Pile Report

Embed Size (px)

Citation preview

  • 8/11/2019 Pile Report

    1/14

    Grid D.L. L.L. W.L. Mx MyDimension

    (B L H)

    AsReq Rebar Pile

    XDir YDir XDir YDir No. Type

    P17

    C15:(4,

    K)

    2425.

    8691.4 12.4 0.0 0.0

    240024001

    0007200 7200 23T20 23T20 5

    Square

    400400

    DESIGN REPORT FOR PILE FOUNDATION P17 C15:(4,K)

    Element/Elements Supported = Column C15:(4,K)

    FOOTING DESIGN LOADING TABLE

    Loading Number Selected for Foundation Design = 3

    No. SourceLoad

    Case

    Load

    Comb.

    Service LoadLLR. P Ult. F

    P (D.L.) P (L.L.) P (W.L.) Mx My

    1 G.L. G. LC1 2205.3 628.5 0.0 0.0 0.0 0.0 2833.8 1.44

    2 G.L. G. LC1 2205.3 628.5 0.0 0.0 0.0 0.0 2833.8 1.443 N.L. 1 LC2 2205.3 628.5 11.2 0.0 0.0 0.0 2845.1 1.20

    4 N.L. 2 LC2 2205.3 628.5 -1.8 0.0 0.0 0.0 2832.0 1.20

    5 N.L. 3 LC2 2205.3 628.5 -11.2 0.0 0.0 0.0 2822.6 1.20

    6 N.L. 4 LC2 2205.3 628.5 1.8 0.0 0.0 0.0 2835.6 1.20NoteSource - Source of Loading (G.L. for Gravity, W.L. for Wind Load, N.L. for Notional Load, S.L. for Seismic Load)Load Case - Load Case Number of Wind/Notional Load (G. for Gravity)Load Comb. - Load Combination NumberService Load - Foundation Service Load from Column (kN)LLR. - Live Load Reduction from Stump and above (kN)P Ult. - Ultimate Axial Force after multiply by Foundation Load Combination (kN)F - Load Factor use in foundation designMoment value automatically set to 0 when M / P ratio less than 5.0 mmFoundation live load reduction only can be carried out after running 3D Analysis together with Column/Wall live load reduction set to

    True

    Check the pile load based on the 5 piles provided

    P = 3129.57 kN; Mx = 0 kNm; My = 0 kNm

    Pile capacity = 70 ton

    Pile load due to axial load

    = P / n = 3129.57 / 5 = 625.91 kN

    = 63.8 ton 70 ton

    DESIGN RESULT

    Equivalent loadings imposedEquivalent Column Load = 3129.57kN

    Equivalent Column moment X = 0.00kNmEquivalent Column moment Y = 0.00kNm

    Load Allowance = 10%

    Ixx =2.88m^4

    Iyy = 2.88m^4

    Pile CapPile Cap self-weight Load =138.24kN

    Pile Cap self-weight moment X =0.00kNm

  • 8/11/2019 Pile Report

    2/14

    Pile Cap self-weight moment Y=0.00kNm

    Total LoadingsTotal load applied = 3267.81kN

    Total moment X applied =0.00kNm

    Total moment Y applied =0.00kNm

    Pile Group ResultPile Group Centroid : {78000.00,19200.00}mm

    Pile

    No

    Coordinate

    X (mm)

    Coordinate

    Y (mm)

    Capacity

    (kN)Applied Load Mx(kNm) My(kNm) Pile Type

    1 77151 18351 686.70 653.56(pass) -554.57 -554.57 Original

    2 77151 20049 686.70 653.56(pass) 554.57 -554.57 Original

    3 78000 19200 686.70 653.56(pass) 0.00 0.00 Original

    4 78849 18351 686.70 653.56(pass) -554.57 554.57 Original

    5 78849 20049 686.70 653.56(pass) 554.57 554.57 Original

    Sum 3433.50 3267.81 0.00 0.00

    Each pile with their respective load, the pile cap self-weight is taken into account

    Sample Calculation for Pile No.1Applied Load = P / n = 3267.81 / 5 = 653.56 kN

    Number of Pile

    Applied load

    with self weight

    (kN)

    Applied load

    without self

    weight (kN)

    Ultimate

    applied load

    without self

    weight (kN)

    1 653.56(pass) 625.91 904.04

    2 653.56(pass) 625.91 904.04

    3 653.56(pass) 625.91 904.04

    4 653.56(pass) 625.91 904.04

    5 653.56(pass) 625.91 904.04

    Sum 3267.81 3129.57 4520.22

    Note: The lump safety factor for load is 1.44

    Pile Number TypeDimension

    (mm)

    1 Rectangular 400X400

    2 Rectangular 400X400

    3 Rectangular 400X400

    4 Rectangular 400X400

    5 Rectangular 400X400

    Status:

    Design Passed

    Number of piles required = 5

    Footing slab thickness = 1000.00mm

    Steel percentage for footing slab X = 100*7226/(2400*1000.0) = 0.30 %

    Steel percentage for footing slab Y = 100*7226/(2400*1000.0) = 0.30 %

    Pile Cap Cross Section InformationPoint 0:{76800,18000} mm

  • 8/11/2019 Pile Report

    3/14

    Point 1:{79200,18000} mm

    Point 2:{79200,20400} mm

    Point 3:{76800,20400} mm

    Pile Cap center = {78000.00,19200.00} mm

    B = 2400

    L = 2400

    Thickness =1000mm

    Pile Cap Density = 24kN/m^3

    Pile Cap weight = 138kN

    The depth of the footing slab = 1000mm

    The effective depth for reinforcement in x direction = 838mm

    The effective depth for reinforcement in y direction = 818mm

    Total depth = Effective depth of rebar + rebar radius + distance from rebar to pile + pile penetration

    Total depth = 838+10+25+100=9731000mm

    The Detailed Calculations for Footing Thickness and Reinforcement Bars

    Detailed Moment CalculationThe moment is taken at 1 times of the column face to the column center

    The calculation of service state moment about Axis

    Load density = service state pile capacity/area

    Area mx is the effective area of the pile in consideration of moment X

    Area my is the effective area of the pile in consideration of moment Y

    Pile

    No.

    load density

    (ld, kN/m)

    lever arm

    Moment X

    (laX, mm)

    Area mx (Ax,

    m)

    Moment about

    X(ld*laX*Ax/

    10^3, kNm)

    lever arm

    Moment Y

    (laY, mm)

    Area my (Ay,

    m)

    Moment abou

    Y(ld*laY*Ay

    10^3, kNm)

    1 4291.88 -498.5 0.16000 -342.34 0.0 0.000000 0.00

    2 4291.88 0.0 0.00000 0.00 0.0 0.000000 0.00

    3 4291.88 0.0 0.00000 0.00 0.0 0.000000 0.00

    4 4291.87 -498.5 0.16000 -342.34 598.5 0.160000 411.015 4291.88 0.0 0.00000 0.00 598.5 0.160000 411.01

    -684.68 822.02

    The calculation of ultimate moment (the magnitude)

    The absolute ultimate moment X = 1.44*684.68=988.92kNm

    The absolute ultimate moment Y = 1.44*822.02=1187.29kNm

    Check Thickness Constraint1000mm is a multiple of 50mm

    Footing thickness constraint checking pass!!

    Check Footing Depth

    Footing slab depth minimum thickness1000mm 300mmFooting depth checking pass!!

    Moment CheckingClause 3.4.4.4 singly R.C. design(Reinforced Concrete Design, Mosley second edition, pp 62-66)

    Mx

  • 8/11/2019 Pile Report

    4/14

    k'=kk1/fcu

    kk1=cb*k1*(1-cb*k2)

    cb=limiting effective depth factor = 0.5

    Mx and My are ultimate limit state moment

    k1 = (0.45-0.15fcu/17.86)fcuk1 = [0.45-0.15*30.00/17.86] 30.00 = 12.12

    k2=1-0.45*fcu*(0.5-fcu/3828)/k1

    k2=1-0.45*30.00*(0.5-30.00/3828)/12.12 = 0.45

    kk1 = cb*k1*(1-cb*k2)

    kk1 = 0.50*12.12*(1- 0.50*0.45) = 4.69

    k'=kk1/fcu

    k' = 4.69/30.00 = 0.156

    Steel Area Calculation

    k' =M/(fcu*b*d^2)

    z = Min (d{0.5+(0.25-k'/(2*0.67/c))}, 0.95*d)Steel area = M/(fy*z/s)

    M = Ultimate limit state Bending Moment

    d = effective depth

    c = partial safety factor for concretes = partial safety factor for steel fy = yield strength for steel

    Steel Area in X Directionk = 10^6*1187.29/(30*2400*838) = 0.0235

    lever arm = 838*(0.5+(0.25-(0.0235)/2*0.67/1.50))) = 815 mmlever arm = Min (lever arm, 0.95*838) = 796 mm

    Steel area x due to moment = 10^6*1187.29/(460/1.15*796) =3730 mmSteel area that are due to minimum requirement = (steel min percentage)*cut sectional area/100 =

    0.3*2400*1000/100=7200.00 mm

    Steel area provided = 7226 mm

    Check for moment in x direction

    fcu*b*dk'>=Mx

    30.00*2400*838*0.16/10^6 = 7900.69kNm>=1187.29=1187.29kNm

    Moment checking pass

    Check for steel percentage:

    Steel percentage x = 100*7226/(2400*1000.0) = 0.30%

    The steel percentage is OK

    Check for the sufficiency of steel area provided in x direction

    23T20 is used

    The total bar area is = 3.142*23*20^2/4 = 7226mm

    The steel area provided 7226 mm

    7200

  • 8/11/2019 Pile Report

    5/14

    Bar spacing in x = 100

    Bar diameter in x = 20mm

    The bar spacing is ok

    Check for bar diameter:

    Bar diameter in x = 20mm

    The bar diameter is ok

    Steel Area in Y Directionk = 10^6*988.92/(30*2400*818) = 0.0205

    lever arm = 818*(0.5+(0.25-(0.0205)/2*0.67/1.50))) = 798 mmlever arm = Min (lever arm, 0.95*818) = 777 mm

    Steel area y due to moment = 10^6*988.92/(460/1.15*777) =3183 mm

    Steel area that are due to minimum requirement = (steel min percentage)*cut sectional area/100 =

    0.3*2400*1000/100=7200.00 mm

    Steel area provided = 7226 mm

    Check for moment in y direction

    fcu*b*dk'>=My

    30.00*2400*818*0.16/10^6 = 7527.94kNm>=988.92=988.92kNm

    Moment checking pass

    Check for steel percentage:

    Steel percentage y = 100*7226/(2400*1000.0) = 0.30%

    The steel percentage is OK

    Check for the sufficiency of steel area provided in y direction23T20 is used

    The total bar area is = 3.142*23*20^2/4 = 7226mm

    The steel area provided 7226 mm

    7200

  • 8/11/2019 Pile Report

    6/14

    Y)=100*(7226+7226)/(2010498+1962498)=0.36

    Effective steel percentage = Min(Average steel %, 3) = 0.36%

    thickness = (838+818)/2=828

    Inverted thickness = (max(1,(400/thickness))^(1/4)

    Inverted thickness = (max(1, (400/(828)))^1/4 )= 1.00

    Shearing capacity, vc = 0.79*0.36^(1/3)*1.00*(30/25.0)^(1/3)/1.25 = 0.48 N/mm^2

    Check for the case if the critical section occurs at 0.5d from column face

    Enhancement shear multiplier, esm = 1.5

    Enhanced shear factor = Max(esm/k, 1)= Max(1.5/0.50,1) = 3.00

    Enhanced shear capacity, vc' = vc enchanced shear factor = 0.48 3.00 = 1.44 N/mm

    Pile NumberCoordinate X

    (mm)

    Coordinate Y

    (mm)

    Ultimate Design

    Load (kN)

    Ultimate Pile

    Load Inside the

    Critical

    Diagonal Zone

    (kN)

    1 -849 -849 991.8 0.0

    2 -849 849 991.8 0.0

    3 0 0 991.8 991.8

    4 849 -849 991.8 0.0

    5 849 849 991.8 0.0

    Sum 4959.2 991.8

    k = 0.50

    The dimension of the effective critical section

    B' = B + 2*k*d

    B' = 500 + 2*0.50*828 = 1328 mm

    L' = L + 2*k*d

    L' = 700 + 2*0.50*828 = 1528 mm

    Punching shear force = 4959.2-991.8=3967.4kN

    punching shear stress = 10^3*3967.37/((2*1328+2*1528)*828)= 0.84

  • 8/11/2019 Pile Report

    7/14

    Check for the case if the critical section occurs at 1.0d from column face

    Enhancement shear multiplier, esm = 1.5

    Enhanced shear factor = Max(esm/k, 1)= Max(1.5/1.00,1) = 1.50

    Enhanced shear capacity, vc' = vc enchanced shear factor = 0.48 1.50 = 0.72 N/mm

    Pile NumberCoordinate X

    (mm)

    Coordinate Y

    (mm)

    Ultimate Design

    Load (kN)

    Ultimate Pile

    Load Inside the

    Critical

    Diagonal Zone

    (kN)

    1 -849 -849 991.8 991.82 -849 849 991.8 991.8

    3 0 0 991.8 991.8

    4 849 -849 991.8 991.8

    5 849 849 991.8 991.8

    Sum 4959.2 4959.2

    k = 1.00

    The dimension of the effective critical section

    B' = B + 2*k*d

    B' = 500 + 2*1.00*828 = 2155 mm

    L' = L + 2*k*d

    L' = 700 + 2*1.00*828 = 2355 mm

    Punching shear force = 4959.2-4959.2=0.0kN

    punching shear stress = 10^3*0.00/((2*2155+2*2355)*828)= 0.00

  • 8/11/2019 Pile Report

    8/14

    The most critical section is checked at 0.75d

    Check for the case if the critical section occurs at 0.75d from column faceEnhancement shear multiplier, esm = 1.5

    Enhanced shear factor = Max(esm/k, 1)= Max(1.5/0.75,1) = 2.00

    Enhanced shear capacity, vc' = vc enchanced shear factor = 0.48 2.00 = 0.96 N/mm

    Pile NumberCoordinate X

    (mm)

    Coordinate Y

    (mm)

    Ultimate Design

    Load (kN)

    Ultimate Pile

    Load Inside the

    Critical

    Diagonal Zone

    (kN)1 -849 -849 991.8 0.0

    2 -849 849 991.8 0.0

    3 0 0 991.8 991.8

    4 849 -849 991.8 0.0

    5 849 849 991.8 0.0

    Sum 4959.2 991.8

    k = 0.75

    The dimension of the effective critical section

    B' = B + 2*k*d

    B' = 500 + 2*0.75*828 = 1742 mm

    L' = L + 2*k*d

    L' = 700 + 2*0.75*828 = 1942 mm

    Punching shear force = 4959.2-991.8=3967.4kN

    punching shear stress = 10^3*3967.37/((2*1742+2*1942)*828)= 0.65

  • 8/11/2019 Pile Report

    9/14

    Check for Ultimate Shear

    shear stress = Ultimate axial load/(ColPerimeter*d)

  • 8/11/2019 Pile Report

    10/14

    Pile NumberCoordinate X

    (mm)

    Coordinate Y

    (mm)

    Ultimate Design

    Load (kN)

    Ultimate pile

    load at one side

    of the slab (kN)

    1 -849 -849 991.8 0.0

    2 -849 849 991.8 0.0

    3 0 0 991.8 0.04 849 -849 991.8 0.0

    5 849 849 991.8 0.0

    Sum 4959.2 0.0

    Enhanced shear factor = Max(1.5/k,1) = Max(1.5/1.00,1)=1.50

    Enhanced shear capacity, vc' = 0.48 1.50 = 0.72 N/mm

    Flexural shear stress = 0.00 1000 / (2400 838) = 0.00 N/mm vc = 0.72 N/mm F lexure Shear Checking Pass!

    The f lexur al shear is checked at section, av =1.00d at right porti on of the cap

    Pile NumberCoordinate X

    (mm)

    Coordinate Y

    (mm)

    Ultimate Design

    Load (kN)

    Ultimate pile

    load at one side

    of the slab (kN)

    1 -849 -849 991.8 0.0

    2 -849 849 991.8 0.0

    3 0 0 991.8 0.04 849 -849 991.8 0.0

    5 849 849 991.8 0.0

    Sum 4959.2 0.0

    Enhanced shear factor = Max(1.5/k,1) = Max(1.5/1.00,1)=1.50

    Enhanced shear capacity, vc' = 0.48 1.50 = 0.72 N/mm

    Flexural shear stress = 0.00 1000 / (2400 838) = 0.00 N/mm vc = 0.72 N/mm F lexure Shear Checking Pass!

  • 8/11/2019 Pile Report

    11/14

    The f lexur al shear i s checked at section, av =1.00d at upper por tion of the cap

    Pile NumberCoordinate X

    (mm)

    Coordinate Y

    (mm)

    Ultimate Design

    Load (kN)

    Ultimate pile

    load at one side

    of the slab (kN)

    1 -849 -849 991.8 0.0

    2 -849 849 991.8 0.0

    3 0 0 991.8 0.0

    4 849 -849 991.8 0.0

    5 849 849 991.8 0.0Sum 4959.2 0.0

    Enhanced shear factor = Max(1.5/k,1) = Max(1.5/1.00,1)=1.50

    Enhanced shear capacity, vc' = 0.48 1.50 = 0.72 N/mm

    Flexural shear stress = 0.00 1000 / (2400 818) = 0.00 N/mm vc = 0.72 N/mm F lexure Shear Checking Pass!

  • 8/11/2019 Pile Report

    12/14

    The f lexur al shear i s checked at section, av =1.00d at lower porti on of the cap

    Pile NumberCoordinate X

    (mm)

    Coordinate Y

    (mm)

    Ultimate Design

    Load (kN)

    Ultimate pile

    load at one side

    of the slab (kN)

    1 -849 -849 991.8 0.0

    2 -849 849 991.8 0.0

    3 0 0 991.8 0.0

    4 849 -849 991.8 0.0

    5 849 849 991.8 0.0

    Sum 4959.2 0.0

    Enhanced shear factor = Max(1.5/k,1) = Max(1.5/1.00,1)=1.50

    Enhanced shear capacity, vc' = 0.48 1.50 = 0.72 N/mm

    Flexural shear stress = 0.00 1000 / (2400 818) = 0.00 N/mm vc = 0.72 N/mmF lexure Shear Checking Pass!

  • 8/11/2019 Pile Report

    13/14

    The most critical section of the face shear is at 0.70d

    The flexural shear is checked at section, av =0.70d at left portion of the cap

    Pile NumberCoordinate X

    (mm)

    Coordinate Y

    (mm)

    Ultimate Design

    Load (kN)

    Ultimate pile

    load at one side

    of the slab (kN)

    1 -849 -849 991.8 991.8

    2 -849 849 991.8 991.8

    3 0 0 991.8 0.0

    4 849 -849 991.8 0.0

    5 849 849 991.8 0.0Sum 4959.2 1983.7

    Enhanced shear factor = Max(1.5/k,1) = Max(1.5/0.70,1)=2.14

    Enhanced shear capacity, vc' = 0.48 2.14 = 1.02 N/mm

    Flexural shear stress = 1983.68 1000 / (2400 838) = 0.99 N/mm vc = 1.02 N/mm F lexure Shear Checking Pass!

  • 8/11/2019 Pile Report

    14/14