •  In  closed  circuit  current  will  be  induced  too  •  The  induced  current  creates  new  magne*c  field  (Bind)  such  that  will  try  to  keep  

the  total  magne5c  flux  constant      

N

S v  

inducedB

•  Consider  a  downward  and    increasing  magne5c  field    

•  Generated  current  produces  an  upward  magne5c  field  inside  the  loop  to  oppose  the  change.  

•  Right  hand  rule  gives  the  direc5on  of  the  current  –  counterclockwise  

Page 14: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

The  downward  magne5c  field  through  the  loop  is  decreasing  as  the  magnet  moves  upward.    Which  direc5on  does  the  current  flow  in  the  loop?  

A.  Clockwise  B.  Counterclockwise  C.  There  is  no  current  D.  Need  more  info  

Conceptual  ques5on  –  Lenz’s  law  Q1

N

S v  

inducedB

B  field  is  down  and  decreasing  è  flux  is  decreasing  è induced  field  Bind  has  to  be  in  the  same  

direc5on  (down)  to  stop  the  flux  decrease  è by  right  hand  rule  current  is  clockwise    

Physics  150,  Prof.  M.  Nikolic   14  30

Page 15: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

A  square  loop  of  wire  lies  in  the  plane  of  the  page.    A  decreasing  magne5c  field  is  directed  into  the  page.    The  induced  current  in  the  loop  is:    

A.  Clockwise  B.  Counterclockwise  C.  Zero    D.  Need  more  info  

Conceptual  ques5on  –  Induced  current  Q2

x  inducedB

x   x  

x  x  

B  field  is  into  the  page  and  decreasing  è  flux  is  decreasing  è induced  field  Bind  has  to  be  in  the  same  direc5on  (into  

the  page)  to  stop  the  flux  decrease    è by  right  hand  rule  current  is  clockwise    

Physics  150,  Prof.  M.  Nikolic   15  30

Page 16: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Physics  150,  Prof.  M.  Nikolic   16  

Exercise:  Lenz’s  law  and  moving  loop  Find  the  direc5on  and  magnitude  of  the  current  induced  in  the  rod  if  the  rod  is  moving  5  m/s  to  the  right.  The  rod  has  length  of  L  =  0.45  m  and  the  en5re  system  with  resistance  of  12.5  Ω  and  is  in  uniform  magne5c  field  coming  out  of  the  page  with  magnitude  of  0.75  T.    

indB

I = ΔVR

=vBLR

Direc5on:  •  Rod  is  moving  to  the  right  è  area  is  increasing  è  

flux  is  increasing    •  Induced  B  field  is  in  the  opposite  direc5on  (into  the  

page)  to  stop  the  change  •  by  right  hand  rule  current  is  clockwise    

I = 5m / s ⋅0.75T ⋅0.45m12.5Ω

I = 0.135A

What  is  given:  v  =  5  m/s  L  =  0.45  m  R  =  12.5  Ω  B  =  0.75  T  

Page 17: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Mechanical  output  

Motor:  a  generator  run  backwards  

Physics  150,  Prof.  M.  Nikolic   17  

Runs  an  alterna5ng  current  through  a  coil  of  wire  in  a  magne5c  field.    This  generates  a  torque  on  the  coil.  

•  As  the  coil  rotates  in  the  external  magne5c  field,  an  addi5onal  current  is  induced  in  it.  

•  The  direc5on  of  the  induced  current  is,  by  Lenz’s  Law,  counter  to  the  electric  current  we  are  running  through  the  coil  to  make  it  rotate  in  the  first  place.  

•  We  some5mes  say  this  counter-­‐current  is  the  result  of  Back  EMF.  

AC  

Page 18: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Transformers  

Physics  150,  Prof.  M.  Nikolic   18  

When  sending  power  via  power  lines,  we  want  to  send  as  much  as  possible:  P  =  IΔV  

•  High  voltage  (500  kV)  •  High  current  è  big  losses  due  to  resistance  in  wires  Ploss  =  IR2  

House  electronics,  however,  works  at  small  voltages  (120  V)  

Page 19: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Transformers  

Physics  150,  Prof.  M.  Nikolic   19  

A  transformer  is  a  device  used  to  change  the  voltage  in  a  circuit.    AC  currents  must  be  used.    

Apply  a  varying  voltage  to  the  primary  coil.      

 

This  causes  a  changing  magne5c  flux  in  the  secondary  coil.  

εp = −NpΔΦB

Δt

εs = −NsΔΦB

Δt

Page 20: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Transformers  

Physics  150,  Prof.  M.  Nikolic   20  

Flux  through  the  coils  stays  the  same  

εpεs=Np

Ns

The  “turns  ra5o”  gives  the  ra5o  of  the  EMFs.  

εpεs=IsI p=Np

Ns

•  Ns>Np  è  εs>εp     è  higher  output  voltage  è  step  up  transformer  

•  Ns<Np  è  εs<εp     è  lower  output  voltage  è  step  down  transformer  

Power  between  coils  stays  the  same  (P=IΔV)  è  the  current  is  the  inverse  of  the  EMF  ra5o.  

Page 21: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Step  down  transformers  

Physics  150,  Prof.  M.  Nikolic   21  

240,000  V  in  the  power  lines  

120  V  in  houses  

2,400  V  local  substa5ons  

Page 22: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Suppose  we  set  up  a  transformer  as  shown,  with  a  120  V  household  outlet  on  the  primary  winding.  What  voltage  is  delivered  at  the  secondary  winding  ?  

A.  240  V  B.  120  V  C.  60  V  D.  0  V  

Conceptual  ques5on  –  Transformers  Q2

10  tu

rns  

20  tu

rns  

εpεs=Np

Ns

εs = εpNs

Np

εs =120V2010

= 240V

Double  the  turns  è  double  the  voltage  Physics  150,  Prof.  M.  Nikolic   22  

30

Page 23: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Eddy  currents  

Physics  150,  Prof.  M.  Nikolic   23  

When  a  solid  conductor  is  moved  in  a  magne5c  field,  there  is  a  force  on  the  electrons  (remember  they  are  free  to  move  in  a  conductor),  which  then  move  in  the  metal.    This  movement  is  called  an  eddy  current.  

The  induced  currents  produce  magne5c  fields  which  tend  to  oppose  the  mo5on  of  the  metal.  

× × ×

×

× × ×

×

×

× ×

× × × ×

× × ×

× ×

Applica5on:    The  induc5on  stove  

Page 24: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Inductance  –  mutual  inductance  

Physics  150,  Prof.  M.  Nikolic   24  

The  induced  EMF  in  coil  2:  

ε2 = −N2ΔΦ21

ΔtFlux  through  coil  2  is  propor5onal  to  B1,  which  is  propor5onal  to  I1  

1212 MIN =Φ

Where  M  is  the  mutual  inductance.    It  depends  only  on  constants  and  geometrical  factors.    

tIM

tN

tIM

tN

Δ

Δ−=

Δ

ΔΦ−=

Δ

Δ−=

Δ

ΔΦ−=

21211

12122

ε

ε

The  unit  of  inductance  is  the  Henry  [1H  =  1V·∙s/A].  

Page 25: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Inductance  –  self-­‐inductance  

Physics  150,  Prof.  M.  Nikolic   25  

Self-­‐inductance  occurs  when  a  current  carrying  coil  induces  an  EMF  in  itself.  

.LIN =ΦThe  defini5on  of  self-­‐inductance  (L)    is  

ε = −N ΔΦΔt

= −L ΔIΔt

The  unit  of  inductance  (L)  is  the  Henry  [1H  =  1V·∙s/A].  

The  most  common  inductor  is  solenoid  

ℓℓ

AnANL 20

20 µµ =

⎟⎟

⎜⎜

⎛=

N  =  number  of  turns  in  solenoid  l  =  length  of  solenoid  A  =  cross  sec5onal  area  of  solenoid  n  =  number  turns  per  length  

Page 26: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Physics  150,  Prof.  M.  Nikolic   26  

Exercise:  Solenoid  The  inductance  of  a  solenoid  with  a  current  of  3  A,  450  turns  and  a  length  of  24  cm  is  7.3  mH.    (a)   What  is  the  cross-­‐sec5onal  area  of  the  solenoid?    (b)   What  is  the  average  induced  emf  in  the  solenoid  if  its  current  drops  from  3.2  A  

to  0  in  55  ms?  

ℓℓ

AnANL 20

20 µµ =

⎟⎟

⎜⎜

⎛=

(a)  

A = Llµ0N

2

A = 7.3×10−3H ⋅0.24m1.26×10−6H /m ⋅ 4502

2cm 6.68=A

(b)  

ε = −N ΔΦΔt

= −L ΔIΔt

ε = −LI final − Iinitialt final − tinital

ε = −7.3×10−3H 0A−3.2A0.055s− 0s

ε = 0.425 V

Page 27: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Energy  storage  in  inductors  

Physics  150,  Prof.  M.  Nikolic   27  

An  inductor  stores  energy  in  its  magne5c  field  according  to:    

2

21 LIU =

We  also  want  to  consider  the  energy  density  (energy  per  unit  volume)  of  a  magne5c  field:  

uB =U

Volume=

LI 2

2Volume=12µ0

B2

Page 28: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Physics  150,  Prof.  M.  Nikolic   28  

Exercise:  Energy  stored  in  solenoid  A  solenoid  with  radius  of  2  cm,  length  12  cm  and  9000  turns  carries  a  current  of  2  A.  a)  How  much  energy  is  stored  in  the  solenoid?  b)  Find  the  magne5c  energy  density.      

2

21 LIU =

and  L = µ0

N 2

!

"#

$

%&A

L = 1.26×10−6H /m ⋅90002 ⋅3.14 ⋅0.022m2

0.12m

L = µ0N 2

!

"#

$

%&πr2

L =1.06H

U =121.06H ⋅ (2A)2 = 2.12J

uB =U

Volume=

Ul ⋅πr2

Volume  of  a  cylinder:    V = l ⋅πr2

uB =2.12J

0.12m ⋅3.14 ⋅0.022m2

uB =14065J /m3

Page 29: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

LR  circuits  

Physics  150,  Prof.  M.  Nikolic   29  

We  can  construct  a  circuit  out  of  inductors  and  resistors.      The  circuit  will  behave  similar  to  an  RC  circuit,  with  a  5me  constant  given  by:  τ  =  L/R  

In  this  circuit,  the  inductor  acts  to  keep  the  current  in  the  circuit  from  instantly  reaching  the  value  of  ε/R.    Instead,  some  5me  must  elapse  before  the  circuit  virtually  reaches  that  current.  

I(t) = εR1− e−t/τ( )

I(t) = Imax 1− e−t/τ( )

Imax  =  ε/R  maximum  current  in  the  circuit  

Page 30: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

LR  circuits  

Physics  150,  Prof.  M.  Nikolic   30  

ΔV = εe−t/τVoltage  across  the  inductor  vs.  5me:  

Page 31: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

“Discharging  ”  inductor  

Physics  150,  Prof.  M.  Nikolic   31  

For  a  “discharging” inductor   τ/0)( teItI −=

The  LR  circuit  5me  constant  τ  plays  the  same  role  as  in  an  RC  circuit.  

where  I0  is  the  current  in  the  inductor  when  t  =  0.  

Page 32: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Physics  150,  Prof.  M.  Nikolic   32  

Exercise:  LR  circuit  A  coil  has  an  inductance  of  0.30  H  and  a  resistance  of  15.0  Ω.    The  coil  is  connected  to  a  12.0  V  ideal  baJery.      a)  Find  the  current  in  the  coil  axer  50  ms.  b)  What  is  the  total  energy  stored  in  the  coil?  c)  What  is  the  of  energy  dissipa5on  rate  in  the  coil  axer  50  ms?  

a)   I(t) = εR1− e−t/τ( ) Time  constant  given  by:  τ  =  L/R  =  0.30  H/15  Ω  =  0.02  s  

I(t) = 12V15Ω

1− e−0.05s/0.02s( )

I(t) = 0.73A

Maximum  current  in  the  circuit   Imax =εR= 0.8A

What  is  given:  L  =  0.3  H  R  =15.0  Ω  ε  =  12  V  t  =  50  ms    

Page 33: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Physics  150,  Prof.  M.  Nikolic   33  

Exercise:  LR  circuit  A  coil  has  an  inductance  of  0.30  H  and  a  resistance  of  15.0  Ω.    The  coil  is  connected  to  a  12.0  V  ideal  baJery.      a)  Find  the  current  in  the  coil  axer  50  ms.  b)  What  is  the  total  energy  stored  in  the  coil?  c)  What  is  the  of  energy  dissipa5on  rate  in  the  coil  axer  50  ms?  

b)   Total  energy  stored  in  the  coil  depends  on  maximum  current  

U =12LImax

2

U =120.3H ⋅ (0.8A)2 = 0.096J

c)  Energy  dissipa5on  rate  is  equal  to  the  power  dissipated  

P = I 2R

P = (0.73A)215Ω = 8W

What  is  given:  L  =  0.3  H  R  =15.0  Ω  ε  =  12  V  t  =  50  ms    

Page 34: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Review  

Physics  150,  Prof.  M.  Nikolic   34  

ΔV = vBL

I = ΔVR

=vBLR

Voltage  and  current  for  moving  rod  

ΦB = BAcosθMagne5c  flux  

ε = −N ΔΦB

Δt

Faraday’s  law  

tNBA ωωε sin=Electric  generators  

εpεs=IsI p=Np

Ns

Transformers  

tIM

tN

tIM

tN

Δ

Δ−=

Δ

ΔΦ−=

Δ

Δ−=

Δ

ΔΦ−=

21211

12122

ε

ε

Mutual  inductance  

Page 35: Physics’150 Electromagne5c’induc5oncsma31.csm.jmu.edu/.../Lectures/Phys150/20ElectromagneticInducti… · closed’circuitare’in’ relavemoon,’there’will’be’an’induced’EMF’

Review  

Physics  150,  Prof.  M.  Nikolic   35  

ε = −N ΔΦΔt

= −L ΔIΔt

Faraday’s  law  for  self  inductance  

ℓℓ

AnANL 20

20 µµ =

⎟⎟

⎜⎜

⎛=

Inductance  of  a  solenoid  

2

21 LIU =

Energy  stored  in  an  inductor  

uB =U

Volume=

LI 2

2Volume=12µ0

B2

Magne5c  energy  density  

I(t) = εR1− e−t/τ( )

I(t) = Imax 1− e−t/τ( )

ΔV = εe−t/τ

“Charging”  an  inductor  

τ/0)( teItI −=

“Discharging”  an  inductor