35
October 11-16 2009, Chernogolovka 1 Physikalisch-Technische Bundesanstalt, Braunschweig M. Khabipov , D. Balashov, F. Maibaum, A. Zorin Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany V. A. Oboznov, V. V. Bolginov, A.N. Rossolenko and V. V. Ryazanov Institute of Solid State Physics, Chernogolovka, 142432 Moscow region, Russia The work was supported by DFG (German Science Foundation) through grant ZO124/2-1 and the joint grant of DFG and the Russian Foundation of Basic Researches and grants of the Russian Academy of Sciences. Application of phase shifters in superconducting digital circuits

Physikalisch-Technische Bundesanstalt, Braunschweig

  • Upload
    paloma

  • View
    38

  • Download
    0

Embed Size (px)

DESCRIPTION

Application of phase shifters in superconducting digital circuits. M. Khabipov , D. Balashov, F. Maibaum, A. Zorin Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany V. A. Oboznov, V. V. Bolginov, A.N. Rossolenko and V. V. Ryazanov - PowerPoint PPT Presentation

Citation preview

Page 1: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 1

Physikalisch-Technische Bundesanstalt, Braunschweig

M. Khabipov, D. Balashov, F. Maibaum, A. ZorinPhysikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

V. A. Oboznov, V. V. Bolginov, A.N. Rossolenko and V. V. Ryazanov Institute of Solid State Physics, Chernogolovka, 142432 Moscow region, Russia

The work was supported by DFG (German Science Foundation) through grant ZO124/2-1 and the joint grant of DFG and the Russian Foundation of Basic Researches and grants of the Russian Academy of Sciences.

Application of phase shifters in superconducting digital circuits

Page 2: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 2

Outline

• Introduction• Basic principles of Rapid Single Flux Quantum (SFQ) circuits• SFQ circuits fabrication technology at PTB

• Operation of an SFQ circuits with integrated phase shifters based on – superconducting loop with trapped flux quantum– Superconductor-Ferromagnetic-Superconductor -junction

• Conclusion • Outlook

Page 3: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 3

V

ICJJ JJ - Josephson junction

C – self-capacitance

2c

c 20 p

2ICR2C= Stewart-McCumber parameter

V

I

Ic

IReturn

0

Underdamped JJ Overdamped JJ

C

I

V

Ic

IReturn

C

0

RSJ model of Josephson tunnel junction

Rdamping resistor

Page 4: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 4

V

I

Ic

a short trigger pulse

I(t)

time

“sweep” of the

dc I-V curve

V(t)Generation ofa SFQ pulse

(strictly 2-leap of phase!)

0V(t)dtResult:

Idc bias

This pulse (carrier of information) can be used as a trigger pulse

for other junctions - the basis of Rapid Single Flux Quantum circuits!

(Likharev et al. 1985)

Reaction on a short pulse

Advantages of RSFQ: quantized information, fast (typically, few ps) switching time, low level of dissipation

R

a few Ohm

Page 5: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 5

SFQ pulse generation move to the

adjacent minimum

U() = - EJcos - (0/2) I +const

washboard potential

effect of the trigger pulse!

R

Low amplitude signals (noise) not reproduced by the circuita noise discriminator

large damping due toexternal shunt resistor

Page 6: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 6

Definition of coding in RSFQ logic

„0“

„0“

„1“

„1“ „0“

„0“

The binary code: presence (absence) of SFQ pulse between adjacent clock SFQ pulses

(for comparison) different voltage levels (CMOS, TTL, “latching” logic)

Time, a. u.

V/Vc

V/Vc

V/Vc

clock pulses

information pulse

information pulse

Page 7: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 7

RSFQ dc/SFQ and SFQ/dc converter circuit

dc/SFQconverter

T-Flipflop with SFQ/dc converter

Josephson transmission line

J 20L1

J 1 9

J 1 7 J 18

L2

R

I _L

J 2 1 J 2 3

J 2 4

J 2 2

J 2L i n

J 3J 1 J 4 J 5

I _in

V_out

I _b

Circuit provide generation and back conversion of SFQ pulses into voltage signals

V. Kaplunenko et al. IEEE Trans. Magnetics 25, 861-864, 1989

K. Likharev and V. Semenov IEEE Trans. Appl. Supercond. 1, 3-28, 1991

Page 8: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 8

RSFQ T-flip-flop circuitCircuit provides a frequency division of SFQ pulses

K. Likharev and V. Semenov IEEE Trans. Appl. Supercond., 1, 1991

jc = 100 A/cm2 operation frequency f = Vc /Ф0 =Ic Rn /Ф0 up to 40 GHz power consumption P = V Ibias = 15 nW

As result frequency division !

Ibias

Page 9: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 9

T-flip-flop circuit, results of simulation

Phase drop, input junction

Phase drop, TFF junctions

Voltage, input junction

Voltage, TFF junction

Voltage, TFF junction

Page 10: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 10

Frequency division realised in CMOS logic(for comparison)

Pdyn = CeffV2DD x f

For example, at 30fF/gate at 100MHz and VDD = 5 V, 75 μW is dissipated per gate

UMBC, University in Mariland, Advanced VLSI designhttp://www.csee.umbc.edu

.The circuit consists of 10 gates and includes about 50 transistors

Paul Horowitz, Winfield Hill. The Art of Electronics,Cambridge University Press, Second Edition, 1989

Page 11: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 11

SFQ circuits Nb/Al thin-films fabrication technology established at PTB

Shielding of an electromagnetic noise, realization of the low value inductances

realization of the shunt and bias current resistors

jc between 100 A/cm2 and 1 kA/cm2

-deposition and etching of The Nb ground plane

- anodization of the ground plane

-deposition of the Nb/AlxOy/Nb trilayer-deposition of a thin SiO2 layer

- deposition and etching of the

- deposition of the SiO2 isolation layer- etching of the contact holes

Cr/Pt/Cr resistor trilayer

- deposition of the SiO2 isolation layer

Page 12: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 12

-etching of the thin SiO2 isolation layer and the Nb counter electrode, definition of JJs

-anodization with the thin SiO2 layer as a mask-etching of the base electrode

-deposition and etching of the SiO2 isolation layer

J J

S i O2- a n o d iz a t io n m a s k

A l2O

3

N b 2O 5

S i O2

SFQ circuits Nb/Al thin-films fabrication technology established at PTB

Smallest junction area A=10 µm2

Page 13: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 13

Cross-section of shunted Josephson junction in Nb/Al technology

Cr/Pt/Cr damping resistor Rsq=2Ω/sq.

Tunnel barrier AlxOy

Thermally oxidized silicon substrate

JJ

Si

SiO2

Nb

Al

Al2O3

Nb2O5

Cr/Pt/Cr

Vol

tage

V

A = 24 µm2

Ic 20 µA

Rn 59 Ω

IR

T = 4.2 K

(1m

V/d

iv)

IV curve of the underdamped JJ

Rsh IC

Current I (20µA/div)

IV curve of the overdamped JJ

Vol

tage

V

(1

00µ

V/d

iv)

JJ

Current I (20µA/div)

A = 24 µm2

Ic 24 µA

Rsh 4 Ω

IC

C>>1 C ~ 1

T = 4.2 K

Page 14: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 14

Qubit control and read out: low back action on Josephson qubit cells (low value Ic, large value of shunt resistor, low power

consumption)

Low Ic value due to Ic x L ~Ф0 result in proportionally increased value of inductances L, circuits have a large area and became sensitive to an electromagnetic noise

Physikalisch-Technische Bundesanstalt, Braunschweig

Why we need phase shifting elements in RSFQ?

Page 15: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 15

TFF with RC shunted Josephson junctions. Parameters: jc=100 A/cm2, Ic= 16µA, L=130 pH

Conventional TFF with large storing inductance

L

Symmetry of the TFF states is due to phase drop of about created by dc control current:

Compact phase shifters are required

0-JJ

L

Superconducting loop with trapped flux quanta

The shift can also be realized on the basis of HTS junctions exhibiting the d-wave symmetry of the order parameter (see T. Ortlepp et al. Science 312, 1495, 2006)

Icontr

=

SFS

Page 16: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 16

Superconducting loop with trapped flux quantum as a phase shifting element

I shifter

I shifter

External flux applied at T > TC Nb

(T = 10 K)

External flux turned of when T < TC Nb (liquid helium temperature T = 4.2K). Quantized flux

trapped trapped = n 0

0 2.07 mVps (single flux quantum)

trapped = n 0 Flux quantization law

The work carried out in collaboration with the group in TU Ilmenau

It was proposed as a phase-bias circuit for the Josephson qubit in J.B. Majer et al. APL 80, 3638, 2002.

T = 10 K T = 4.2 K

Page 17: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 17

Superconducting loop with trapped flux quantum as a phase shifting element

The work carried out in collaboration with the group in TU Ilmenau

During the cooldown, the flux is trapped in the ground plane hole.

Pinning a flux quanta into ground plane hole

Page 18: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 18

Conventional TFF and TFF with integrated π – shifter

J4J3

Lshifter

J1 J2

TFF input

TFF out2TFF out1

J4J3

Lint

J1 J2

TFF input

TFF out2TFF out1

Schematic diagram of the ordinary TFF circuit

Schematic diagram of the TFF with integrated -shifter

The large quantizing inductance Lint can be replaced by passive π – shifter, ensuring bistable functioning of the TFF

D. Balashov et al., IEEE Trans. Appl. Supercond. 17, 142, 2007

Page 19: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 19

Simpler circuit:dc-interferometer with integrated π–shifter

Microphotograph of the sample

Circuit parameters:

IC 270 µA, RN 0.8 , Lshifter 7 pH (at T=4.2K), and Lshifter 15 pH (at T=10K),

Flux bias current for single 0 operation mode Icontr 200 µA

Control line

JJJJ

VoutIbias

IsweepIsweep

dc-interferometer with integrated π – shifter

J2J1

Ibias Vout

IsweepIsweep

-shifter

+

Page 20: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 20

Experimental testing of the dc-interferometer with integrated π–shifter

No flux trapped in the shifter loopIcontr 0 µA

Voltage-flux characteristics of the dc-interferometer with integrated shifter loop realized in jC=1 kA/cm2 Nb/Al technology

1 0 trapped in the shifter loopIcontr 200 µA

V (

20

µV

/div

)

Flux Current Isweep ( 200 µA/div)

0/2

0

J2J1

Ibias Vout

IsweepIsweep

Voltage-flux characteristics

Page 21: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 21

TFF circuit with integrated π–shifter

Microphotograph of the sample

TFF input

-shifter

+

J4J3

TFF separate bias

Control line

TFF out-1 TFF out-2 Lshifter

J1 J2

TFF input

TFF out-2TFF out-1

Schematic diagram of the TFF with integrated -shifter

Page 22: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 22

Block-diagram of tested circuit including TFF with integrated π – shifter

TFF with -shifter should operate as a frequency divider 2:1

-shifter

+

Control line

V_out2V_out1

(Divider 2:1)(Divider 2:1)

I_in

Page 23: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 23

Experimental testing of the circuit with integrated π–shifter

Circuit realized in Nb/Al technology with jC=1k A/cm2

When no flux trapped in the

π – shifter loop fout1 = fout2= fin/2

Bias current margin of the circuit is 20%

Vol

tage

(2

00 µ

V/d

iv)

Cur

rent

(50

0 µ

A/d

iv)

Time t ( 5 ms/div)

When 0 trapped in the

π – shifter loop fout1 = fout2= fin/4

Bias current margin of the circuit is 17%

I_in

I_in

V_out2

V_out1

V_out2

V_out1

Page 24: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 24

-junction as a phase inverting element

Bulaevsky, Kuzii and Sobyanin, JETP Lett. (1977)

0-junctionenergy minimum at 0

-junctionenergy minimum at

I=Icsin[+]= -Icsin

I

I

E

E

0 -

22

Josephson current-phase relation

π-junction current- phase relation

E= EJ[1-cos]

I=Icsin

-JJSymbolic notation

- E= EJ[1-cos(+ )]=EJ[1+cos]

Page 25: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 25

Superconductor-Ferromagnet-Superconductor (SFS) junction: 0-state and π–state

-junction

“”- state

I = Icsin(+) = - Icsin()

Nb-Cu0.47Ni0.53-Nb

“0”-state I=Icsin

“0”-state I=Icsin

V. A. Oboznov et al. PRL 96, 197003, 2006

dF = 12-22 nm

Page 26: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 26

Cross-section of shunted Josephson junction in Nb/Al technology and ferromagnetic based junction

SIS-junctionjc=100 A/cm2

A = 10 µm2

SFS-junctionjc=850 A/cm2

A = 8x8 µm2

Topologically, the SFS junction is placed between Nb-wiring nodes of pre-fabricated circuit.

Page 27: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 27

dc-interferometer with integrated SFS π-junction

Voltage-flux characteristics of the dc interferometers:a) conventional, b) with SFS p-junction

Page 28: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 28

Integration of the - SFS junction into TFF circuit

JTL JTL

JTLIn

I_b

Out2Out1

JTL JTL

JTLIn

I_b

Out2Out1

∆ = π

L

π-SFS

JJ

JJ

JJ

JJ

JJ JJ

JJ JJ

Conventional TFF circuit TFF with integrated π-SFS junction

Proposed in: A. Ustinov and V. Kaplunenko J. Appl. Phys. 94, 5405, 2003

Page 29: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 29

Integration of the - SFS junction into TFF circuit

Phase drop, input junction

Phase drop, TFF junctions

Voltage, TFF junction

Voltage, TFF junction

Voltage, -junction

operation ranges: jc = 32%, Ib = 40%, L = 50% - junction substituted

by fixed phase shift of and junction having Ic of large value

Page 30: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 30

Microphotograph of integrated circuit

JTL

JTL

TFF

SFQ/dc

SFQ/dc

50 µmI_inI_bias

V_out2V_out1

SFS -junction

dc/SFQ

SFQ pulses generated by dc/SFQ converter, processed by TFF with integrated -SFS junction and converted to the voltage levels by SFQ/dc converter circuits

Page 31: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 31

TFF circuit with integrated SFS π–junction

a) Block diagram of the test circuit b) microphotograph of the TFF circuit

Page 32: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 32

Proof of correct operation of TFF circuit with integrated SFS π–junction

50 m

T F F o u t 2

T F F - c o r e c e l l

In

pu

t

T F F o u t 1

S F S j u n c t i o n - 20 A/div Iin

Vout1

Vout2

Time t, 10 ms/div

50 V/div

50 V/div

T in T T 4T out1 out2 in = =

When SFS junction is in a π–state then circuit operates properly

Tout1 = Tout2= 4Tin

Bias current margin of the circuit is 19% and limited by bias current margins of dc/SFQ converters!

Circuit realized in Nb/Al technology with jC=100 A/cm2

Page 33: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 33

Conclusion

• We have successfully integrated the phase shifting elements in RSFQ circuits without deep modification of currently available technological process.

• The following phase shifting elements were experimentally studied:

– superconducting ring with trapped

flux quantum

– SFS -junctions

0

-JJ

Page 34: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 34

Outlook

Measurements of operation ranges of bias current of SFQ circuits with integrated SFS -junctions

- design of the TFF circuit with separate bias currentBit error rate (BER) measurements

- realisation of the TFF circuit incorporated into ring oscillator

Page 35: Physikalisch-Technische Bundesanstalt, Braunschweig

October 11-16 2009, Chernogolovka 35

Integration of the - SFS junction into TFF circuit

Schematic for the circuit simulation, operation ranges, jc = 32%, Ib = 40%, L =

50%- junction substituted by fixed phase shift of and junction having Ic of large value