8
Pilgrim Nuclear Power Station Elevation Analysis | Jones River Watershed Association Northeastern Geospatial Research Professionals, Inc. 1 Introduction: The Pilgrim Nuclear Power Station (PNPS), located in Plymouth County, Massachusetts on the shores of Cape Cod Bay was commissioned on December 9, 1972. The power station design included development of nearshore revetments and other engineered reinforcements intended to protect the site from wave action emanating from Cape Cod Bay . Over the operational history of the power station, there have been dredging operations to ensure that the water intake and outlet remain operational and that engineering design meets current standards. Resulting from a perceived shortfall in response to global climate change and sealevel rise evidence on the part of PNPS, it has come to the attention of the Jones River Watershed Association (JWRA) that the Pilgrim Nuclear Power Station site and its assets may be at risk. Specifically, with the advent of outdoor storage of high level radioactive waste in the form of spent fuel rods contained in casks engineered for such containment in close proximity to Federal Emergency Management Administration (FEMA) flood zones. This elevation analysis has been conducted using the best available, civilian accessible geospatial data in a comparative study to determine where the location of spent fuel casks are in regard to FEMA modeled flood zone data. Method: Elevation data from the following agencies have been acquired (Appendix A): Entergy: PNPS Site map (2006) United States Geological Survey (USGS): Terrestrial Light Detection and Ranging (LIDAR) measurements (2011) National Oceanic and Atmospheric Administration (NOAA): Bathymetric survey (2007) United States Army Corps of Engineers (USACE): Topographical (LIDAR) and Bathymetric product (2012) Bathymetric data were used for visualization and analysis purposes. Terrestrial elevation data were utilized to compare original site plan spot elevation measurements. Bathymetric data were also used to show overwash potential of the engineered shoreline reinforcement in addition to the inundation (or partial inundation) of revetments designed to protect the site.

PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

Pilgrim  Nuclear  Power  Station  Elevation  Analysis  |  Jones  River  Watershed  Association           Northeastern  Geospatial  Research  Professionals,  Inc.  

1    

 

 

 

Introduction:  

The  Pilgrim  Nuclear  Power  Station  (PNPS),  located  in  Plymouth  County,  Massachusetts  on  the  shores  of  Cape  Cod  Bay  was  commissioned  on  December  9,  1972.    The  power  station  design  included  development  of  near-­‐shore  revetments  and  other  engineered  reinforcements  intended  to  protect  the  site  from  wave  action  emanating  from  Cape  Cod  Bay  .    Over  the  operational  history  of  the  power  station,  there  have  been  dredging  operations  to  ensure  that  the  water  intake  and  outlet  remain  operational  and  that  engineering  design  meets  current  standards.  

Resulting  from  a  perceived  shortfall  in  response  to  global  climate  change  and  sea-­‐level  rise  evidence  on  the  part  of  PNPS,  it  has  come  to  the  attention  of  the  Jones  River  Watershed  Association  (JWRA)  that  the  Pilgrim  Nuclear  Power  Station  site  and  its  assets  may  be  at  risk.    Specifically,  with  the  advent  of  outdoor  storage  of  high  level  radioactive  waste  in  the  form  of  spent  fuel  rods  contained  in  casks  engineered  for  such  containment  in  close  proximity  to  Federal  Emergency  Management  Administration  (FEMA)  flood  zones.  

This  elevation  analysis  has  been  conducted  using  the  best  available,  civilian  accessible  geospatial  data  in  a  comparative  study  to  determine  where  the  location  of  spent  fuel  casks  are  in  regard  to  FEMA  modeled  flood  zone  data.      

 

Method:  

Elevation  data  from  the  following  agencies  have  been  acquired  (Appendix  A):  

Entergy:    PNPS  Site  map  (2006)  

United  States  Geological  Survey  (USGS):  Terrestrial  Light  Detection  and  Ranging  (LIDAR)  measurements  (2011)  

National  Oceanic  and  Atmospheric  Administration  (NOAA):    Bathymetric  survey  (2007)    

United  States  Army  Corps  of  Engineers  (USACE):  Topographical  (LIDAR)  and  Bathymetric  product  (2012)  

Bathymetric  data  were  used  for  visualization  and  analysis  purposes.      Terrestrial  elevation  data  were  utilized  to  compare  original  site  plan  spot  elevation  measurements.    Bathymetric  data  were  also  used  to  show  overwash  potential  of  the  engineered  shoreline  reinforcement  in  addition  to  the  inundation  (or  partial  inundation)  of  revetments  designed  to  protect  the  site.  

 

 

 

Page 2: PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

Pilgrim  Nuclear  Power  Station  Elevation  Analysis  |  Jones  River  Watershed  Association           Northeastern  Geospatial  Research  Professionals,  Inc.  

2    

 

 

Analysis:  

Using  tools  for  datum  conversion,  provided  through  NOAA  (Appendix  B),  we  find  the  results  listed  in  Table  1  (Appendix  C).    Locations  labeled  C,  D,  and  E  show  the  greatest  vertical  variation  on  site.    The  variation  may  exist  due  to  measurements  taken  off  of  the  ground  surface  where  no  offset  calculation  was  provided,  as  these  locations  appear  to  be  used  for  construction  purposes  and  therefore  temporary  survey  elevation  points.    Location  RM14  is  measured  at  64.72  Feet  (NGVD  29),  and  deviates  from  the  LIDAR  data  significantly.  

Survey  elevations  for  this  site  as  provided  on  the  Entergy  site  drawing  (Appendix  A)  appear  to  be  specifically  for  the  layout  of  buildings  on  the  site,  and  not  for  providing  an  accurate,  relevant  comparison  between  where  buildings  rest  relative  to  elevations  on  the  ground.    With  the  exception  of  perhaps  location  RM14,  the  other  surveyed  elevations  cannot  be  used  with  any  significant  level  of  accuracy  to  determine  existing,  on  the  ground  elevations  elsewhere  on  the  site.  

 

Conclusion:  

The  PNPS  site  map  shows  several  surveyed  locations  that  do  not  match  current  modeled  elevation  data.    Although  the  survey  locations  on  the  PNPS  map  are  in  a  known,  disparate  vertical  datum  and  are  compared  to  the  current  modeled  elevation  data,  in  some  cases,  there  is  a  discrepancy  in  elevations  that  is  too  great  to  determine  precisely  where  the  modeled  FEMA  flood  zone  impacts  the  site.    The  data  collected  and  produced  by  Entergy  have  been  referenced  to  and  modeled  for  the  NGVD29  datum  while  all  other  data  are  referenced  and  modeled  to  the  newer  NAVD88  datum.  Although  it  is  possible  to  convert  between  NGVD29  and  NAVD88  datums,  it  is  standard  practice  to  use  data  that  are  all  modeled  to  the  same  datum  (horizontal  and  vertical,  respectively).    This  eliminates  potential  misrepresentation  of  a  given  location  on  site  plans,  and  other  planimetric  data  (including  flood  hazard  data),  which  may  also  be  projected  in  a  different  datum.    While  it  appears  that  the  top  of  engineered  elevation  per  the  PNPS  site  map  is  nearly  identical  to  the  modeled  LIDAR  elevation  data,  the  discrepancy  in  vertical  elevations  when  survey  data  are  compared  to  the  FEMA  flood  zone  data  confounds  the  analysis.  

 

Recommendation:  

The  recommendation  based  on  this  analysis  is  to  undertake  a  site  survey  of  PNPS  grounds  using  known,  measured  benchmarks.    Additional  reference  locations  should  also  be  plotted  and  measured  throughout  the  PNPS  site  for  an  accurate  elevation  data  set  that  is  surveyed  to  the  NAVD88  datum.    This  will  provide  the  public  (regulators,  residents,  etc.)  with  a  clearer  picture  of  how  sea  level  rise  resulting  from  our  changing  climate  impacts  current,  potentially  hazardous  conditions  at  PNPS.    Further,  a  new  data  set  will  enable  decision-­‐makers  the  ability  to  more  accurately  assess  on-­‐site  assets  and  contingencies  for  future  planning.  

 

Page 3: PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

Pilgrim  Nuclear  Power  Station  Elevation  Analysis  |  Jones  River  Watershed  Association           Northeastern  Geospatial  Research  Professionals,  Inc.  

3    

 

 

 

Appendicies  

Appendix  A  

Pilgrim  Nuclear  Power  Station  Site  Map,  NGVD29,  C2  Revision  10  (Entergy,  December  2006)  

(named  Site  Plan  with  file  path:  AMM:\CIVIL-­‐STRUCTURAL\C2.DWG)  

 

 

 

 

 

 

 

 

 

 

 

Page 4: PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

Pilgrim  Nuclear  Power  Station  Elevation  Analysis  |  Jones  River  Watershed  Association           Northeastern  Geospatial  Research  Professionals,  Inc.  

4    

 

 

USGS  LIDAR  Coverage,  NAVD88  (2011):  

 

 

NOAA  Bathymetric  Survey,  NAVD88  (2007)  

 

 

Page 5: PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

Pilgrim  Nuclear  Power  Station  Elevation  Analysis  |  Jones  River  Watershed  Association           Northeastern  Geospatial  Research  Professionals,  Inc.  

5    

 

 

 

 

USACE  Topographical  (LIDAR)  and  Bathymetric  Product,  NAVD88  (2012)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 6: PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

Pilgrim  Nuclear  Power  Station  Elevation  Analysis  |  Jones  River  Watershed  Association           Northeastern  Geospatial  Research  Professionals,  Inc.  

6    

 

 

 

 

Appendix  B  

National  Oceanic  and  Atmospheric  Administration  VERTCON  process:  

http://www.ngs.noaa.gov/cgi-­‐bin/VERTCON/vert_con.prl  

Converts  vertical  measurements  between  NGVD  1929  coordinates  and  NAVD  1988.  

National  Geodetic  Survey  (NGS)  Height  Conversion  Methodology  

http://www.ngs.noaa.gov/TOOLS/Vertcon/vert_method.html  

This  process  is  designed  to  provide  datum  shift  between  the  NAVD  88  and  NGVD  29  vertical  datums  at  specified  geographic  position.  

Dennis  G.  Milbert,  Ph.D.  

05/12/1999  

 

METHOD  

 

Program  VERTCON  computes  the  modeled  difference  in  orthometric  height  between  the  North  American  Vertical  Datum  of  1988  (NAVD  88)  and  the  National  Geodetic  Vertical  Datum  of  1929  (NGVD  29)  for  a  given  location  specified  by  latitude  and  longitude.  

 

The  VERTCON  2.0  model  was  computed  on  May  5,  1994  using  381,833  datum  difference  values.  A  key  part  of  the  computation  procedure  was  the  development  of  the  predictable,  physical  components  of  the  differences  between  the  NAVD  88  and  NGVD  29  datums.  This  included  models  of  refraction  effects  on  geodetic  leveling,  and  gravity  and  elevation  influences  on  the  new  NAVD  88  datum.  Tests  of  the  predictive  capability  of  the  physical  model  show  a  2.0  cm  RMS  agreement  at  our  381,833  data  points.  For  this  reason,  the  VERTCON  2.0  model  can  be  considered  accurate  at  the  2  cm  (one  sigma)  level.  Since  381,833  data  values  were  used  to  develop  the  corrections  to  the  physical  model,  VERTCON  2.0  will  display  even  better  overall  accuracy  than  that  displayed  by  the  uncorrected  physical  model.  This  higher  accuracy  will  be  particularly  noticable  in  the  eastern  United  States.  

 

It  should  be  emphasized  that  VERTCON  2.0  is  a  datum  transformation  model,  and  can  not  maintain  the  full  vertical  control  accuracy  of  geodetic  leveling.  Ideally,  one  should  process  level  data  using  the  latest  

Page 7: PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

Pilgrim  Nuclear  Power  Station  Elevation  Analysis  |  Jones  River  Watershed  Association           Northeastern  Geospatial  Research  Professionals,  Inc.  

7    

reduction  software  and  adjust  it  to  established  NAVD  88  control.  However,  VERTCON  2.0  accuracy  is  suitable  for  a  variety  of  mapping  and  charting  purposes.  

 

Most  horizontal  positions  of  the  bench  marks  used  to  generate  VERTCON  were  scaled  from  USGS  topographic  maps.  The  estimated  uncertainty  of  the  scaled  positions,  6",  is  greater  than  the  differences  between  NAD  27  and  NAD  83.  Therefore,  the  latitude  and  longitude  provided  to  VERTCON  can  be  on  either  the  NAD  27  or  NAD  83  datum.  

 

The  VERTCON  2.0  model  expresses  datum  differences  between  NAVD  88  and  NGVD  29  due  to  removal  of  distortions  in  the  level  data,  as  well  as  due  to  the  physical  differences  in  the  height  systems.  In  some  rare  cases,  these  local  NGVD  29  distortions  could  be  20  cm  or  more.  If  both  ends  of  your  old  vertical  survey  were  tied  to  one  of  these  "problem"  lines,  then  the  datum  difference  of  the  problem  line  is  appropriate  to  use  to  transform  the  survey  data.  If  both  ends  of  a  vertical  survey  are  tied  to  "undistorted  lines",  then  it  is  appropriate  to  use  a  slightly  distant  point  to  compute  the  transformation,  no  matter  how  close  your  survey  data  may  approach  a  given  problem  line.  The  possible  presence  of  a  problem  NGVD  29  line  in  the  vicinity  of  your  survey  will  become  evident  if  dramatically  different  datum  transformation  values  are  computed  within  a  small  area.  

 

It  must  also  be  emphasized  that  VERTCON  2.0  is  not  to  be  considered  reliable  beyond  the  boundaries  of  the  lower  48  United  States.  Future  versions  of  VERTCON  may  be  extended  into  neighboring  countries.  The  National  Imagery  and  Mapping  Agency  (NIMA  -­‐  previously  the  Defense  Mapping  Agency)  has  been  of  immense  help  in  this  endeavor.  NIMA  has  provided  a  major  portion  of  the  NGS  land  gravity  data  set.  NIMA  has  also  been  instrumental  in  the  creation  of  the  various  30"  elevation  grids  in  existence.  Although  the  work  of  the  NIMA  generally  precludes  public  recognition,  their  cooperation  in  this  work  is  gratefully  acknowledged.  

 

Page 8: PilgrimNuclear’Power’Station’Elevation’Analysis ... · PilgrimNuclear’Power’Station’Elevation’Analysis’|JonesRiverWatershedAssociation’ Northeastern!Geospatial!Research!Professionals,!Inc.!

Pilgrim  Nuclear  Power  Station  Elevation  Analysis  |  Jones  River  Watershed  Association           Northeastern  Geospatial  Research  Professionals,  Inc.  

8    

 

 

Appendix  C:  Table  1.  Elevation  comparison,  NGVD29  and  NAVD88  for  survey  elevations  on  Entergy  2006  site  plan.  

Column1 Column2 Column3 Column4 Column5 Column6 Column7Benchmark Longitude,  DD Latitude,  DD Elevation  (NGVD  1929) Elevation  (NAVD88) Units NAVD88  -­‐  NGVD29A -­‐70.579736 41.944086 19.58 19.92 Feet 0.34B -­‐70.577345 41.943638 22.83 20.24 Feet -­‐2.59C -­‐70.579503 41.94443 28.67 22.46 Feet -­‐6.21D -­‐70.579701 41.944291 30.15 20.76 Feet -­‐9.39E -­‐70.578975 41.943962 24.24 20 Feet -­‐4.24RM  14 -­‐70.573297 41.939861 64.72 49.69 Feet -­‐15.03Chiseled  Square -­‐70.579533 41.946788 13.92 10.44 Feet -­‐3.48