Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

Embed Size (px)

Citation preview

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    1/74

    STUDY ON THE PERFECT NUMBERS AND MERSENNE'S PRIME WITH

    NEW DEVELOPMENTS.

    POSSIBLE MATHEMATICAL CONNECTIONS WITH SOME SECTORS OF

    STRING THEORY

    Pier Francesco Roggero, Michele Nardelli1,2

    , Francesco Di Noto

    1 Dipartimento di Scienze della Terra

    Universit degli Studi di Napoli Federico II, Largo S. Marcellino, 10

    80138 Napoli, Italy

    2 Dipartimento di Matematica ed Applicazioni R. Caccioppoli

    Universit degli Studi di Napoli Federico II Polo delle Scienze e delle Tecnologie

    Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

    Abstract

    In this paper we show that Perfect Numbers are only even plus many other interesting relations

    about Mersennes prime. Furthermore, we describe also various equations, lemmas and theoremsconcerning the expression of a number as a sum of primes and the primitive divisors of Mersenne

    numbers. In conclusion, we show some possible mathematical connections between some equations

    regarding the arguments above mentioned and some sectors of string theory (p-adic and adelic strings

    and Ramanujan modular equation linked to the modes corresponding to the physical vibrations of the

    bosonic strings).

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    2/74

    Versione 1.0

    14/12/2012

    Pagina 2 di 74

    2

    Index:

    1 PERFECT NUMBERS ......................................................................................................................... 32 NUMBERS OF FORM

    p2 - 2: PREDICTION AND FREQUENCY 'OF PRIME NUMBERS ......... 82.1 SUMMARY: ........................................................................................................................24

    3. CONNECTION NUMBERSp2 - 2 WITH MERSENNE PRIMES .................................................25

    3.1PREDICTIONMERSENNENUMBERS............................................................................263.2 FACTORIZATION OF 5212 - 2 (A NUMBER OF 157 DIGITS).......................................293.3 PRIME NUMBERS ARISING FROM OTHER FORMULAS ..........................................313.4 PREDICTION OF THE FACTORS P WHICH GIVE RISE TO PRIME NUMBERS

    WITHIN A GROUP pa b ......................................................................................................42

    4. ON SOME EQUATIONS, LEMMAS AND THEOREMS CONCERNING THE EXPRESSION OF

    A NUMBER AS A SUM OF PRIMES...48

    4.1 ON SOME THEOREMS AND EQUATIONS CONCERNING THE PRIMITIVE

    DIVISORS OF MERSENNE NUMBERS.61

    5. MATHEMATICAL CONNECTIONS WITH P-ADIC AND ADELIC STRINGS AND WITHRAMANUJAN MODULAR EQUATION (APPROXIMATION TO ).65

    5.1 MATHEMATICAL OBSERVATIONS OF FRANCESCO DI NOTO..70

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    3/74

    Versione 1.0

    14/12/2012

    Pagina 3 di 74

    3

    1 PERFECT NUMBERS

    We show that the perfect numbers are just even.

    Consider any integer positive number n and we see to divide it by all the divisors of the powers of 2

    summing all its proper divisors, i.e. except for n:

    1 + 2 +2n + 4 +

    4n + 8 +

    8n + 16 +

    16n + 32 +

    32n + = n

    If we divide n by 2 we add, obviously,2

    nand so on.

    The sum of all the powers of 2 gives, with p elements:

    p2 - 1

    While leading to the second member all the (p-1) factors in n we have:

    n ( 2

    n

    + 4

    n

    + 8

    n

    + 16

    n

    + 32

    n

    +) = 12

    n

    p

    then:

    1 + 2 + 4 + 8 + 16 + 32 + = n (2

    n+

    4

    n+

    8

    n+

    16

    n+

    32

    n+)

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    4/74

    Versione 1.0

    14/12/2012

    Pagina 4 di 74

    4

    p2 - 1 = 12

    np

    And this is proved the formula that a perfect number is calculated by the following equation:

    12 p (p2 - 1) = n

    with p prime.

    p must be prime becausep2 - 1 should give a prime number.

    In fact, multiplying p2 - 1 * 12 p we must not have other divisors except the powers of 2, or, p2 - 1

    and the prime numberp2 - 1.

    We see some examples:

    1) If we choose p = 3 (p prime) we have:

    1 + 2 +4 = n ( 2

    n

    + 4

    n

    )

    7 =4

    n

    32 - 1 = 132

    n

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    5/74

    Versione 1.0

    14/12/2012

    Pagina 5 di 74

    5

    And we get the perfect number n = 28

    ----------------------------------------------------------------------------------------------------------------------------

    2) If we choose p = 4 (p is not prime) we have:

    1 + 2 + 4 + 8= n (2

    n+

    4

    n+

    8

    n)

    15 =8

    n

    42 - 1 = 142

    n

    n = 120 abundant number.

    ----------------------------------------------------------------------------------------------------------------------------

    If we now repeat the algorithm with any integer positive number n and we see to divide it for all

    divisors of powers of 3 by summing all its proper divisors, i.e. except for n, we have:

    1 + 3 + 9 + 27 + 81 + = n (3

    n+

    9

    n+

    27

    n+

    81

    n+ +)

    2

    13p = 1

    3-p2-p1-p

    3

    n....)33(3

    p

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    6/74

    Versione 1.0

    14/12/2012

    Pagina 6 di 74

    6

    Now it is IMPOSSIBLE that the numerator of the 2nd member goes to 1.

    More precisely it is not possible to have an integer number but only a fractional number, because at

    numerator we have a number divisible by 3, while at denominator we have a prime number different

    from 3.

    For example, for p = 3:

    1 + 3 + 9 = n (3

    n+

    9

    n)

    13 =9

    5n

    2

    133 = 13

    2-31-3

    3

    n1)3(3

    n =5

    117

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    7/74

    Versione 1.0

    14/12/2012

    Pagina 7 di 74

    7

    If we now repeat the algorithm with any integer positive number n and we see to divide it for all the

    divisors of the powers of another prime number (5, 7, ...) summing all its proper divisors, i.e. except

    for the same n we ALWAYS have:

    It is IMPOSSIBLE that the numerator of the 2nd member goes to 1.

    More precisely it is not possible to have an integer number but only a fractional number, because at

    numerator we have a number divisible by the prime number p that we have chosen, while at

    denominator we have a prime number different from p ( p).

    If we choose any integer positive number n and we see to divide it for all the divisors of the powers of

    another composite number (6, 9, ...) summing all its proper divisors, i.e. except for the same n we

    have ALWAYS and a FORTIORI (because between the factors we have also the factors of the

    composite number) that:

    It is IMPOSSIBLE that the numerator of the 2nd member goes to 1.

    More precisely it is not possible to have an integer number but only a fractional number, because at

    numerator we have a number divisible by the composite number k that we have chosen, while at

    denominator we have a prime number.

    This shows that the only perfect numbers are of the form:

    12 p (p2 - 1) = n

    with p prime and that can be only EVEN.

    These are therefore perfect numbers that can only be EVEN, the odds cannot be there for what that we

    have seen before and then it comes to seeking out the Mersenne primes to find a perfect number.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    8/74

    Versione 1.0

    14/12/2012

    Pagina 8 di 74

    8

    2 NUMBERS OF FORM p2 - 2: PREDICTION AND FREQUENCY OF PRIME

    NUMBERS

    We see the characteristic of the numbers:

    p2 - 2

    with p positive integer with p> = 2

    Tab 1:

    p 2^p 2 Factorizationof 2^p 2

    2 2 23 6 2 34 14 2 75 30 2 3 56 62 2 317 126 2 3^278 254 2 1279 510 2 3 5 17

    10 1022 2 7 7311 2046 2 3 11 3112 4094 2 23 8913 8190 2 3^2571314 16382 2 819115 32766 2 3 43 12716 65534 2 7 31 15117 131070 2 3 5 17 25718 262142 2 13107119 524286 2 3^3 7 19 7320 1048574 2 52428721 2097150 2 3 5^211 31 4122 4194302 2 7^2127 33723 8388606 2 3 23 89 68324 16777214 2 47 178481

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    9/74

    Versione 1.0

    14/12/2012

    Pagina 9 di 74

    9

    25 33554430 2 3^25 7 13 17 24126 67108862 2 31 601 180127 134217726 2 3 2731 819128 268435454 2 7 73 26265729 536870910 2 3 5 29 43 113 12730 1073741822 2 233 1103 208931 2147483646 2 3^27 11 31 151 33132 4294967294 2 214748364733 8589934590 2 3 5 17 257 6553734 17179869182 2 7 23 89 59947935 34359738366 2 3 43691 13107136 68719476734 2 31 71 127 12292137 137438953470 2 3^35 7 13 19 37 73 10938 274877906942 2 223 61631817739 549755813886 2 3 174763 52428740 1099511627774 2 7 79 8191 12136941 2199023255550 2 3 5^211 17 31 41 6168142 4398046511102 2 13367 16451135343 8796093022206 2 3^27^243 127 337 541944 17592186044414 2 431 9719 209986345 35184372088830 2 3 5 23 89 397 683 211346 70368744177662 2 7 31 73 151 631 2331147 140737488355326 2 3 47178481 279620348 281474976710654 2 2351 4513 1326452949 562949953421310 2 3^25 7 13 17 97 241 257 67350 1,1259E+15 2127443267679859351 2,2518E+15 2311312516011801405152 4,5036E+15 2 7103 2143 1111913107153 9,0072E+15 2355315716132731819154 1,80144E+16 26361694312039440155 3,60288E+16 23^4719738721126265756 7,20576E+16 2233189881 3191 20196157 1,44115E+17 2351729431131271579032158 2,8823E+17 2732377 524287121284759 5,76461E+17 235923311032089303316960 1,15292E+18 2179951320343178033761 2,30584E+18 23^25^271113314161151331132162 4,61169E+18 2230584300921369395163 9,22337E+18 23715827883214748364764 1,84467E+19 27^27312733792737649657

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    10/74

    Versione 1.0

    14/12/2012

    Pagina 10 di 74

    10

    65 3,68935E+19 2351725764165537670041766 7,3787E+19 231819114529514355811167 1,47574E+20 23^272367896832085759947968 2,95148E+20 219370772176183825728769 5,90296E+20 235137953263174369113107170 1,18059E+21 27471784811005267893803971 2,36118E+21 23113143711272818617112292172 4,72237E+21 22284794854412121288583373 9,44473E+21 23^35713171937731092414333873774 1,88895E+22 24392298041936197313275 3,77789E+22 2322317772578108361631817776 7,55579E+22 273115160118011008011056720177 1,51116E+23 23522945717476352428752531378 3,02231E+23 2238912758128364324911295979 6,04463E+23 23^2779273181911213692236689180 1,20893E+24 22687202029703111349113976781 2,41785E+24 235^21117314125761681427825536182 4,8357E+24 27732593711192626579768583983 9,67141E+24 238313367164511353883141869784 1,93428E+25 216757912614113275649087721 85 3,86856E+25 23^257^2132943113127337142954191444986 7,73713E+25 231131071952097280633375843187 1,54743E+26 2343197192099863293203100740388 3,09485E+26 27233110320894177985773715546389 6,1897E+26 23517238935339768321132931542412790 1,23794E+27 2618970019642690137449562111 91 2,47588E+27 23^3711193173151331631233111883700192 4,95176E+27 212791181911129011532314047153793 9,90352E+27 235472771013165730269178481279620394 1,9807E+28 27214748364765881228865355307995 3,96141E+28 23283235145131326452916576853752196 7,92282E+28 2311915242874207787513032715267197 1,58456E+29 23^257131797193241257673655372225337798 3,16913E+29 21144713842607235828485645766393 99 6,33825E+29 234312743639531272974432676798593

    100 1,26765E+30 2723738919915364959974933057806959101 2,5353E+30 235^3113141101251601180140518101268501102 5,0706E+30 27432339208719341117531003194129103 1,01412E+31 23^271033072143285765291111943691131071104 2,02824E+31 225501837993976656429941438590393

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    11/74

    Versione 1.0

    14/12/2012

    Pagina 11 di 74

    11

    105 4,05648E+31 2351753157161327318191858001308761441106 8,11296E+31 27^2317112715133729191106681122921152041107 1,62259E+32 231076361694312039440128059810762433108 3,24519E+32 2162259276829213363391578010288127 109 6,49037E+32 23^4571319377310987211246241262657279073110 1,29807E+33 2745988807870035986098720987332873111 2,59615E+33 2311^22331896838812971319120196148912491112 5,1923E+33 2722332167926295457319020217616318177113 1,03846E+34 23517294311312725751531579032154410972897114 2,07692E+34 23391232796599318685691066818132868207115 4,15384E+34 23^27571323771747635242871212847160465489116 8,30767E+34 231471495117848140369612646507710984041117 1,66153E+35 23559233110320893033169107367629 536903681118 3,32307E+35 27737993765538191861131213697830118297119 6,64614E+35 2328333717117995118247260413203431780337120 1,32923E+36 21272392023113107162983048367131105292137121 2,65846E+36 23^25^271113173141611512413311321616814562284561122 5,31691E+36 223897271786393878363164227858270210279 123 1,06338E+37 23 7686143364045646512305843009213693951124 2,12676E+37 27133673887047164511353177722253954175633125 4,25353E+37 23555818681494773847737158278832147483647126 8,50706E+37 23160118012690898060014710883168879506001127 1,70141E+38 23^37^219437312733754199273764965777158673929128 3,40282E+38 2170141183460469231731687303715884105727 129 6,80565E+38 2351725764165537274177670041767280421310721130 1,36113E+39 274319719209968311053036065049294753459639 131 2,72226E+39 23113113127314098917623851145295143558111132 5,44452E+39 226310350794431055162386718619237468234569 133 1,0889E+40 23^257132367893976832113208573127095994794327489134 2,17781E+40 2127524287163537220852725398851434325720959 135 4,35561E+40 2373276571937077217618382572876713103182899136 8,71123E+40 2731731512716312331126265734803149971617830801137 1,74225E+41 23517^213795326317436911310713546892879347902817

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    12/74

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    13/74

    Versione 1.0

    14/12/2012

    Pagina 13 di 74

    13

    167,57912614113275649087721 83k+84191,420778751,30327152671 95k+96

    193,22253377 96k+97199,153649,599749,33057806959 99k+100

    223,616318177 37k+38229,525313 76k+77

    233,1103,2089 29k+30239,20231,62983048367,131105292137 119k+120

    17,241 24k+25251,4051 50k+51

    17,257 16k+17263,10350794431055162386718619237468234569 131k+132

    271,348031,49971617830801 135k+136277,1013,1657,30269 92k+93

    281,86171 70k+71283,165768537521 94k+95

    307,2857,6529 102k+10331,331 30k+31

    127,337 21k+22353,29315424127 88k+89

    397,2113 44k+45431,9719,2099863 43k+44

    433,38737 72k+73439,2298041,9361973132 73k+74

    571,160465489 114k+115577,487824887233 144k+145

    601,1801 25k+26631,23311 45k+46

    641,6700417 64k+6589,683 22k+23

    881,3191,201961 55k+56911,112901153,23140471537 91k+92937,6553,86113,7830118297 117k+118

    1429,14449 84k+851777,25781083 74k+75

    2351,4513,13264529 47k+482593,71119, 97685839 81k+82

    2687,202029703,1113491139767 79k+802731,8191 26k+27

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    14/74

    Versione 1.0

    14/12/2012

    Pagina 14 di 74

    14

    2833,37171,1824726041 118k+1193391,23279,65993,1868569,1066818132868207 113k+114

    4177,9857737155463 87k+885153,54410972897 112k+113

    127,5419 42k+436361,69431,20394401 53k+54

    8191 13k+1411447,13842607235828485645766393 97k+98

    14951,4036961,2646507710984041 115k+11613367,164511353 41k+42

    29191,10668,152041 105k+10632377,1212847 57k+5843691,131071 34k+35

    31,61681 40k+4117,65537 32k+33

    87211,262657 54k+5592737,649657 63k+64

    100801,10567201 75k+76131071 17k+18

    174763,524287 38k+39179951,3203431780337 59k+60

    228479,48544121,212885833 71k+727,262657 27k+28

    32167926295457319020217 111k+112524287 19k+20

    89,599479 33k+34724153,158822951431,5782172113400990737 143k+144

    858001,308761441 104k+105178481,2796203 46k+47246241, 279073 108k+109

    127,15790321 56k+5731,18837001 90k+917,22366891 78k+79

    48912491 110k+111107367629,536903681 116k+117

    715827883,2147483647 62k+63745988807,870035986098720987332873 109k+110

    193707721,761838257287 67k+682147483647 31k+32

    2550183799,3976656429941438590393 103k+104

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    15/74

    Versione 1.0

    14/12/2012

    Pagina 15 di 74

    15

    31,4278255361 80k+814375578271,646675035253258729 141k+142

    61,4562284561 120k+1212099863,2932031007403 86k+87

    127,4363953127297 98k+99127,4432676798593 49k+50

    2690898060014710883168879506001 125k+1267432339208719,341117531003194129 101k+102

    7,10052678938039 69k+7031,145295143558111 65k+66

    127,581283643249112959 77k+787,658812288653553079 93k+94,2305843009213693951 61k+62

    31,9520972806333758431 85k+867,11053036065049294753459639 129k+130,618970019642690137449562111 89k+90

    ,162259276829213363391578010288127 107k+108127,163537220852725398851434325720959 133k+13431,2679895157783862814690027494144991 145k+146

    ,170141183460469231731687303715884105727 127k+128

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    16/74

    Versione 1.0

    14/12/2012

    Pagina 16 di 74

    16

    TAB 2:

    factors frequency

    2 always3 2k+17 3k+4

    3,5 4k+531 5k+6

    127 7k+83,5,17 8k+9

    7,73 9k+1011,31 10k+1123,89 11k+12

    5,7,13 12k+138191 13k+14

    43,127 14k+1531,151 15k+1617,257 16k+17131071 17k+18

    7,19,73 18k+19524287 19k+2031,41 20k+21

    127,337 21k+2289,683 22k+23

    47,178481 23k+2417,241 24k+25

    601,1801 25k+262731,8191 26k+277,262657 27k+28

    3,5,43,29,113,127 28k+29233,1103,2089 29k+30

    31,331 30k+312147483647 31k+32

    17,65537 32k+3389,599479 33k+34

    43691,131071 34k+3571,122921 35k+36

    37,109 36k+37

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    17/74

    Versione 1.0

    14/12/2012

    Pagina 17 di 74

    17

    223,616318177 37k+38174763,524287 38k+39

    79,121369 39k+4031,61681 40k+41

    13367,164511353 41k+42127,5419 42k+43

    431,9719,2099863 43k+44397,2113 44k+45

    631,23311 45k+46178481,2796203 46k+47

    2351,4513,13264529 47k+4897,673 48k+49

    127,4432676798593 49k+50251,4051 50k+51

    103,2143,11119 51k+5253,157,1613 52k+53

    6361,69431,20394401 53k+5487211,262657 54k+55

    881,3191,201961 55k+56127,15790321 56k+57

    32377,1212847 57k+5859,3033169 58k+59

    179951,3203431780337 59k+6061,1321 60k+61

    ,2305843009213693951 61k+62715827883,2147483647 62k+63

    92737,649657 63k+64641,6700417 64k+65

    31,145295143558111 65k+6667,20857 66k+67

    193707721,761838257287 67k+68137,953,26317 68k+69

    7,10052678938039 69k+70281,86171 70k+71

    228479,48544121,212885833 71k+72433,38737 72k+73

    439,2298041,9361973132 73k+741777,25781083 74k+75

    100801,10567201 75k+76229,525313 76k+77

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    18/74

    Versione 1.0

    14/12/2012

    Pagina 18 di 74

    18

    127,581283643249112959 77k+787,22366891 78k+79

    2687,202029703,1113491139767 79k+8031,4278255361 80k+81

    2593,71119, 97685839 81k+8283 82k+83

    167,57912614113275649087721 83k+841429,14449 84k+85

    31,9520972806333758431 85k+862099863,2932031007403 86k+87

    4177,9857737155463 87k+88353,29315424127 88k+89

    ,618970019642690137449562111 89k+9031,18837001 90k+91

    911,112901153,23140471537 91k+92277,1013,1657,30269 92k+93

    7,658812288653553079 93k+94283,165768537521 94k+95

    191,420778751,30327152671 95k+96193,22253377 96k+97

    11447,13842607235828485645766393 97k+98127,4363953127297 98k+99

    199,153649,599749,33057806959 99k+100101, 8101,268501 100k+101

    7432339208719,341117531003194129 101k+102307,2857,6529 102k+103

    2550183799,3976656429941438590393 103k+104858001,308761441 104k+105

    29191,10668,152041 105k+106107,28059810762433 106k+107

    ,162259276829213363391578010288127 107k+108246241, 279073 108k+109

    745988807,870035986098720987332873 109k+11048912491 110k+111

    32167926295457319020217 111k+1125153,54410972897 112k+113

    3391,23279,65993,1868569,1066818132868207 113k+114571,160465489 114k+115

    14951,4036961,2646507710984041 115k+116107367629,536903681 116k+117

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    19/74

    Versione 1.0

    14/12/2012

    Pagina 19 di 74

    19

    937,6553,86113,7830118297 117k+1182833,37171,1824726041 118k+119

    239,20231,62983048367,131105292137 119k+12061,4562284561 120k+121

    2690898060014710883168879506001 125k+126,170141183460469231731687303715884105727 127k+128

    7,11053036065049294753459639 129k+130131,409891,7623851 130k+131

    263,10350794431055162386718619237468234569 131k+132127,163537220852725398851434325720959 133k+134

    271,348031,49971617830801 135k+136139,168749965921 138k+139

    4375578271,646675035253258729 141k+142724153,158822951431,5782172113400990737 143k+144

    577,487824887233 144k+14531,2679895157783862814690027494144991 145k+146

    149,593,184481113,231769777 148k+149

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    20/74

    Versione 1.0

    14/12/2012

    Pagina 20 di 74

    20

    These numbers have the particularity that we can "predict" the prime factors of which they are

    composed and we thus obtain a their fast factorization.

    In fact there is a FREQUENCY (periodicity) of the individual prime factors.

    These numbers end all with even digits 0, 2, 4 and 6 (8 is excluded).

    The cadence, to be precise, is always 2, 6, 4, 0.

    These are all divisible, obviously, by 2.

    Are also divisible by 3 all the numbers with p that is odd because:

    p2 - 2 = 2 (1-p2 - 1) = 2 (

    2n2 - 1)

    We can consider the even exponent 2n, because with p that is odd, p - 1, gives an even exponent:

    (2n2 - 1) = k

    a3

    If a = 1:2n2 = 3k + 1 always verified. For any n, we have k, and therefore always divisible by 3.

    If a = 2:2n2 = 9k + 1 verified only for n = 3h. For h = 1, 2, 3 ..., we have k that satisfies the precedent

    equation.

    So are divisible by 3 when the exponent p satisfies this equation:

    2k + 1 = p

    and thence when p is equal to:

    p = 3, 5, 7, 9,...

    k is a positive integer k> = 1.

    Are therefore divisible by 3 all the numbers with p that is odd

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    21/74

    Versione 1.0

    14/12/2012

    Pagina 21 di 74

    21

    --------------------------------------------------------------------------------------------------------------------------

    Instead, the numbers are divisible by 5 when the exponent p satisfies this equation:

    4k +5 = p

    and thence when p is equal to:

    p = 5, 9, 13, 17,...

    k is a positive integer k> = 0.

    On the other hand the numberp2 - 2 ends with 0.

    --------------------------------------------------------------------------------------------------------------------------

    Instead, the numbers are divisible by 7 when the exponent p satisfies this equation:

    3k +4 = p

    and thence when p is equal to:

    p = 4, 7, 10, 13,...

    k is a positive integer k> = 0.

    --------------------------------------------------------------------------------------------------------------------------

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    22/74

    Versione 1.0

    14/12/2012

    Pagina 22 di 74

    22

    Always divisible by p prime:

    Since we can consider the even exponent 2n, because p is odd and prime, p - 1 gives an even exponent

    and we have:

    (2n2 - 1) = k (2n+1) always verified by (2n +1) prime, we have an integer k that satisfies the equation,

    and thence are always divisible by (2n +1) for any n and therefore for any p prime.

    p - 1 = 2n

    p = 2n +1

    Thencep2 - 2 is always divisible by p, which is a prime number.

    We can then "PREDICT" the prime factors of an arbitrary big numberp2 - 2.

    If then we choose p prime we know that is already divisible by p, as well as for 2 and 3 (because p is

    also odd).

    This can be seen from the fact that:

    (2n2 - 1) = 1 + 2 + 4 + 8 + 16 + . +

    1-2n2

    If there are no prime factors already known a priori we have NEW PRIME NUMBERS VERY

    LARGE THAT HAVE ALSO THEIR A FREQUENCY INSIDE THE GROUP OF NUMBERSp2 - 2

    Examples:

    If we want to factorize1212 - 2 = 2.658.455.991.569.831.745.807.614.120.560.689.150 (a number of

    37 digits) we have:

    2 3^2 5^2 7 11 13 17 31 41 61 151 241 331 1321 61681 4562284561

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    23/74

    Versione 1.0

    14/12/2012

    Pagina 23 di 74

    23

    Obviously it's divisible by 2, 3 (121 is not good because it isnt prime number).

    Looking at the Table 2 we know ALREADY A PRIORI that is divisible by all the factors 2 3^2 5^2 7

    11 13 17 31 41 61 151 241 331 1321 61681 and 4.562.284.561

    Divisible by 3 because p = 121 odd (2k + 1 = 121; k = 60)

    Divisible by 5 because 4k +5 = 121, k = 29

    Divisible by 7 because 3k +4 = 121, k = 39

    Divisible by 11 because 10k +11 = 121, k = 11Divisible by 13 because 12k +13 = 121, k = 9

    Divisible by 17 because 8k + 9 = 121, k = 14

    Divisible by 31 because 5k +6 = 121, k = 25

    Divisible by 41 because 20k +21 = 121, k = 5

    Divisible by 61 and 1321 because 60k +61 = 121, k = 1

    Divisible by 151 because 15k +16 = 121, k = 7

    Divisible by 241 because 24k +25 = 121, k = 4

    Divisible by 331 because 30k +31 = 121; k = 3

    Divisible by 61 681 because 40k +41 = 121; k = 2

    Divisible by 4,562,284,561 because 120k +121 = 121; k = 0

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    24/74

    Versione 1.0

    14/12/2012

    Pagina 24 di 74

    24

    2.1 SUMMARY:

    With these numbers therefore it is possible:

    1) Factorize quickly because we know already a priori certain factors of the numberp2 - 2.

    2) There are, obviously, also all the prime numbers and they have all a their FREQUENCY, simply

    becausep2 - 2 is divisible by p when p is prime.

    3) Find large prime numbers arbitrary and that have in their prime factors also their frequency.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    25/74

    Versione 1.0

    14/12/2012

    Pagina 25 di 74

    25

    3. CONNECTION NUMBERS p2 - 2 WITH MERSENNE PRIMES

    p2 - 2 = 2 (1-p2 - 1)

    Consequently, the prime numbersp2 - 1 are simply "shifted of one" with respect to the numbers

    p2 -

    2.

    The prime factors that give rise to the Marsenne primes Mp of the groupp

    2 - 2 are only two: 2 andMp.

    For example, for p = 13 we have:

    132 1 = 8191

    142 2 = 16382 = 2*8191

    We may use the Mersenne primes (p2 - 1) and we obtain prime numbers A, B, ...Z larger then the

    MAX Mersenne prime yet known:

    2 ^ (p2 1) -2 = 2*3* * (

    p2 1) * A*B* Z

    Then choosing the largest Mersenne prime known, we have:

    (p2 1) = ( 431126092 - 1)

    and thence its factorization:

    12431126092 -2 = 2*3* * ( 431126092 - 1) * A*B* Z

    It is therefore to perform a gigantic division to find prime numbers larger than those of Mersenne.

    The frequency of Mersenne prime, inside of (p2 - 2) is then given by the following equation:

    ( 431126092 - 2) * k + ( 431126092 - 1) = p

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    26/74

    Versione 1.0

    14/12/2012

    Pagina 26 di 74

    26

    3.1PREDICTIONMERSENNENUMBERS

    If we look at the Mersenne numbers highlighted in blue in Table 1b with their frequency in the groupsp2 - 2, or

    p2 - 1 which is equivalent because the prime factors are simply shifted by 1, we can

    observe:

    To be a Mersenne number, the prime number p must obey the following rule:

    1) When the first number is unique is a Mersenne prime Mp.They are, of course, connected with the

    prime p.

    2) When we have a pair of prime numbers only one of the two may be a Mersenne prime number

    (except for the pair 3, 5 but the 3 is the default for p odd).

    So if there is already a known prime number Mersenne the other cannot be a Mp.

    If there isnt already a known prime number Mersenne it isnt said that one of the two can be.

    3) When we have 3 or more factors may happen that only one of the new factors give an Mp based onthe decomposition of the associated prime number and see the TAB. 1b

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    27/74

    Versione 1.0

    14/12/2012

    Pagina 27 di 74

    27

    We see cases with a pair of prime numbers with given a certain frequency.

    11, 31 10k+11

    p = 11 cannot give an Mp because it is accompanied by 31 which gives M31.

    ------------------------------------------------------------------------------------------------------------------------

    23, 89 11k+12

    12 4094 2 23 89

    In the decomposition of p = 12 there is the prime 89 which gives M89, thence 23 cannot be.

    ------------------------------------------------------------------------------------------------------------------------

    43, 127 14k+15

    p = 43 cannot give an Mp because it is accompanied by 127 which gives M127.

    ------------------------------------------------------------------------------------------------------------------------

    61, 1321 60k+61

    61 2,30584E+18 2 3^2 5^2 7 11 13 31 41 61 151 331 1321

    From the decomposition we have many factors (7, 31 exist).

    One of the two, 61 and 1321, could be a Mersenne number. In fact, the 61 is a Mersenne prime.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    28/74

    Versione 1.0

    14/12/2012

    Pagina 28 di 74

    28

    83, 8831418697 82k+83

    83 9,67141E+24 2 3 83 13367 164511353 8831418697

    We already know that 83 is not a Mersenne prime.

    The 83 is accompanied by 13367, 164511353, 8831418697

    13,367 164,511,353 and their frequency 41k + 42. 13367 we know that it is not, but 164,511,353

    might be a Mersenne prime.

    Remains 8,831,418,697

    p = 8.831.418.697 can be A NEW prime that give an Mp:

    (As in the decomposition of p = 83 there isnt Mersenne primes, except of course that there is always

    3, p = 8831418697 and new Mersenne prime)

    M = 6978.831.418.2 - 1

    107, 28059810762433 106k+107

    107 1,62259E+32 2 3 107 6361 69431 20394401 28059810762433

    The factor28059810762433

    can not give an Mp because it is accompanied from 107 that give M107In the decomposition of p = 107 there arent Mersenne numbers (remember that a priori we do not

    know yet!), so 107 is a Mersenne prime.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    29/74

    Versione 1.0

    14/12/2012

    Pagina 29 di 74

    29

    3.2FACTORIZATIONOF 5212 - 2 (A NUMBER OF 157 DIGITS)

    The procedure is the following:

    Before we factorizes 520

    520 = 2^3 5 13

    We can find all its factors and connect to the TAB 2:

    Factors of

    520 Factors of di 5212 - 2

    2 3

    4 5

    8 17

    5 31

    13 8191

    10 11

    20 41

    40 61681

    26 2731

    52 53, 157, 1613

    104 858001, 308761441

    65 145295143558111

    130 131, 409891, 7623851

    So we already know the following factors, including the 521 because it is a prime number:

    520 = 2^3 5 13

    5212 - 2 = 2 3 5 11 17 31 41 53 131 157 521 1613 2731 8191 61681 409891 858001 7623851

    308761441 145295143558111,

    Surely 521 is a single prime number of TAB. 2, i.e. the first time that it appears is only factorizing 5212

    - 2.

    The Mersenne prime comes from the factorization of 5222 - 2 = 2 M521The TABLES 1b and 2, thence, have a new record with:

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    30/74

    Versione 1.0

    14/12/2012

    Pagina 30 di 74

    30

    521, another factors. 520k+521

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    31/74

    Versione 1.0

    14/12/2012

    Pagina 31 di 74

    31

    3.3 PRIME NUMBERS ARISING FROM OTHER FORMULAS

    From the above considerations there are infinitely many other groups such as p2 - 1 as those of

    Mersenne.

    For example, inside p3 - 2 (see TAB. 5a,b) and p1999 - 2 (see TAB. 6a,b), p12 - 1 (TAB 7a,b), p12 -

    5 (TAB 8a,b) and p12 + 5 (TAB 9a,b) have a periodicity of their factors and we can compile lists of

    prime numbers.

    With the group p3 - 2 there are prime numbers with:

    p = 2, 4, 5, 6, 9, 22,

    Let's see the TAB 5a:

    p 3^p -2 Factorization of 3^p -22 7 7

    3 25 5^2

    4 79 79

    5 241 241

    6 727 727

    7 2185 5 19 23

    8 6559 7 937

    9 19681 19681

    10 59047 137 431

    11 177145 5 71 49912 531439 113 4703

    13 1594321 197 8093

    14 4782967 7 17 40193

    15 14348905 5 2869781

    16 43046719 89 483671

    17 129140161 29 47 94747

    18 387420487 23 3617 4657

    19 1162261465 5 232452293

    20 3486784399 7 498112057

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    32/74

    Versione 1.0

    14/12/2012

    Pagina 32 di 74

    32

    21 10460353201 3719 281267922 31381059607 31381059607

    23 94143178825 5^2 3765727153

    24 282429536479 31 6679 1364071

    25 847288609441 19 44594137339

    26 2541865828327 7^2 401 1033 125231

    27 7625597484985 5 43 2693 13170403

    28 22876792454959 4273 5353801183

    29 68630377364881 23 101 7103 4159349

    30 205891132094647 17 263 46050353857

    31 617673396283945 5 419491 294487079

    TAB 5b:

    p prime frequency

    5 4k+3

    7 6k+2

    17 16k+14

    19 18k+723 11k+7

    Group numbers p3 - 2 all end with the numbers 7, 5, 9 and 1 (the series has this cyclical).

    All group numbers p3 - 2 have sum of their digits 5.

    Therefore are never divisible by 3, 11 and also 13 for the rules of divisibility.

    In addition, there are other factors that are NEVER divisible by all the numbers of the group - p3 - 2.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    33/74

    Versione 1.0

    14/12/2012

    Pagina 33 di 74

    33

    With the group p1999 - 2 there are prime numbers with:

    p = 6,

    Let's see the TAB 6a:

    p 1999^p 2 Factorizationof1999^p 2

    2 3995999 7^2815513 7988005997 1301 61398974 15968023991999 31 5150975481295 3,19201E+16 756418083693357316 6,38082E+19 ,638082398400599879997 1,27553E+23 1138373324631102249116400338 2,54978E+26 736425398601302793158854857 9 5,09701E+29 4799771425328891522894723612447

    10 1,01889E+33 17147591241081510171164136625616126311 2,03676E+36 74991619125964602605928592147791689544912

    4,07149E+39

    23

    127

    1393869041933111497127923285943260519

    13 8,13891E+42 41532163987895190562742418641960720244186499 14 1,62697E+46 73174975502265216588683543300128811120222875447

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    34/74

    Versione 1.0

    14/12/2012

    Pagina 34 di 74

    34

    TAB 6b:

    factors frequency

    7 3k+231 10k+4

    Group numbers

    p

    1999 - 2 all end with the digit 9, 7 (the series has this cyclical).All group numbers p1999 - 2 have sum of their digits 8.

    Therefore are never divisible by 3, 5, 7, 13, 19 and 29 for the rules of divisibility.

    In addition, there are other factors that are NEVER divisible by all the numbers of the group - p1999 -

    2.

    What is important, however, is that there exist a periodicity of factors within each group so it is easier

    the decomposition of very large numbers.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    35/74

    Versione 1.0

    14/12/2012

    Pagina 35 di 74

    35

    Examples with other groups:

    p12 - 1

    Let's see the TAB 7a:

    p 12^p -1 Factorization of12^p -1

    2 143 11 133 1727 11 157

    4 20735 5 11 13 29

    5 248831 11 22621

    6 2985983 7 11 13 19 157

    7 35831807 11 659 4943

    8 429981695 5 11 13 29 89 233

    9 5159780351 11 37 157 80749

    10 61917364223 11 13 19141 22621

    TAB 7b:

    p prime frequency

    11 always

    13 2k+2

    157 3k+3

    5 4k+4

    22621 5k+5

    The group p12 - 1 does not create NEVER any prime number, because all the number of this group are

    always divisible for the factor 11

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    36/74

    Versione 1.0

    14/12/2012

    Pagina 36 di 74

    36

    Let's see the TAB. 8:

    p12 - 5

    p 12^p 5 Factorizationof12^p 5

    2 139 1393 1723 17234

    20731

    20731

    5 248827 2488276 2985979 29859797 35831803 7 51188298 429981691 4299816919 5159780347 17 617 491923

    10 61917364219 6191736421911 743008370683 74300837068312 8916100448251 181 4926022347113 106993205379067 7 103451 14774863114

    1,28392E+15

    ,128391846454885915 1,5407E+16 44425273468076069

    16 1,84884E+17 40146105800223201117 2,21861E+18 228119726058071721718 2,66233E+19 23946471374741639663119 3,1948E+20 795326435318116257746120 3,83376E+21 3113943988690880726141921 4,60051E+22 711565893587831153332979122 5,52061E+23 271304166988723474439294923 6,62474E+24 13722382328948561910157209124 7,94968E+25 10709742336793383050183335925 9,53962E+26 7178016488793619244786565533 26 1,14475E+28 41210213591328213075844671934127 1,37371E+29 17746900097740537855671186046728 1,64845E+30 5940011381219126271505582162031929 1,97814E+31 ,19781359483314150527412524285947 30 2,37376E+32 7391565212759411369495154305474481131 2,84852E+33 74317354702355646827293913302546371 32 3,41822E+34 179569607912829430337931119038252881170 3,48889E+75 ,

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    37/74

    Versione 1.0

    14/12/2012

    Pagina 37 di 74

    37

    348888956932209561880025085230590467982671634313439101628517474632206804581993 2,3113E+100 2,3113E+100

    TAB. 8b:

    factors frequency

    7 6k+1

    17 16k+9

    This group creates different prime numbers much more than groupp2 - 1

    In fact, we have prime numbers with:

    p = 2, 3, 4, 5 , 6, 8, 10 , 11, 14, 29, 70, 93

    Group numbers p12 - 5 all end with the digit 9, 3, 1, 7 (the series has this cyclical).

    All group numbers p12 - 5 are the sum of their digits 4.

    Therefore are never divisible by 3, 5, 11, 13, 19 and 29 for the rules of divisibility.

    In addition, there are other factors that are NEVER divisible by all the numbers of the group - p12 - 5.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    38/74

    Versione 1.0

    14/12/2012

    Pagina 38 di 74

    38

    TAB 9a:

    p12 + 5

    p 12^p + 5 Factorization of 12^p + 5

    2 149 149

    3 1733 1733

    4 20741 7 2963

    5 248837 23 31 3496 2985989 41 67 1087

    7 35831813 47 762379

    8 429981701 429981701

    9 5159780357 241 647 33091

    10 61917364229 7 43 983 209263

    11 7,43008E+11 12211 60847463

    12 8,9161E+12 83 227 473228621

    13 1,06993E+14 503 1523 5783 24151

    14 1,28392E+15 61 21047843681129

    15 1,5407E+16 5281 291744396413316 1,84884E+17 7^2 23 487 521 4441 145589

    17 2,21861E+18 17 3259 3677 35491 306857

    18 2,66233E+19 718303 37064210063003

    19 3,1948E+20 109 113 11119 20269 115090819

    20 3,83376E+21 229 16741310010687664289

    21 4,60051E+22 , 46005119909369701466117

    22 5,52061E+23 7 107 737064671445175457401

    23 6,62474E+24 53 257 317 2161 4401923 161288423

    24 7,94968E+25 5743 13842390249589211933387

    25 9,53962E+26 272693 464749 4699081 1601864461

    26 1,14475E+28 , 11447545997288281555215581189

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    39/74

    Versione 1.0

    14/12/2012

    Pagina 39 di 74

    39

    27 1,37371E+29 23 2333 292093891 8764529244253877

    28 1,64845E+30 7 3263489 25859347 2790468614805121

    29 1,97814E+31 61 199 8761 1763979017 105445033432399

    30 2,37376E+32 47 63863 79084287742201409975992589

    31 2,84852E+33 2,84852E+33

    32 3,41822E+34 1081361 31610340290769550697101931701

    33 4,10186E+35 17 265662474811 90824284270044415147471

    34 4,92224E+36 7 587 1197915610355810830868121986644441

    35 5,90668E+37

    36 7,08802E+38 541381 1309247784804217077033261800856641

    37 8,50562E+39 857 8243 482539 494687 70138307 71915381041697

    38 1,02067E+41 23 16787 2868823 92147311622592251480162007383

    39 1,22481E+42

    40 1,46977E+43 7 1283 449987 3636848233340175350757842502204923

    41 1,76373E+44 67043 2630738304614805036617255591214669891319

    42 2,11647E+45

    43 2,53977E+46

    44 3,04772E+47 61

    45 3,65726E+48

    46 4,38871E+497 41 2447 15823

    3949413660673918418259816481655385496187

    47 5,26646E+50

    48 6,31975E+51 1229 33345491542093916154946885481589246579451875332981

    49 7,5837E+5217 23 271 15919 1910267

    235355933701142664251639322060916316169

    50 9,10044E+53 9,10044E+53

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    40/74

    Versione 1.0

    14/12/2012

    Pagina 40 di 74

    40

    The corresponding table TAB. 9b is located in the next paragraph.

    There are prime numbers with

    p = 2, 3, 8, 21, 26, 31, 50

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    41/74

    Versione 1.0

    14/12/2012

    Pagina 41 di 74

    41

    SUMMARY

    Obviously, no group can give always consecutive prime numbers.

    In general, therefore, we have:

    pa b

    p 2 with a integer also not prime;

    b a; b must be chosen so that ( pa b) give an odd number. Better to choose at the

    beginning a number b so that the first number of the group gives a prime

    number.

    It is therefore not necessary to have a and p prime, as for Mersenne numbers

    To find out what p give rise to prime numbers, we need to build a table of the

    frequencies of the factors such as the TAB. 1b.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    42/74

    Versione 1.0

    14/12/2012

    Pagina 42 di 74

    42

    3.4 PREDICTION OF THE FACTORS P WHICH GIVE RISE TO PRIME NUMBERS WITHIN

    A GROUP pa b

    To be able to "predict" in a group which is the next p which gives rise to a prime number is necessary

    to construct a table of factorization of the numbers of the group, as TAB. 1b.

    The factors in this table are periodic.

    To give origin to a prime number within the group, the factors of the table that we have built, are

    subject to the following rules:

    1) When the factor is unique is a prime number Gp. From the Table 1a we can obtain the

    corresponding number p that originate.

    2) When we have a pair of factors, only one of the two may be a prime number within the group Gp.

    Surely if there is already a known factor that gives a Gp the other cannot give rise to another Gp.

    So or neither of them is, or one of them is a factor that gives rise to a prime number within the group

    Gp.

    3) When we have 3 or more factors, only one of the new factors give rise to a prime number Gp based

    on the decomposition of the associated prime number and we must see the table in construction.

    Note: only those of the first rule give p also not prime numbers, but this is possible because we derive

    Gp.From rules 2 and 3 we obtain, instead, always a prime p.

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    43/74

    Versione 1.0

    14/12/2012

    Pagina 43 di 74

    43

    For example for the group p12 +5 or the equivalent group p12 +60 that is simply "shifted of 1" with

    respect to the other.

    In fact:

    p12 + 60 = 12 ( 1-p12 +5)

    Consequently the factors of p12 +5 are simply "shifted of 1" with respect to the numbers p12 +60.

    All the odd numbers of the group p12 +5 end all with the digit 9, 3, 1 and 7 (the series has this cyclical

    trend). Consequently they arent never divisible by the factor 5. All the odd numbers of the groupp12 +5 have as the sum of their digits 5. Therefore they arent never divisible by 3, 11 and not even for

    13, 19 and 29 for the rules of divisibility.

    The table TAB. 9b is the following:

    Note that the table has been intentionally left under construction because only in this way we can find

    factors with a certain frequency and "predict" new Gp.

    TAB. 9b:

    factors frequency

    7 6k+4

    17 16k+17

    23 11k+5

    31 30k+5

    41 40k+643 42k+10

    47 23k+7

    7^2 42k+16

    53 104k+23

    61 15k+14

    67 330k+6

    83 41k+12

    101, 1,8834971362468120345740775576647e+315 294

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    44/74

    Versione 1.0

    14/12/2012

    Pagina 44 di 74

    44

    103 204k+100107 53k+22

    109 54k+19

    113, 11119, 20269, 115090819 19

    127, 115747627, 7,2334624677246455649146160305763e+112 114

    139, 151, 263 5,4193210793765865882211347744511e+367 347

    149 296k+2

    167, 4,0816765767719200915746817911127e+322 301

    173, 2,3848363646359265621260676968025e+306 289

    181 270k+57

    197, 1879,

    182668222442005663634060607232966559762501915535502301012995961

    199 264k+29

    227, 473228621 12

    229, 16741310010687664289 20241 120k+9

    257, 317, 2161, 4401923, 161288423 23

    269, 3061, 361183, 4,4974799275077547551990045354328e+85 90

    271 270k+49

    347 6,5786701127698449161492276653878e+315 295

    349 5

    487 324k+16

    503, 1523, 5783, 24151 13521 40k+16

    563 3,4872853759150355165260105110196e+345 324

    569, 2,6367165468644414707750566063508e+337 316

    571, 10384831, 691302947,

    49253776499531718376952531684734356891526397149250317967

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    45/74

    Versione 1.0

    14/12/2012

    Pagina 45 di 74

    45

    587 293k+34

    617 2,0425365328028013701323274806668e+339 317

    643, 5,5309215361761632723751858201297e+321 302

    647 323k+9

    653 1,0254984706772788443545658245073e+339 319

    857, 8243, 482539, 494687, 70138307, 71915381041697 37

    863, 3,1953908642004486090866668168237e+356 340

    887 6,1091578353177625574063553696315e+347 325

    983, 209263 10

    991, 3,7972467484631512700551051216946e+345 323

    1009 4,1828891403874064657222449978451e+332 311

    1087 6

    1229, 3334549, 1542093916154946885481589246579451875332981 48

    1283, 449987, 3636848233340175350757842502204923 40

    1733 3

    2333, 292093891, 8764529244253877 27

    2447, 15823, 3949413660673918418259816481655385496187 46

    2963 4

    3259, 3677, 35491, 306857 17

    4441, 145589 16

    5281, 2917443964133 15

    5743, 13842390249589211933387 24

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    46/74

    Versione 1.0

    14/12/2012

    Pagina 46 di 74

    46

    6113, 9511, 40849, 4598133134266162731878198827432870008884899 51

    8761, 1763979017, 105445033432399 29

    9829, 3,5942204095045724000233044826838e+109 106

    12109, 3,3022237531905189371496987959636e+131 129

    12211, 60847463 11

    15919, 1910267, 235355933701142664251639322060916316169 49

    16787, 2868823, 92147311622592251480162007383 38

    33091 9

    63863, 79084287742201409975992589 30

    67043, 2630738304614805036617255591214669891319 41

    142501 4,3181765961840496961375100657485e+114 111

    272693, 464749, 4699081, 1601864461 25

    541381, 1309247784804217077033261800856641 36

    608483, 2,9607654251870647490509711547547e+53 57

    718303, 37064210063003 18

    762379 7

    1081361, 31610340290769550697101931701 32

    1949777, 52530409 7,5574047262360940881577088455687e+79 87

    3263489, 25859347, 2790468614805121 28

    429981701 8

    265662474811, 90824284270044415147471 33

    , 1197915610355810830868121986644441 57

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    47/74

    Versione 1.0

    14/12/2012

    Pagina 47 di 74

    47

    factors frequency

    7 6k+4

    23 11k+5

    61 15k+14

    17 16k+1

    47 23k+7

    31 30k+541 40k+6

    521 40k+16

    83 41k+12

    43 42k+10

    7^2 42k+16

    107 53k+22

    109 54k+19

    53 104k+23

    241 120k+9103 204k+100

    199 264k+29

    271 270k+49

    181 270k+57

    149 296k+2

    587 293k+34

    647 323k+9

    487 324k+16

    67 330k+6

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    48/74

    Versione 1.0

    14/12/2012

    Pagina 48 di 74

    48

    Here are some examples:

    6 2985989 41 67 1087

    The factor 1087 could give rise to a GP, while 41 and 67 have not given (Rule 3).

    4. On some equations, lemmas and theorems concerning the expression of a number as asum of primes. [1]

    Lemma 1

    If ( ) 0>= YR then( ) ( ) ( )xfxfxf 21 += (4.1)

    where

    ( ) ( ) )( )

    >

    ++=1,

    1 ...log32

    nq

    n xxxnxf

    , (4.2)

    ( ) ( ) ( )+

    =i

    i

    sdssZsY

    ixf

    2

    2

    22

    1

    , (4.3)

    sY

    has its principal value,

    ( )( )( )=

    =h

    k k

    kk

    sL

    sLCsZ

    1

    ', (4.4)

    kC depends only on qp, and k ,

    ( )h

    qC

    =1 (4.5)

    and

    h

    qCk . (4.6)

    We note that from (4.1) and (4.3) we obtain the following expression:

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    49/74

    Versione 1.0

    14/12/2012

    Pagina 49 di 74

    49

    ( ) ( ) ( )xfxfxf 21 += ( )( )

    >

    ++=1,

    ...log32

    nq

    nxxxn

    ( ) ( )+

    +i

    i

    s dssZsYi

    2

    22

    1

    . (4.6b)

    Now, we have

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    = =

    =

    + =+===1, 1,,1 0

    12

    nq jqqj l

    Yjlq

    q

    nejlqpjexnxfxfxf

    ( ) ( ) ( )( ) ( ) ( )

    +

    +

    =++=j l

    i

    i

    i

    i

    sss

    qdssZsY

    i

    dsjlqsY

    i

    jlqpje

    2

    2

    2

    22

    1

    2

    1

    , (4.7)

    where

    ( ) ( )( )

    ( ) ++

    =j l

    sqjlq

    jlqpjesZ . (4.8)

    Thence, we rewrite (4.7) also as follows:

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    = =

    =

    + =+===1, 1,,1 0

    12

    nq jqqj l

    Yjlq

    q

    n ejlqpjexnxfxfxf

    ( ) ( ) ( )( ) ( ) +

    +

    =++=j l

    i

    i

    i

    i

    sss

    q sYi

    dsjlqsYi

    jlqpje

    2

    2

    2

    22

    1

    2

    1

    ( )

    ( )( )

    dsjlq

    jlqpje

    j l

    sq +

    +. (4.8b)

    Since ( ) 1, =jq , we have( )

    ( )( )

    ( )( ) =

    =+

    +

    l

    h

    k k

    kks

    sL

    sLj

    hjlq

    jlq

    1

    '1 ; (4.9)

    and so

    ( )( )( )==

    h

    k k

    kksL

    sLCsZ

    1

    ', (4.10)

    where

    ( ) ( )=

    =q

    j

    kqk jpjeh

    C1

    1 . (4.11)

    Thence, we can rewrite the eq. (4.8b) also as follows:

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    50/74

    Versione 1.0

    14/12/2012

    Pagina 50 di 74

    50

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    = =

    =

    + =+===1, 1,,1 0

    12

    nq jqqj l

    Yjlq

    q

    n ejlqpjexnxfxfxf

    ( ) ( ) ( )( ) ( ) +

    +

    =++=j l

    i

    i

    i

    i

    sss

    q sYi

    dsjlqsYi

    jlqpje

    2

    2

    2

    22

    1

    2

    1

    ( )( )

    dssL

    sLC

    h

    k k

    kk

    =1

    '. (4.11b)

    Since ( ) 0=jk if ( ) 1, >jq , the condition ( ) 1, =jq may be omitted or retained at our discretion. Thus

    ( ) ( )( )

    ( )( )

    = =

    ===1,,1 1.,1

    1

    11

    jqqj mqqm

    qqh

    qme

    hpje

    hC . (4.12)

    Again, if 1>k we have

    ( ) ( )( )

    ( ) ( ) = =

    ==q

    j

    q

    m

    kqk

    kqk mmeh

    pjpje

    hC

    1 1

    1

    . (4.13)

    If k is a primitive character,

    ( ) ( ) ( )=

    =q

    m

    kkq qmme1

    , , (4.14)

    ( ) qq k = , , (4.15)

    h

    qCk = . (4.16)

    If is imprimitive, it belongs tod

    qQ = , where 1>d . Then ( )mk has the period Q , and

    ( ) ( ) ( ) ( ) ( ) = =

    =

    =q

    m

    Q

    n

    d

    l

    qkqkq lQennemme1 1

    1

    0

    . (4.17)

    Lemma 2

    If2

    10 < , then

    ( )( )

    =

    ++=h

    k

    kk PGChY

    qxf

    1

    , (4.18)

    where

    ( ) =k

    YGk

    , (4.19)

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    51/74

    Versione 1.0

    14/12/2012

    Pagina 51 di 74

    51

    ( )( )

    +++< =

    h

    k

    k

    AYb

    hqqAP

    1

    21

    4

    1211

    1log , (4.20)

    arctan= . (4.21)

    We have, from (4.3) and (4.4),

    ( ) ( ) ( ) ( )( )( )

    ( ) +

    =

    +

    =

    ===i

    i

    h

    k

    i

    i

    h

    k

    kk

    k

    ksks xfCdssL

    sLsY

    i

    CdssZsY

    ixf

    2

    2 1

    2

    2 1

    ,22

    '

    22

    1

    , (4.22)

    say. But

    ( )( )( )

    ( ) ( )( )( )

    +

    +

    +++=i

    i

    i

    i

    ssds

    sL

    sLsY

    iYR

    Yds

    sL

    sLsY

    i

    2

    2

    4

    1

    4

    1

    '

    2

    1'

    2

    1

    b, (4.23)

    where

    ( )( )( )

    0

    '

    = sL

    sLsYR s , (4.24)

    ( ){ }0sf denoting generally the residue of ( )sf for 0=s .Now

    ( )( )

    ( )( ) = =

    +

    +

    +

    +=

    c c

    sssL

    sLss

    QsL

    sL

    1 11 1

    1'

    2

    1

    2

    1

    22

    1logloglog

    '

    aa, (4.25)

    where Q is the divisor of q to which belongs, c is the number of primes which divide q but not

    ,...,, 21Q are the primes in question, and is a root of unity. Hence, if4

    1= , we have

    ( )( )

    ( ) ( )( ) ( ) AtqAAtAqAcqAsL

    sL A +++

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    52/74

    Versione 1.0

    14/12/2012

    Pagina 52 di 74

    52

    ( ) ( )( )

    tse

    t

    tYAttYAsY

    +

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    53/74

    Versione 1.0

    14/12/2012

    Pagina 53 di 74

    53

    the path of integration being the circle Hex = , wheren

    H1

    = , so that

    +=

    2

    111

    nO

    nx ~

    n

    1. (4.35)

    Using the Farey dissection of order nN= , we have

    ( ) ( )( ) ( ) ( )( ) ( )( ) = =< ++ ===

    N

    q qpqp

    qpqn

    r

    qn

    r

    r

    qp qp

    jnpeX

    dXxfinpex

    dxxfinv 1 1,,

    ,11

    , ,2

    1

    2

    1

    (4.36)

    say. Now

    ( ) ( )11121 ... +

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    54/74

    Versione 1.0

    14/12/2012

    Pagina 54 di 74

    54

    we have:

    ( ) ( )

    ++ , A> , (4.42)

    and

    4

    1

    4

    1

    2

    1

    21

    log+

    =>

    , AY > , (4.44)

    ( )

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    55/74

    Versione 1.0

    14/12/2012

    Pagina 55 di 74

    55

    ( ) ( ) ( ) ( )

    +++

    =

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    56/74

    Versione 1.0

    14/12/2012

    Pagina 56 di 74

    56

    ( )

    +

    +

    ++

    =

    ++=

    qp

    qp qq

    i

    i

    i

    i

    rr

    rnYrdiO

    r

    nidiOdYeY

    ,

    ,

    ' 1

    !12

    , (4.54)

    where

    ( )qN

    qpqpqp

    q2

    1',min ,, =

    < . (4.55)

    Thence, from (4.53) and (4.54), we obtain also:

    ( ) +

    +

    =

    ++=

    =

    i

    i

    rnYri

    i

    nYrr

    qp

    q

    qp

    qp

    diOdYeYdYeYh

    q

    il

    ,

    ,

    '

    ,2

    1

    ( )

    ++

    =

    q

    diOr

    ni

    rr

    !1

    21

    . (4.55b)

    Also

    ( ) ( )

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    57/74

    Versione 1.0

    14/12/2012

    Pagina 57 di 74

    57

    In order to complete the proof of Theorem A, we have merely to show that the finite series in (4.59)may be replaced by the infinite series rS . Now

    ( )( )

    ( ) ( ) ( )>

    >

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    58/74

    Versione 1.0

    14/12/2012

    Pagina 58 di 74

    58

    by

    ( )( )

    ( )

    =

    npnedwiw

    enpne q

    iw

    q 21

    2

    1

    . (4.66)

    We are thus led to the singular series 2S . Now suppose that, instead of the integral (4.63), we consider

    the integral

    ( ) ( ) ( )=

    2

    0

    ReRe2

    1deffRJ

    kiii , (4.67)

    where now k is a fixed positive integer. Instead of (4.65), we have now

    ( )

    +

    qp

    qp

    du

    iun

    iun

    ekpe

    kiu

    q

    ,

    ,'11

    ~ ( ) ( )

    =+

    kpne

    un

    dukpe qq

    2

    2

    1. (4.68)

    We are thus led to suppose that

    ( )RJ ~( )

    ( )

    ( )

    kpe

    q

    qn q

    2

    2

    1

    , (4.69)

    when =

    neR n ,

    1

    . Thence, we have also the following mathematical connections:

    ( ) ( ) ( )=

    2

    0

    ReRe2

    1deffRJ

    kiii ( )

    +

    qp

    qp

    du

    iun

    iun

    ekpe

    kiu

    q

    ,

    ,'11

    ~

    ~ ( ) ( )

    =

    +

    kpne

    un

    dukpe qq

    22

    1~

    ( )

    ( )

    ( )

    kpe

    q

    qn q

    2

    2

    1

    . (4.69b)

    The series here (which we call 2'S ) is the singular series 2S with k in the place of n . On the other

    hand

    ( ) ==

    2

    0

    2loglog2

    1RaRdeeReRRJ

    kkiii , (4.70)

    where

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    59/74

    Versione 1.0

    14/12/2012

    Pagina 59 di 74

    59

    ( )ka += loglog (4.71)

    if both and k+ are prime, and oa = otherwise. Hence we obtain

    2Ra ~ 22 '11

    SR

    . (4.72)

    Here neR

    1

    = , but the result is easily extended to the case of continuous approach to the limit 1, andwe deduce

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    60/74

    Versione 1.0

    14/12/2012

    Pagina 60 di 74

    60

    ( )

    =

    =1

    2

    m

    mxx . (4.78)

    The approximation for ( ) ix = Re on qp, is

    ( ) iRe ~2

    1

    , 21

    2

    1

    +

    q

    pi

    nq

    S qp , (4.79)

    where

    ( )=

    =q

    h

    qqp pheS1

    2

    , (4.80)

    and qpS , is the conjugate of qpS , : and we find, as an approximation for ( )RJ ,

    ( )( )

    ( )

    +

    qp

    iu

    qqp

    qp

    qp iun

    iun

    duepeS

    qq

    q

    , '

    ,

    ,

    ,114

    1

    . (4.81)

    We replace the integral here by

    =

    +

    n

    iun

    iun

    du2

    11 ; (4.82)

    and we are led to the formula

    ( )RJ ~ Sn24

    1, (4.83)

    where S is the singular series( )( )

    ( ) =qp

    qqppeS

    qq

    qS

    ,

    ,

    . (4.84)

    From the eqs. (4.77), (4.81), (4.82) and (4.83) we obtain the following relationship:

    ( ) ( ) ( )=

    2

    0

    ReRe2

    1defRJ

    iii ( )( )

    ( ) =+

    qp

    iu

    qqp

    qp

    qp iun

    iun

    duepeS

    qq

    q

    , '

    ,

    ,

    ,114

    1

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    61/74

    Versione 1.0

    14/12/2012

    Pagina 61 di 74

    61

    ( )( )

    ( ) qp

    qqp peSqq

    q

    ,

    ,4

    1

    =

    +

    n

    iun

    iun

    du2

    11 ~ Sn2

    4

    1. (4.84b)

    This expression can be rewritten also as:

    ( ) ( ) ( )

    =

    2

    0

    ReRe12

    1defRJ iii ( )( ) ( ) =

    +

    qp

    iu

    qqp

    qp

    qp iun

    iun

    duepeS

    qq

    q

    , '

    ,

    ,

    ,1124

    1

    =

    +

    = n

    iun

    iun

    du2

    6116

    1 ~ Sn2

    24

    1. (4.84c)

    Thence, we conclude that the number ( )nP of primes of the form 12 +m and less than n is givenasymptotically by

    ( )nP ~ Sn

    n

    log. (4.85)

    4.1On some Theorems and Equations concerning the primitive divisors of Mersennenumbers. [2]

    In his interesting paper: On the sum

    12

    1

    nd

    d (1971), Erdos considered the divisor function

    ( ) =md

    dm /11 (4.86)

    restricted to Mersenne numbers; that is, numbers m of the form 12 n .

    THEOREM 1.

    There is a set of natural numbers S of logarithmic density 1 such that

  • 7/30/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - PERFECT NUMBERS AND MERSENNE'S PRIME

    62/74

    Versione 1.0

    14/12/2012

    Pagina 62 di 74

    62

    ( ) 0lim, = nnEnSn . (4.87)

    With regard some equations concerning the proof of this Theorem, has been utilized the following:

    ( )( )( )( )

    =

    plqxp qPpxp

    q

    q xOp

    p

    p

    p

    |, ,

    /11log

    11, (4.88)

    ( )( )( )

    =

    =

    =ndmdl

    m dnA,

    /1 (4.102)

    so that

    ( ) ( )=nm

    mnAnA . (4.103)

    There is a Theorem that asserts that there is an 0x such that for all 0xx and any m ,

    # ( ){ }

    +=

    x

    xxxmdlxd

    loglog2

    logloglog3logexp: , (4.104)

    or

    # ( ){ }

    +=

    x

    xxxmdlxd

    2

    3

    log2

    log3logexp: . (4.104b)

    Thus by partial summation

    ( ) ( )( )

    =