60
Publications mail agreement #40934510 www.pilingindustrycanada.com ISSUE 1 | 2014 Cover photo courtesy of Canadian Pile Driving Equipment New Frontiers – Muskrat Falls project to break new ground Finding a Better Way – An engineered solution for repair of piles A Champion of Steel – JMC Steel Group celebrates 130 successful years of service

Piling Industry Canada Issue 1, 2014

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Piling Industry Canada Issue 1, 2014

Publ

icat

ions

mai

l agr

eem

ent #

4093

4510

Piling Industry Canada

PICmagazine www.pilingindustrycanada.com

www.pilingindustrycanada.com

Issue 1 | 2014

Cover photo courtesy of

Canadian Pile Driving equipment

New Frontiers – Muskrat Falls project to break new ground

Finding a Better Way – An engineered solution for repair of piles

A Champion of Steel – JMC Steel Group celebrates 130 successful years of service

Page 2: Piling Industry Canada Issue 1, 2014

Our support systems extend far below the surfaceThe only company that offers you all four types of support systems:

We carry ASTM A252, A139, A53 B

AWWA C200, API & CSA Specifi cations

Supporting the construction industry since 1953Delta

#6-8500 River Road

Delta, BC V4G 1B5

Phone: 604.946.2655

Fax: 604.946.2630

1.866.400.PIPE

Calgary

9100 Venture Avenue S.E.

Calgary, AB T3S 0A2

Phone: 403.236.1788

Fax: 403.236.2478

1.866.441.PIPE

Edmonton

6515 - 34th Street

Edmonton, AB T2B 2V8

Phone: 780.465.0671

Fax: 780.465.2367

USA

3888 - Sound Way

Bellingham, WA 98227-9754

Phone: 866.400.7473

Fax: 866.419.4005

> Concrete Pile > Steel Pipe

> H Pile > Sheet Pile

Page 3: Piling Industry Canada Issue 1, 2014

1-800-376-6000 • www.independencetube.com

Celebrating Forty Years of Quality Tube Products

CHICAGO, IL

MARSEILLES, IL

DECATUR, AL

Can You Find The Four Differences Between These Two Pipe Piling Products?

Answers: On-Time Rolling Schedule,Inventory, Quality, Customer Secure Portal.

Since 1972, when Independence Tube fi rst opened its doors, its reputation for being customer focused has never wavered. While our entry into the Pipe Piling Market may be relatively new, Independence Tube has fast become a dedicated supplier and partner. Here are just a few of the reasons why Independence Tube’s pipe piling is no ordinary product.

On-Time Rolling Schedule. With an on-time rolling schedule second to none in the industry, customers can manage inventory more closely, knowing that material will be ready when promised. Our on-time delivery record has been maintained for over forty years.

Inventory. Independence Tube stocks A252 Pipe Piling from 6.625"OD through 16"OD in 30', 40', 50' and 60' lengths for immediate delivery. In addition to our 4 week rolling cycles, Independence Tube either has the stock to get your project started or a rolling is just weeks away.

Quality. Customer feedback has led to a Dynamic Quality System that exceeds industry standards. Our Inspection, measurement and testing procedures not only complement our manufacturing systems and processes, but they virtually ensure consistency, shorter delivery lead times and containment of costs. Customer Secure Portal. This allows customers 24/7 secure, real-time access to all their account

information including: browse and search stock inventory, order from fl oor stock or rolling, submit and view inquires, release shipments, view price sheets, view open orders and Bills of lading, print test reports and invoices, search order history, and view rolling schedules.

All pipe piling may look alike, but there’s a world of difference when you choose Independence Tube

Page 4: Piling Industry Canada Issue 1, 2014

QUALITY PRODUCT, READILY AVAILABLE

Every order, every time. Atlas Tube was founded in Harrow, Ontario, in 1984 with a focus on high-quality service and manufacturing excellence. Today, we’ve grown to become Canada’s largest manufacturer of straight-seam ERW pipe piling, but our dedication to meeting your needs remains the same. Our small-mill approach to service is backed by big-mill resources. And because Atlas Tube pipe piles are produced to meet or exceed ASTM A500, A252 and CSA G40.21 specifications, and are available in sizes up to 20" OD and lengths to 125', it’s easy to fulfill your exact project specifications — even on short notice.

When you have a tight deadline, Atlas Tube can deliver. Call 800.265.6912 or visit atlastube.com/stronger

14-JMC-1329_ad_Piling Canada Ad - June Issue_v4.indd 1 4/2/14 9:21 AM

Page 5: Piling Industry Canada Issue 1, 2014

YOU CAN

ON US!BUILD

Northstar provides piling services including design, supply, and fabricating across Western Canada with track and truck mounted piling units for both driven and helical piles. Northstar also offers pile installation with it’s unique patented EXCA-Driver (Excavator Mounted Pile Driver). With these units Northstar is capable of driving piles up to 18m in length, switching attachments to install helical piles, or operating as an excavator all in under 30 minutes! This can de done all while navigating the most difficult of terrain.

The choice is yours.

SERVING WESTERN CANADA FROM FORT ST. JOHN • GRANDE PRAIRIE • CALGARY • REGINA

Page 6: Piling Industry Canada Issue 1, 2014

6 PIC Magazine • June 2014

Table of ContentsPICDELCommunications Inc.DEL

Communications Inc.

Published by

Suite 300, 6 Roslyn RoadWinnipeg, ManitobaCanada R3L 0G5

President & CEO: David Langstaff

Publisher: Jason Stefanik

Managing Editor: Carly [email protected]

Sales Manager: Dayna [email protected]

Advertising Account Executives:Jennifer HebertMichelle Raike

Production services provided by:S.G. Bennett Marketing Serviceswww.sgbennett.com

Art Director: Kathy Cable

Layout & Design: Joel Gunter

Advertising Art: Dana Jensen Joel Gunter

© Copyright 2014, DEL Communications Inc.All rights reserved.The contents of this pub lica tion may not be reproduced by any means, in whole or in part, without prior written consent of the publisher.

While every effort has been made to ensure the accuracy of the information contained herein and the reliability of the source, the publisher in no way guarantees nor warrants the information and is not responsible for errors, omissions or statements made by advertisers. Opinions and recommendations made by contributors or advertisers are not necessarily those of the publisher, its directors, officers or employees.

Publications mail agreement #40934510Return undeliverableCanadian addresses to:DEL Communications Inc.Suite 300, 6 Roslyn RoadWinnipeg, Manitoba, Canada R3L 0G5Email: [email protected]

PRInTED In CAnADA 05/2014

Piling Industry News ........................................................................................................... 8

A Champion of Steel – JMC Steel GrouP CelebrAteS 130 SuCCeSSful yeArS of ServICe ...............................16

Get SMArt – CAlIforNIA’S New SMArt rAIl SySteM tAkeS CoMMutING to the Next level ..........................................................................18

New frontiers – MuSkrAt fAllS ProJeCt to breAk New GrouNd .........................................................22

digging deeper – keller CANAdA fINdS A fASt SolutIoN .........................................................................26

Construction in Copenhagen – the AdvANtAGe of MoNItorING wIth the drIllING MAte SySteM .........................32

The foundation of excellence – A hIStory of INNovAtIoN At yoNGe ANd bloor .........................................................36

bridging the Gap – StruCturAl CollAPSe CAllS for eMerGeNCy MeASureS ..........................................42

Are you up for It? – keeyASk CAMP ProJeCt IN NortherN MANItobA ChAlleNGeS eveN the MoSt SeASoNed deeP fouNdAtIoNS exPertS .......................46

Super Sonic – QuIet, QuICk, ANd MANeuverAble, SoNIC drIll rIGS MAke PIlING eASy .................48

blowin’ in the wind – offShore wINd fArMS CAPItAlIze oN lAteSt teChNoloGy .....................................50

Close Quarters – lIebherr PIlING rIG hAS to CoPe wIth reStrICted work SPACe IN QuebeC ..........52

finding a better way – AN eNGINeered SolutIoN for rePAIr of ColuMNS ANd PIleS ...................................54

Index to Advertisers ...........................................................................................................58

3801-53 Avenue Lacombe, AB T4L [email protected]

Another satisfied customer making money with the completely redesigned Junttan PMx22. The 97% efficient hydraulic hammer is configurable on site as a 4, 5, or 6 ton ram weight delivering a max energy of 88 kNm. Quickly and efficiently, this machine can drive 30” x 20m piles all day. Battered piles up to 1:3 when configured properly. Transportation weights as low as 44600 kg gets this unit into any site across Canada with ease.

Serious work no matter the temperature outside, Junttan hydraulic piling rigs are good to work from +40 to -30 degrees Celsius. Outwork the competition and be green all while you make serious green for your company.

Leave the clouds of black smoke on site for the old steam engines of days gone by. Get introduced to the new money maker, the completely redesigned PMx22 from Junttan.

Let our experienced service department stand behind your company’s success.

InnovatIon. ExpErIEncE. productIvIty. SuccESS. ExpErIEncE Junttan

Call Canadian Pile Driving Equipment to enquire about the complete range of Junttan products and get them working for you. Canadian Pile Driving Equipment has the largest stock of Junttan parts worldwide.

out with the old and in with the new!

Page 7: Piling Industry Canada Issue 1, 2014

Your True Project PartnerSkyline Steel is a premier steel foundation supplier with an extensive network of manufacturing and stocking locations. Our wide range of products include H-piles, Pipe Piles, Steel Sheet Piles, Threaded Bar, Micropiles, Piling Accessories, and Structural Sections.

See how Skyline Steel can help with your next project. Visit skylinesteel.com or call. In Western Canada (BC, AB, SK, MB, YT, NT, and NU), call 1-866-461-6367; In Eastern Canada (ON, NB, NS, QC, PE, and NL.), call 1-866-461-6366.

© 2014 Skyline Steel, LLC. Skyline Steel is a wholly-owned subsidiary of Nucor Corporation, the largest producer of steel in the United States.

Saskatoon, SKEastern Alberta Transmission Line (EATL), AB

Welland Canal, ON

Providing the most comprehensive product offering from a single company in the geotechnical industry

Skyline_PIC_0514_v1.indd 1 5/13/14 4:40 PM

Page 8: Piling Industry Canada Issue 1, 2014

8 PIC Magazine • June 2014

A new APe – AmericAn Piledriving equiPment (APe) BrAnch OPens

In edmonton, Alberta, the new APe Cana-da branch will be led by APe 20-year veteran larry Mulanax, previously APe’s equipment manager in their kent headquarters, and 26-year mining industry veteran Colin Grindle. The branch will be on the north side of ed-monton at 9004 yellowhead trail, edmon-ton, Alberta. Service, sales, and rental of APe equipment for western Canada will be served from the edmonton location, as well as opera-tion for the APe drilling program.

The APe Canada branch comprise offices and reception, service shop, test stand, and yard. The full service shop is staffed with jour-neymen and apprentice mechanics, equipped with overhead cranes, welding, and fabrication shop. The edmonton branch has long range service capacity via a fully equipped service truck.

Prior to appointment larry Mulanax was APe’s equipment manager in their kent, wA headquarters. Prior to coming on with APe, Colin Grindle was owner of mining industry consulting company Amrak Innovations for 20+ years following both front line and mana-gerial roles in the mining sector. Grindle grew up in Northern Manitoba.

The APe branch Crew was welcomed to Canada last winter by a Northern Manitoba wind chill factor of -50⁰c on a project of 2,300 high-strength APe hd Piles™ for a Manitoba hydro dam support facility installation.

for more information contact larry Mula-nax at [email protected] or Colin Grindle at [email protected].

APPle viii set tO imPAct deeP FOundAtiOn industry

over the course of the past several years Grl engineers, Inc. (Grl) has introduced a series of six “APPle” drop hammers. The de-vices are used in dynamic load testing of any type of deep foundation (AStM d4945 Stan-dard test Method for high-Strain dynamic testing of Piles), in cases when a pile driv-ing hammer or another suitable drop weight is not readily available at a job site. Grl has now added two more APPleS to the lineup. The APPle vII is designed specifically to test helical piles. The APPle vIII is a modular sys-tem with a maximum ram weight of 80 tonnes.

That is double the maximum weight of the APPle Iv, previously the largest of Grl’s drop hammers. with this addition, the APPle de-vices now cover a large range of test loads, up to 8,000 tonnes under ideal conditions.

dynamic load tests are an economical alter-native to static load tests, and may also meet the requirements of the rapid load test stan-dard AStM d7383, particularly with the avail-ability of the heavier APPleS. Prior to the test Grl performs an analysis and recommends an adequate APPle for each situation, from mi-cropiles to large, high capacity drilled shafts. After the test, it furnishes a detailed test report that includes a simulated static load test in the form of a calculated load-set curve.

Grl, with eight offices throughout the united States, specializes in providing testing, analysis, and consulting services for the deep foundation industry. The founders and senior engineers of Grl pioneered the field of dy-namic foundation testing. for more informa-tion visit www.Grlengineers.com

BhOir grOuP’s lieBherr lr 1300 delivers with A PhenOmenAl BOOm cOnFigurAtiOn

The bhoir Group’s liebherr lr 1300, the 300 tonne crawler crane manufactured by li-ebherr-werk Nenzing Gmbh, Austria, created a breakthrough by lifting 8.3 tonnes with 86 metre main boom and 89 metre luffing jib and derrick with 50 tonnes of suspended counter-weight. This splendid lift was carried out at a radius of 53 metres and the load was placed at a height of 118 metres.

The crane is working in a cement plant in Chattisgarh, India. The magnificent boom combination and excellent load capacity of the machine made the lift extremely easy with ut-

most safety. This remarkable feature of the lr 1300 has put the bhoir Group miles ahead.

The lr 1300 is powered with a fuel efficient 450 kw diesel engine along with state-of-the-art liebherr litronic® control system (devel-oped and manufactured in-house) based on Canbus technology which provides efficient and precise control of all functions including online load chart calculation.

The fabulous blend of main boom and luff-ing jib combinations makes the crane one of its kind to work across power plants, steel

CanadaPiling Industry News

Page 9: Piling Industry Canada Issue 1, 2014

Taking the

LEADin over 40 countriesaround the world

Deep Foundation Contracting ServicesLeader SystemsImpact Hammers

Statnamic Load Testing TechnologyReverse Circulation Drills

Custom Foundation EquipmentSite Support

Project Planning

www.berminghammer.com | www.berminghamfoundationsolutions.com

Wellington Street Marine Terminal, Hamilton, Ontario, Canada L8L 4Z9Tel: 1.905.528.7924 Fax:1.905.528.6187 | Toll Free: 1.800.668.9432 (in Canada and USA)

Canada's oldest and most innovativedeep foundation contractor - Since 1897

Page 10: Piling Industry Canada Issue 1, 2014

10 PIC Magazine • June 2014

CanadaPiling Industry News

plants, cement plants, petrochemical plants, and all other types of erection works. The crane can be fitted with a maximum of 98 metres of main boom, a maximum of 113 metres of luffing jib and various fixed jibs including windmill fixed jibs of seven and eight metres.

without the lr 1300 a bigger crane would have been needed to execute the lift, thus requiring more space and causing higher costs. hence, the li-ebherr lr 1300 proves to be a perfect crane for delivering success at great heights.

The bhoir Group has four units of lr 1300 crawler cranes and has been successfully deploying them for sev-eral high rise and heavy lift erections across various segments of the indus-try.

JunttAn Oy rOlls Out three high-end

AdditiOns tO its X-series Pile driving rig FAmily

Junttan oy is launching three big brothers in its modern x-Series pile driving rig family in addition to the smaller range PMx20, PMx22, PMx24 and PMx25 rigs launched a few years ago. The new models, carrying the nickname J-rex, are the PMx26, PMx27, and PMx28, have maximum

leader capacities of 20, 23, and 25 metric tonnes and maximum pile lengths

of 24, 25, and 28 metres respectively. This makes

the PMx28 the biggest and strongest com-

plete, purpose-built pile driving ma-chine ever built,

with a full-scaled

telescopic leader and other well-known Junt-tan features.

The whole basic structure and component layout of the PMx26-28 series has been rede-veloped according to Junttan’s 35 years of ex-perience in the field, which means effortless operation and maintenance, and uncompro-mising safety, stability, transportability and structural strength. The hydraulic system has also been completely overhauled and Junttan’s innovative x-control system for the PMx26-28 series has been further developed for the most convenient and productive operation and low fuel consumption. The PMx26-28 series uti-lizes the latest engine technology to conform to the toughest international emission legisla-tion.

It’s greenImproving operator efficiency and safety,

as well as minimizing energy losses within the system have been the key design goals for the PMx26-28 series. deep system integration re-sults in reduced emissions, improved perfor-mance and improved fuel economy without compromising machine performance, allow-ing for seamless operation. There are several developments that dramatically minimize fuel consumption and the operator’s role in it. A thermostatically-controlled engine and hy-draulic oil coolers with an optimized air cir-culation system, together with a streamlined main hydraulic oil circuit with extended hose diameters, decrease fuel consumption by up to two liters per hour compared to previous models. The new post-compensated and load sensing hydraulic system saves another liter per hour compared to traditional hydraulic systems, and the unique PileCruise feature eliminates human factors from the total system efficiency, decreasing the power consumption of the hammer by up to 20 per cent, depend-ing on the operator. tier 4 certified Cummins engines are also available to further decrease emissions.

Added value for equipment ownershipJunttan recognizes that a successful pile

driving process results in various economic and ecological benefits over other piling meth-ods, each of which can only be accomplished by paying close attention to every step of the process. Close co-operation with professionals in the global pile driving industry enables Junt-tan to provide the most profitable solutions to

make the ownership of a Junttan rig a success. Thanks to the new technologies utilized, the PMx26-28 series further strengthens Junttan’s position as the provider of the best perform-ing equipment: comprehensive online services for managing all pile driving and equipment related data, various new innovations for easy maintenance, together with the well-known high resale value of Junttan equipment, makes the ownership of the new PMx26-28 series risk-free and convenient.

cis grOuP AwArded cOntrAct By techniP in nOrwAy – First Contract for New Subsea Piling Services

Conductor Installation Services ltd (CIS), an Acteon company that provides hammer services to install conductors and drive piles, has been awarded a contract to drive piles to permanently stabilize two subsea structures and to initiate three rigid pipelines being in-stalled by technip in Norway. The contract is a breakthrough for CIS, as it is the first to utilise the new CIS Subsea Piling System, and the first ever operation for CIS in Norway.

unveiled in November 2013, the remotely-operated Subsea Piling System allows CIS to drive piles as large as 36 inches in diameter, in water depths to 300 metres.

Page 11: Piling Industry Canada Issue 1, 2014

One of the major problems that comes with high pro�le drill rigs is

transport. Multiple trucks and trailers. Cranes. Expensive permits. No

wonder it’s tough to make a pro�t. The E150 from Bay Shore Systems

solves this problem. Now you can choose a high pro�le rig that,

without disassembly, can �t on one trailer and still meet standard

transport height, width and weight limits. Plus, you’ll have a rig that

delivers 150,000 ft-lbs. (200 kN-m) of torque and a max hole depth

of 150 ft. (45 m). Not only will you get the job done, but you’ll have a

rig that saves you time and money before it even gets to the jobsite.

Call Bay Shore Systems and add a new E150 to your drilling �eet.

Visit: www.bayshoresystems.comCall: 888.569.3745

E150

Page 12: Piling Industry Canada Issue 1, 2014

12 PIC Magazine • June 2014

The contract requires CIS to drive three 30-inch Initiation anchor piles, four 30-inch manifold anchor piles and four 24-inch pipe line end manifold (PleM) anchor piles on the bøyla development project in Norwegian waters. The job is scheduled to take place in mid-2014.

The CIS package combines cutting edge technology with highly trained engineers able to make the most of the technology. The two are inseparable, as the customer understands.

“The combination of new techniques and expert specialists convinced us,” says Chloe Chirat, project purchaser for technip Norge.

High Tech Piling Means Greater Accuracy and Improved Efficiency

The new Subsea Piling System is unique in that it features self-tensioning hydraulic winches that lower and raise the hydraulic hoses and electrical cables connected to the hammer. while conventional systems rely upon technicians to carry out this critical ac-tion by manually operating the winches, the constant-tensioning capability of this new sys-tem means that winches automatically heave

and lower according to sea conditions. This contributes to making the process even more efficient, reliable, and safer.

The entire piling process for technip in Norway will be carried out by an experienced engineer from a control unit and monitoring system located onboard a vessel. A hydraulic hammer, connected via an electronic umbili-cal cable to the control system, will be lowered into the water and placed directly over the sub-sea pile. once it is accurately positioned, the pile will be driven into the seabed by the ham-mer until it reaches its target depth.

New Technology Combines with Expert Skill Set

“we’re very proud of this technology, so it is great that we are in the position of operating it for the first time for technip in Norway in a new geographic region,” says Penman.

The project offers CIS the opportunity to showcase its piling capabilities in an important european context and, in the process, further enhance the company’s global reputation for both subsea piling and conductor installation services.

CanadaPiling Industry News

Shape, quality,cage alignmentand concrete cover of bored piles. Also testsjet groutingcolumns.

Data acquisition by Probes or Thermal Wire® cables. Tests fast andsoon after casting - lets constructionmove on!

[email protected]

www.pile.com/[email protected]

Winner of the DFI 2013

C. William Bermingham Award for Innovation

Winner of the 2013

CIF/CURT NOVA Award for Innovation

Thermal Integrity ProfilerThe Heat Is On.

Drilling & Piles Ltd.

Fort Macleod, Alberta

Ph: (403) 553-4084 | Fax: (403) 553-2834

[email protected]

www.westcodrilling.ca

Page 13: Piling Industry Canada Issue 1, 2014

Follow Our Lead To A Solid FoundationBAUER-Pileco is a leading global provider of foundation equipment and service to the construction

industry. Recognized for its technological advances and innovation, BAUER-Pileco and its network of dealers represent the BAUER Group across North and Central America.

BAUER PILECORTG KLEMMFAMBO MAT BETEK PRAKLA

www.bauerpileco.com BAUER-Pileco Inc., 111 Berry Road, Houston, TX [email protected] (713) 691-3000 / (800) 474-5326 www.facebook.com/bauerpileco www.youtube.com/PilecoTX

Scan this QR Code to your smart phone

and contact us directly.

Page 14: Piling Industry Canada Issue 1, 2014

14 PIC Magazine • June 2014

CIS, a member of Acteon’s Conductors, ris-ers and flowlines group, provides conductor and pile installation services associated with construction projects carried out in the global oil and gas industry. These services are carried out both onshore and offshore to, for example, create foundations for new wells, platforms, bridges and jetties.

The range of services provided by CIS sup-ports the Acteon Group’s commitment to de-fining subsea services across a range of inter-connected disciplines.

About Conductor Installation Services Ltd

Conductor Installation Services ltd (CIS), an Acteon company, is the only company that is solely dedicated to the process of installing conductors and piles. CIS takes responsibility for full project management for installing con-ductors anywhere in the world. The company’s primary objective is to employ hammer servic-es to install conductors and drive piles with the highest standard of structural integrity, reliably and safely. CIS also strives to reduce the cost of conductor and pile installation by developing more efficient work processes and using the latest state-of-the-art technology, including its remotely-operated Subsea Piling System that the company developed to drive piles as large as 36-inches in diameter in water depths up to 300 metres.

Since it was founded in Great yarmouth,

england in 2005, CIS has built an impressive track record of successful operations carried out in every major oil and gas producing re-gion. In recognition of the fact that it had not incurred a single loss time incident (ltI) for eight consecutive years, CIS recently received the prestigious Gold Award for occupational health and Safety 2013 for the fourth year in succession from the royal Society for the Pre-vention of Accidents (roSPA) in the united kingdom. learn more at www.c-i-services.com.

indePendence tuBe cOrPOrAtiOn Achieves isO 9001:2008

Independence tube Corporation is proud to announce it has achieved ISo 9001:2008 cer-tification at their manufacturing divisions in Chicago and Marseilles, Illinois and decatur, Alabama through registrar SAI Global.

The road to ISo 9001:2008 certification for Independence tube included divisional initial assessments and gap analyses, Quality Man-agement Systems, document Management Systems, and Corrective and Preventative Ac-tion Systems development, internal audits, management system reviews, and closure of all divisional quality system corrective actions, prior to registration audits at each division with SAI Global.

The ISo 9001:2008 certification recogniz-es the policies, practices, and procedures of the company ensure consistent quality in the

product and services they provide. Clients can be confident Independence tube is dedicated to maintaining the highest efficiency and re-sponsiveness in achieving their ultimate goal – guaranteed client satisfaction.

A copy of the ISO Certificate can be found at: http://www.independencetube.com/quality n

CanadaPiling Industry News

Pile Drivers, Divers, Bridge, Dock and Wharf Builders Local Union 2404

#101 - 580 Ebury PlaceDelta, BC V3M 6M8www.Piledrivers2404.ca

604-526-2404Fax: 604-526-2446Cell: 604-788-2902

1-800-LOC 2404

• Trade Certified Pile Drivers / Bridgeworkers• Red Seal Carpenters• CWB Certified Welders• CSA Z275.4 Competent Surface Supplied Divers• ITA Designated Trades Training Provider• CWB Certified Welder Testing Facility Please

recycle.

Page 15: Piling Industry Canada Issue 1, 2014

O�ering a full range of piling products including sheetpile, H-pile, and pipe for sale or for rent anywhereacross North America from eight stocking locations.

Sheet piling - Hot Rolled, Cold Formed A572 Grade50 Standard. A690, A588, and other grades readilyavailable - all in your “as required” length.

Call us for support and service on your next project.

Providing Piling Product Solutions to the Heavy ConstructionIndustry for over 25 years

Providing Piling Product Solutions to the Heavy ConstructionIndustry for over 25 years

Providing Piling Product Solutions to the Heavy ConstructionIndustry for over 25 yearsO�ering a full range of piling products including sheetpile, H-pile, and pipe for sale or for rent anywhereacross North America from eight stocking locations.

Sheet piling - Hot Rolled, Cold Formed A572 Grade50 Standard. A690, A588, and other grades readilyavailable - all in your “as required” length.

www.rollformgroup.comRoll Form Group Suite 100 - 6701 Financial Drive, Mississauga, ON L5N 7J7 Tel: (905) 270-5300 Fax: (905) 593-3489 950 Industrial Road, Cambridge, ON N3H 4W1 Tel: (519) 650-2222 Fax: (519) 650-2223 26 Country Road 351, Iuka, MS, 38852 Tel: (662) 424-1460 Fax: (662) 424-0314Piling Products 945 Center Street, Green Cove Springs, FL, 32043 Tel: (904) 287-8000 Fax: (904) 529-7757

Page 16: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201416

PIC canada | U.s. | international

from the piling to the penthouse, JMC-man-ufactured steel products are in high-demand.

"our products really are all around you every day," says Chris ragan, product man-ager of Pipe and Piling Products at Atlas tube. "Pretty much everything that goes into the ground to finishing off the top of a building can be a JMC-manufactured product. we’re really a one-stop shop.”

The John Maneely Company was first formed more than 130 years ago in 1877, as a distributor of pipe, valves, and fittings in Philadelphia, and quickly grew to become one of the leading players in the steel and pipe dis-tribution market. today the company is the largest independent manufacturer of tubular products in North America, producing more than 2.5 million tonnes of tubular products a year through their 15 manufacturing facilities.

"our 2,500 employees work hard every day to give our customers both quality products, as well as exemplary service," says ragan, of the company that encompasses the former wheat-land tube Group and Atlas tube. "The ability to deliver very quickly has become increas-ingly important in today’s marketplace, and we work hard every day to make sure that we not only meet but exceed our customers’ expecta-tions in terms of delivery speed."

JMC Steel offers an array of products ca-

tering to structural steel, electrical conduit, galvanized fence posts, sprinkler pipe for fire suppression, tubing, casing, and line pipe for the oil and gas industry, piling, and hydraulic cylinder tubing for the fluid power industry, as well as elbows, couplings, and nipples for elec-trical conduit. Company top-sellers include straight-seam, erw (electric resistance welds) pipe piles. unique to the product is that it does not use a filler metal nor statically melts the edges of the material being welded together, as do more conventional welding processes such as shielded metal arc (stick) or metal inert gas (MIG) welding.

operations have been expanded due to the acquisition of organic and greenfield sites (such as lakeside Steel, which was acquired in 2012 and merged with JMC's existing oil country capabilities to create energex tube, a division that produces line pipe and casing for the oCtG market.) recently, the company underwent a major branding change for their doM division, rebranding it from a part of the wheatland tube division to its former, stand-alone brand name – Sharon tube.

Continual efforts are made by the company to stay abreast of market changes, particularly through the anticipation of customer needs and through marketplace education. As a re-sult, several initiatives have been created to promote the benefits and advantages of steel products with the goal of reaching ample au-diences – and as ragan confirms, technology plays a key role in this promotion.

"we feel very strongly about not only edu-cating the marketplace in general, but reach-ing students and letting them know the im-portance of steel at a young age," ragan says. "In this day and age, a business can’t afford not to have an online presence. whether you’re an e-commerce company or focus more on lead generation, a website is the chief piece of owned media that businesses cannot do without. All of our websites fall under the lat-

A Champion of SteelJmc steel grOuP celeBrAtes 130 successFul yeArs OF service

Page 17: Piling Industry Canada Issue 1, 2014

Piling Industry Canada • June 2014 17

PICcanada | U.s. | international

ter – they exist to educate consumers, with the ultimate goal of leading generation conversions."

Atlas Connection is the company's one-of-a-kind online community forum that focuses solely on structural steel. on the forum, members are able to submit project-related questions to the panel of industry experts and can discuss complementary steel and engineering-specific topics. A series of educational videos on structural steel (entitled the “designing with hSS” series) is also readily available online. These videos feature an in-house structural engineer and address various topics dealing with structural steel, such as connections, specs, and availability. Additionally, iPad apps have been developed for select product lines, whereby cus-tomers can access company brochures, spec sheets, and manufacturing videos.

"we are proud of how far we’ve come," he says. "however, we continu-ally strive to make [the websites] better – with Seo, mobile-friendly sites, and the addition of new and relevant content, the ultimate goal for our websites is to provide the best experience possible for our visitors."

equally important is the company's promotion of high-quality domes-tically-produced product. As such, JMC continually researches means to upgrade current machinery to ensure that all of their mills boast the best-in-class manufacturing equipment. on the minds of JMC reps is the onslaught of imports from other countries, specifically in the oCtG market.

"As a company, we are adamant believers in the importance of domes-tic manufacturing – the jobs that it gives Americans, as well as the quality of the product itself are two key advantages that domestic manufacturing produces," he says. "ending unfair dumping processes can only benefit our country, and we are fighting hard to make sure that that happens."

As JMC looks to the horizon, there is a movement to grow and expand and enter new markets, while additional M&As may be in the company's future as well. for now, the company is well-placed to address one of the biggest market trends towards the construction of safer buildings.

"The construction of buildings is moving more towards tubing than other products because tubing is a stronger, more capable solution to meet those demands," ragan concludes. "we have seen more buildings moving towards steel for that very reason, and we work hard to educate the market about the benefits and advantages that tubing has for both the safety and aesthetic features of building construction." n

LoadCells

Model 3000Electricial ResistanceLoad Cell

Model 4900Vibrating Wire

Load Cell

www.gkmconsultants.comwww.geokon.com

To get the most accurate and reliable pile test results, count on quality-built vibrating wire load cells from Geokon, Inc.The World Leader in Vibrating Wire Technology™

48 Spencer StLebanon, NH 03766USA

1 • 603 • 448 •1562 [email protected] www.geokon.com

1430 Hocquart StreetSuite 100St. Bruno, QC J3V 6E1Canada

1 • 450 • 441 • 5444 [email protected] www.gkmconsultants.com

GKM Consultants1430 Hocquart Street

35 YEARS OF INNOVATION AND QUALITY

Page 18: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201418

PIC canada | U.s. | international

Any mention of the daily work commute gen-erally conjures up images of dark under-eye circles, no-amount-of-coffee-can-cure head-aches, and of course, bumper-to-bumper traf-fic queues – which is precisely the image the Sonoma-Marin Area rail transit (SMArt) wants to change.

North bay commuters are poised to travel in style aboard the Sonoma-Marin counties’

passenger-train project scheduled for comple-tion in 2016 – a smooth, modern (and stress-free) ride boasting food and beverage kiosks, wifi, bicycle storage, and a number of conve-nient north-south stops parallel highway 101 (one of which is the larkspur ferry terminal with access to San francisco).

Integral to the project is track reconstruc-tion, an estimated 70 miles of new rail track to

replace the 60-to-100 year-old tracks between Cloverdale and larkspur landing, beginning with the Santa rosa-San rafael segment. Ap-proximately 17 per cent of this new single-set track will include complementary passing sid-ings, allowing for travel of both northbound and southbound trains on one track.

Several handicap-accessible bike and walk-ing paths will also be constructed throughout the various phases of this project, which was initiated by the Sonoma-Marin joint venture. A new bridge over the Petaluma river rounds out the project.

Joint venture C.C. Myers and Ghilotti brothers have been awarded the Petaluma riv-er bridge replacement contract. Spanning 907 feet, the new bridge marks the third longest precast, pre-stressed concrete girder bridge in the united States at an estimated cost of $67 million. Projected for completion in late 2015, the new bridge will be constructed in three stages and require erection of 99 girders approximately 130 feet in length at 60 tonnes each. It will also feature arched girders, wave patterns on the deck and pier caps and frac-tured fin texture on the columns.

over 325 tonnes of steel sheet piling was provided by hammer & Steel Inc. for the

Get SMARTcAliFOrniA’s new smArt rAil system tAkes cOmmuting tO the neXt level

Page 19: Piling Industry Canada Issue 1, 2014
Page 20: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201420

Piling industry CanadaPIC

construction of two temporary cof-ferdams (a square or rectangular box, “dewatered” for bridge construction purposes) last year. The cofferdams situated on the river’s south bank, which will remain in place for one and two years respectively, combine PzC 18, PzC 26, Pz 35, and various con-nectors to finish the job.

“325 tonnes is nothing to sneeze at,” says Armand Caballin, territory manager, hammer & Steel Inc., one of North America’s largest suppliers of steel sheet piling and pile driving equipment. “we are a reputable, reli-able supplier of steel sheet piling and because of our inventory and location, we have the capabilities to supply a project of this size.”

Currently, the majority of the first cofferdam has been removed; a por-tion of the second will be left in place permanently, though quantities have yet to be determined. Currently on-site, the ground is being prepped for the bridge piers that will support the SMArt train’s crossing above the riv-er, adds Caballin.

overall, the new SMArt line hopes to include ten stations between Santa rosa and San rafael. Seven two-car trains (developed in Japan and assem-bled in Illinois) will run the line, pow-ered by an environmentally-friendly tier 4 diesel engine. each train will have the capacity for up to 158 seated passengers, 160 standing passengers

and 23 bicycles. The top speed of these trains will be 79 mph, with an average speed, including stops, of 40 mph be-tween San rafael and Santa rosa.

The voter-approved passenger rail project and accompanying bicycle-pedestrian pathway is in line with California’s penchant for exceptional public transportation systems, says Caballin. “[highway 101] is a two-lane highway each way. It has an hov (high-occupancy vehicle) lane, but even still there’s a lot of bottlenecking,” he adds. “This is one of the reasons they want to put the train in there.”

Moving people quickly and safely is an admitted focus of the SMArt proj-ect. Though speculators have suggest-ed that the trains may cause “major traffic delays” downtown, both Marin and Sonoma counties have denied the claim, stating SMArt trains will cross the streets in 35-40 seconds – shorter than the duration of a red traffic light.

All told, according to the project’s environmental Impact report, the SMArt project will result in the re-moval of an estimated 5,300 car trips on North bay roads, which equates to an annual greenhouse gas reduction of 30 million pounds.

As Caballin cites, the SMArt proj-ect is “one to watch” and holds incred-ible potential for the region. “There are always exciting developments as con-struction progresses,” he says. “Stay tuned.” n

Page 21: Piling Industry Canada Issue 1, 2014

TORONTO: (519) 623-6454CALGARY: (403) 248-4884OTTAWA: (613) 241-5551

www.hcmc.ca“Innovations in Foundations”

Page 22: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201422

Piling industry CanadaPIC

when the 824-megawatt hydroelectric gener-ating facility at Muskrat falls becomes opera-tional, it will not only position Newfoundland and labrador as a leader in clean energy, it will rely upon more than 1,500 kilometres of trans-mission lines and associated infrastructure to deliver power to homes and businesses in that province. It will also bring to the forefront a new type of horizontal directional drilling (hdd) activity, a technology long used in the utility industry but in this case, adapted from the oil and gas industry.

“from a hydroelectric generation perspec-tive, this is the largest project that has been un-dertaken in Atlantic Canada in recent years,” states Greg fleming, Marine Crossings project manager, Nalcor energy – lower Churchill Project. “The development of the Muskrat falls and the overall lower Churchill Project represents one of the most significant hydro-electric projects in Newfoundland and labra-dor’s history.”

A PerilOus crOssingfor decades, governments have been

studying development options for the lower Churchill river, one of the best undeveloped

sources of hydroelectricity in North America. but construction of the Muskrat falls project didn’t officially begin until early 2013.

The project – which is expected to involve 560,000 m3 of concrete, 4,500 towers, 460,000 insulators, and 6,000,000 metres of conduc-tor – involves the installation of three separate cables across the Strait of belle Isle, stretching from forteau Point, labrador, to Shoal Cove,

Newfoundland. The first two cables will be used to transmit the electricity, while the third will act as a spare.

In order to transmit this much-needed elec-tricity to homes and businesses in Newfound-land and labrador (the province is projected to need 80 per cent of the electricity generated at Muskrat falls by 2036 or earlier), this 35 ki-lometre cable crossing needs to stretch under-water across the Strait of belle Isle.

“The hdd technology will be used to bore holes in the sea floor to accommodate the cables,” explains fleming. “each of the cables requires a bore hole on both the labrador and Newfoundland side, so there will be a total of six bore holes.”

unlike most hydroelectric generation appli-cations in other jurisdictions where the trans-mission cables typically run between two com-panies with separate power grids, the Muskrat falls project calls for cables to run between the source of electricity and the end customers.

“The bore holes required for the cables need to be as smooth as possible and of excel-lent quality because we need a very high level of reliability in this application,” states flem-ing. “for this reason, the hdd technology is

New FrontiersmuskrAt FAlls PrOJect tO BreAk new grOund

By Melanie Franner

Page 23: Piling Industry Canada Issue 1, 2014

888.241.6615inquiries@fugro.comwww.fugroconsultants.comwww.loadtest.com

Fugro has the experience, equipment, technology and professionals necessary to provide a complete and integrated plan to reduce potentially catastrophic and expensive risks on deep foundation projects. Fugro Loadtest is dedicated to advancing state-of-the-art deep foundation load testing specializing in bi-directional load testing using the award winning Osterberg Cell®.

While successfully managing geotechnical risks to improve whole project delivery, we provide safe and efficient solutions for a multitude of clients.

• Geophysical evaluations• Advanced site exploration (CPT, DMT, rock coring)• Seismic studies/liquefaction analysis• Complex soil properties analysis• Geotechnical analysis to optimize foundation configuration• Deep foundation testing and pile dynamic analysis• Construction monitoring and quality control• GIS data management

WHEN FOUNDATION RISK MANAGEMENT COUNTS...

Prince Edward Island Link (Confederation Bridge)Prince Edward Island/New Brunswick

...COUNT ON FUGRO

Telus Spark Calgary, Alberta

Page 24: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201424

Piling industry CanadaPIC

critical. utility applications like this one typi-cally require low-tech hdd technology. but because of the critical nature of the work, we adopted the use of specialized hdd technol-ogy from the oil and gas industry.”

Also unusual in this application are the bore holes themselves.

“each of the bore holes on the Newfound-land side will be about 2.2 kilometres from shore and each on the labrador side will be between 1,200 and 1,500 metres,” says flem-ing. “In total, we will require about 10 to 11 kilometres of drilling.”

According to fleming, the bore holes for landfall applications like this one typically measure between 800 and 1,000 metres.

“we have two holes that are more than two kilometres out,” he states. “This will double the existing global record.”

for these very reasons, the Muskrat falls project required a very special type of com-pany. That candidate not only needed years of proven expertise but needed to be flexible when it came to using specialized oil and gas hdd technology in this one-of-a-kind appli-cation.

A cOmPAny uP tO the tAsk“we did some investigative work before we

asked companies to bid on the project, which was an open and public bid process,” explains fleming. “we made our decision based on a

number of factors, including risks, technical ability, quality, cost and safety. essentially, we were looking for the best value without com-promising the quality of the project.”

eventually, the contract was awarded to edmonton-based direct horizontal drilling, a long-established drilling contractor with an extensive fleet of drilling rigs that operate across the company and that specialize in river crossings.

“we are drilling down and punching out the seabed far enough from shore to avoid the icebergs,” states lon briscoe, president, direct horizontal drilling. “Nothing like this has ever been done before – through solid granite and with these kind of distances.”

The drilling began in december 2013.According to briscoe, some 35 truckloads

of equipment were trucked and barged from edmonton to Shoal Cove. The drilling rig was manufactured specifically for this application by American Augers, with the drilling support equipment custom designed and built by di-rect horizontal drilling.

“The hdd rig can pull 1.1 million pounds, with 110,000-foot per pound rotary torque,” he says, adding that the two 1,000 horsepower pumps are capable of pumping 4.5 m3/minute of drill fluid. “The project requires 60 m3 drill-ing fluid systems, including three linear-mo-tion shakers and two high-speed oil centrifug-es. The hdd rig and support equipment can be operated at temperatures of -50 Celsius.”

The bore holes themselves measure 14 ¾ inches in size. each will be outfitted with a 10 ¾-inch casing.

“we’re drilling in very hard, geotechnical conditions,” states fleming, who adds that the first two holes have recently been completed. “we’re operating the rig 24/7.”

The two 12-hour shifts are being overseen by supervisors from direct horizontal drill-ing. other team members are from the prov-ince.

“This has been a good news story for local employment,” notes fleming. “direct hori-zontal drilling came down beforehand and held two employment sessions. The idea was to staff the team locally. Aside from the two supervisors, we’ve managed to employ ap-proximately 20 people from Newfoundland and labrador.”

on average, the entire Muskrat falls project will require 1,500 jobs in more than 70 trades

each year throughout construction, with a peak workforce of 3,300 in 2015.

OnwArds And uPwArdsto date, two of the six bore holes are com-

plete, for a total of 4.2 kilometres of drilling activity.

“we have had some extreme weather condi-tions in the form of cold, snow and ice but we have basically had 100 per cent uptime,” notes fleming. “we anticipate that the drilling will be finished in the late summer of 2014. At that point, the holes will be outfitted with casings and then the cables will be pulled through.”

until then, fleming and his team can con-tinue to rely upon the hard work and proven success demonstrated by the project team to date.

“This project has been all about the collab-orative process,” he states. “we work collab-oratively as a team on all levels. our people get into a room and kick things around so that we always come out with the best possible solu-tion for everybody. we even employ that same mentality on the rig. everyone has built the execution plan as a team.”

At the same time, fleming is quick to give credit to briscoe and his team.

“direct horizontal drilling has been excel-lent to work with,” he concludes. “from the tender stage through to mobilization, they have been a world-class company that keeps the bar very high on quality and safety.”

Although still in the early stages of a five-year construction plan that will eventually see the development of a power-producing asset slated to last more than 100 years, the Musk-rat falls Project has already proven itself to be a formidable example of achievement and ingenuity. The adaption of hdd technology and its use in boring holes of record-breaking distances will undoubtedly make the project memorable for its technical advancements and achievements.

“This will be the first time in history that the island of Newfoundland will have an elec-tricity system that is connected to the North American grid,” concludes fleming. “This in-terconnection will enhance the reliability and efficiency of our electricity system, stabilize re-gional electricity rates and lead to the integra-tion of additional renewable sources of energy, resulting in a reliable, modern and efficient energy system for consumers.” n

Page 25: Piling Industry Canada Issue 1, 2014

AMERIC

AN P

ILEDRIVING EQUIPMENT

J&M

FO

UNDATION EQUIPM

ENT

AMERIC

AN P

ILEDRIVING EQUIPMENT

J&M

FO

UNDATION EQUIPM

ENT

C

M

Y

CM

MY

CY

CMY

K

AD42V1.2PIC.pdf 1 5/28/2014 4:22:39 PM

Page 26: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201426

Piling industry CanadaPIC

when a thickener tank at the Mosaic potash mine (located 75 kilometres south east of Sas-katoon, Saskatchewan) had its roof unexpect-edly collapse, it required immediate repair to ensure the impact on mine productivity and cost was minimized. Since the tank was inte-gral for processing potash, the client needed a piling contractor to move quickly to begin work on its new foundation. Mosaic’s pro-posed deadline was to have the new founda-tion and subsequent work, including walls and roof, completed before the freezing tempera-tures hit five months later – a time frame that demanded immediate action.

when keller Canada was awarded the pil-ing and shoring work for the tanks new foun-dation, they faced a number of challenges in order to begin the repair under a tight time-line. Through this, they learned that com-bining hands-on experience and procuring unique equipment was essential to finding the right solution.

imPrOvised PlAnningonce keller Canada arrived on site, the

main challenge was that the tank was older

and required careful attention to ensure it re-mained structurally sound. Jordan Moi, proj-ect manager for the Northern Saskatchewan region, describes the tank’s conditions:

“The tank was very old and was believed to present risk of further structural failures when the perimeter berm was to be removed. Since the removal of the berm was required to install the piles and complete the forming of the new wall, a solution was required to hold back the compromised tank holding fluid. we had to put sheet piles around the perimeter to provide support for when the berm was removed. The fact that the tank’s structure was already com-promised made the job of drilling new piles around it even more complicated and added scope to an already critical deadline.”

due to the sudden roof collapse and the urgency of its repair, keller Canada had one week and limited information to plan a strate-gy and begin work. despite roadblocks, keller Canada was confident enough to execute a plan that involved renting equipment their operators were not familiar with in order to complete the work. Part of this strategy was to

search throughout North America for the right equipment for the space constraints and sud-den elevation changes surrounding the tank – a plan that proved to be challenging.

sOurcing the sOlutiOnonce they planned their work and identi-

fied the equipment required to complete the foundation repair, keller Canada reached out to their network of vendors, colleagues, and friends to source the right equipment. They were sure their staff could meet the deadline, as long as they had equipment to work with. Moi explains their approach:

“The job had a tight timeline and was a high risk to our client if the work was not completed safely and efficiently. Although keller Canada didn’t own the right equipment for the job, we still offered our services and managed to source the equipment on a temporary basis from the united States.”

The equipment required was not readily available in Canada. however, a bay Shore lo-dril dh30 from Idaho and a vibro hammer

Digging Deeperkeller cAnAdA Finds A FAst sOlutiOn

The Bayshore LoDrill DH30 reached locations that conventional track-mount drill rigs could not.

Keller Canada utilizing equipment to its fullest potential.

Page 27: Piling Industry Canada Issue 1, 2014

Down to the finest detail.

Find out more about how we dig deeper. Visit KellerCanada.com – formerly North American Caisson Ltd.

Page 28: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201428

Piling industry CanadaPIC

mounted on an excavator from Indiana were found and immediately sent to the jobsite. It was an added challenge to bring in equipment keller Canada had never before operated.

An ultimAte successAfter working day and night in areas of

limited access, keller Canada completed the project in about six weeks – a job that would usually take twice as long to complete. Though a number of factors worked together in keller Canada’s favour, Moi cites the experience and knowledge of their team as being integral to their success:

“I’m most proud of our crews that complet-ed the work safely and efficiently – they made it happen. our superintendent had 30 years of experience, and is a good example of keller Canada’s most important asset: we have the right people, who can complete critical work no matter the circumstances, equipment, or timelines. we also sourced our most talented operators across Canada to ensure our suc-cess. over half of the workforce on the project was supplemented by laborers and equipment operators from our regina and toronto loca-tions. The ability to draw the best resources across the country allows keller Canada to tackle the most complex problems with con-fidence.”

As an added demonstration of their proj-ect’s success, Moi states proudly that piling equipment supplier bay Shore Systems fea-

tured a photo of keller Canada’s work using the lodril in their yearly calendar. In only a few short weeks, keller Canada wasn’t just op-erating the drill rig, they were utilizing it to its fullest potential, and using it in scenarios that were unique enough to be featured in their yearly calendar. According to him, their expe-rience at the Colonsay potash mine will help keller Canada be even better prepared for similar challenges in the future:

“when you’re drilling deep into the ground, you can never be 100% certain what the re-quirements will be. because of this, we an-ticipate challenges on every job. when things don’t go according to plan, you find solutions to fix it – securing rare or unknown equip-ment, accelerating schedules, re-designing, and retaining the top talent are all part of the solutions that make working in the piling in-dustry so interesting.”

About Keller CanadaBacked by the largest independent ground

engineering company in the world, Keller Cana-da prides itself in being able to provide full-ser-vice solutions for any job, no matter what chal-lenges get in the way. Formerly North American Caisson Ltd., a division of North American Construction, Keller Canada was acquired by U.K.-based company Keller Group Plc. in 2013, though their management and operations re-main the same. With 30 years experience piling Canadian soil, Keller Canada operates in seven regions across the country, and continues to use their on-site experience combined with their global knowledge of the latest technology in pil-ing to deliver the best results for their clients.

Visit Keller Canada’s website at www.KellerCanada.com to explore services, meet the team, and get in touch. n

Installing sheet piles to maintain the tank’s structure.

Utilizing Keller Canada’s conventional track-mount equipment in areas that presented less space restriction.

Page 29: Piling Industry Canada Issue 1, 2014
Page 30: Piling Industry Canada Issue 1, 2014

B U I L D I N G F O U N D A T I O N S S I N C E 1 9 1 8

OTNOROT 34 Anderson Blvd.Uxbridge, ON L9P 0C7P 905.640.9800F 905.640.9808

.C.D ,NOTGNIHSAW 6300 Foxley RoadUpper Marlboro, MD 20772P 301.599.1300F 301.599.1597

AIHPLEDALIHP PO Box 837Aldan, PA 19018P 610.626.2200F 610.626.2245

HGRUBSTTIP PO Box 306Coraopolis, PA 15108P 412.264.4480F 412.264.1158

Page 31: Piling Industry Canada Issue 1, 2014

B U I L D I N G F O U N D A T I O N S S I N C E 1 9 1 8

OTNOROT 34 Anderson Blvd.Uxbridge, ON L9P 0C7P 905.640.9800F 905.640.9808

.C.D ,NOTGNIHSAW 6300 Foxley RoadUpper Marlboro, MD 20772P 301.599.1300F 301.599.1597

AIHPLEDALIHP PO Box 837Aldan, PA 19018P 610.626.2200F 610.626.2245

HGRUBSTTIP PO Box 306Coraopolis, PA 15108P 412.264.4480F 412.264.1158

Page 32: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201432

Piling industry CanadaPIC

As the cultural, economic, and governmental center of denmark, Copenhagen is experienc-ing a tremendous population growth due to a rise in birth rates and a surge of young people moving to the city. In order to meet the in-crease in transportation needs, Copenhagen is constructing a new underground metro line called “Cityringen.” Cityringen will consist of a twin-tunneled 15.5 kilometre (9.6 mile) metro line circling the centre of Copenhagen with 17 stations that will connect to the existing underground transit network. The new metro construction sites are wedged in between ex-isting residences, narrow streets, and historic buildings throughout the heart of the city.

As the primary subcontractor responsible for construction of the permanent support-ing walls for all the metro stations and service shafts, trevi S.p.A. is coping with difficult sub-surface conditions, strict environmental regu-lations, and challenging jobsite restrictions in

Copenhagen. trevi has maintained its pro-duction schedule with a perfect safety record with the help of a large fleet of Soilmec rigs equipped with Soilmec’s drilling Mate System (dMS).

The dMS is a high-tech, fully integrated, interactive tool whose interface is located in the cabin of the drill rig, allowing rig operators and jobsite personnel to monitor and control the machine in real time. The performance of both the drilling/excavation production and the diesel engine are monitored using data from an array of sensors and safety devices, which are located throughout the rig, trans-mitted to the cab, and displayed on a dMS touchscreen interface. operators can use the dMS to monitor the overall operation of the machine, record alarms, perform trouble-shooting, and plan maintenance.

The dMS is available on all new Soilmec machines, and older Soilmec equipment can

be retrofitted to accommodate the dMS. Stan-dard dMS monitors and records various ma-chine production parameters and drilling data, including depth, inclination, rotary speeds, and crowd pressure, to assist in drilling a qual-ity pile. Soilmec has also developed specialized dMS software packages to optimize the per-formance of a wide range of technologies: large diameter piles, micropiles, continuous flight auger piles, cased secant piles, diaphragm walls, hydromill excavation, jet grouting/tie-back anchors, and soil mixing.

Construction in Copenhagenthe AdvAntAge OF mOnitOring with the drilling mAte system

By Paolo CavalColi and vinCent Jue

DMS service manager Saverio Santucci at the Soilmec Control Center in Cesena, Italy. Expert 24/7 live assistance is also available at two Soilmec Control Centers in North America.

Data flow of Soilmec’s Drilling Mate System. DMS allows rig operators, project managers, and Soilmec service managers to monitor machines in real time and analyze data offline.

Page 33: Piling Industry Canada Issue 1, 2014

I BUILD with

DAN BERGPresident, Pacer Foundations Corporation

Builds strong partnershipsto get the job done

visit www.SoilmecNA.com/webuildlearn more

Page 34: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201434

Piling industry CanadaPIC

OPerAtOrs cAn “see undergrOund”

one of the challenges inherent with deep foundation systems is the inability to see what’s being built at depth. The construction is hidden below ground, in soil or rock condi-tions that are only partially known. The dMS enables the operator to “see underground” as it monitors in real-time the operation and performance of the machine, providing the rig operator with active and precise instrument control.

Construction in Copenhagen’s dense, his-toric downtown is being performed in very close proximity to existing buildings and structures. for example, the walls for the Mar-morkirken (Marble Church) metro station are only 100 millimetres (four inches) away from the foundations of the 260-year old Marble Church, the largest domed church in Scandi-navia. So it is vital for trevi to set and monitor accurate drilling parameters during the foun-dation work to ensure that the neighbouring buildings are left undisturbed. Thanks to the dMS, trevi has achieved high precision in reaching the target depths while maintaining the tight target verticality.

In addition, dMS provides real-time moni-toring of the engine and its components, show-ing hydraulic oil pressure, fuel consumption, and power. This has allowed trevi to perform its state-of-the-art foundation work in Copen-hagen with low fuel consumption and minimal completion time, helping to save money and maintain the production schedule.

The dMS data can also be transmitted via radio, GSM/GPrS, wifi, or satellite to a re-mote Control Center where dMS experts help troubleshoot in real-time. These Soilmec service managers have a direct connection to the machine via the web, to see live what the operator sees on the dMS onboard display. The service managers can respond remotely to help fix most problems, rather than having to hop on a plane to visit the jobsite, which saves both time and money. All machines on the Cityringen project are monitored from the Soilmec headquarters in Cesena, Italy. This rapid troubleshooting assistance has helped to ensure that the construction quality con-

sistently meets the demanding Copenhagen project specifications.

mAintenAnce Alerts reduce dOwntime

Minimizing equipment downtime is fun-damental to maintaining productivity. Alarm signals triggered by the dMS alert operators when maintenance is needed. for cased secant pile construction, dMS displays alarms for coolant levels, low foot pressure, rotary gear-box lubrication, rotary head filter clog, mast inclinometer x-axis or y-axis failure, hydraulic oil filter clog, diesel engine parametres, and fuel level.

The dMS alerts and displays to the operator which component triggered the alarm, and it identifies the severity of the alarm. by pushing a button, the dMS also displays the history of the alarm so the operator can see if that com-ponent has been failing frequently.

In addition, the remote dMS Control Cen-ter is alerted when a maintenance alarm is trig-gered, so Soilmec service managers can quick-ly call jobsites to help prevent larger problems from developing. This rapid troubleshooting assistance reduces maintenance times and helps create safer work conditions by ensuring that equipment works properly.

Monitoring maintenance issues using the dMS has been essential in Copenhagen, where the layers of hard boulders and flint rock have caused daily breakage of the cased secant pil-ing tooling. The dMS has allowed trevi main-

A Trevi worker uses Soilmec’s Drilling Mate System to monitor the hydromill diaphragm wall construction in Copenhagen.

Trevi workers construct cased auger piles near the Marmorkirken (Marble Church). Monitoring with Soilmec’s Drilling Mate System helped ensure that this historic church was left undisturbed.

Page 35: Piling Industry Canada Issue 1, 2014

Piling Industry Canada • June 2014 35

Piling industry Canada PICtenance managers to quickly identify and repair these equipment problems. Analysis of this data has also helped trevi minimize downtime by improving their equipment and drilling techniques. for instance, intensive pre-drilling with a wassara high-pressure wa-ter hammer has been used to break through the deep, hard layers of limestone rock and flint, which has doubled the production speed. Soilmec has also modified the cased secant piling tooling used in Copenhagen to reduce tool breakage – a more aggressive auger was developed using thicker, higher quality steel and an adjustable tool position. The dMS data collected from the Cityringen project has been crucial to the development of new technology and the reduction of job delays.

Proper maintenance has also improved the performance and longevity of the equipment used in Copenhagen. trevi personnel plan routine maintenance using the dMS touch-screen, which records the machines’ scheduled maintenance operations. In addition, the Spare Parts online Center facilitates faster ordering of replacement parts.

JOBsite mAnAgers understAnd OPerAtiOns Better

All of this important data on machine op-erations, alarms, materials consumption, and maintenance can be streamed via cellular net-works to a computer, so jobsite managers lo-cated in a field trailer or at a remote office can monitor and process the information. even in the absence of GSM/GPrS or wifi, the dMS retains all the data on a memory card or uSb flash drive. The dMS software allows manag-ers to create customizable jobsite, operational, and accounting reports – or the data can sim-ply be exported as tables.

The dMS data can be analyzed offline and plotted graphically for easy interpretation. Managers can show bored piles or panels in order of completion status to check work progress. data can be graphed as a function of either time or depth. for instance, hydromill production parameters – depth course, drill-ing speed, left motor pressure, right motor pressure, mud pressure, digging load, x-devi-ation and y-deviation – can be automatically plotted as a function of depth or time and can be displayed by clicking on the “depth” or “time” report tab using the dMS software.

Jobsite managers can also process and plot

critical parameters – pile profile, concrete pressure, and concrete flow – as a function of depth so they can analyze their construction quality. These graphs can identify potential construction problems like voids in the con-crete, as well as provide an assessment of con-struction quality.

The ability to analyze the dMS data is crucial for complex jobs like the Cityringen project, where trevi personnel are managing 21 jobsites with challenging subsurface condi-tions, environmental regulations, and jobsite restrictions. offline analysis of the data re-

corded by dMS has allowed trevi to construct high quality permanent supporting walls for the Cityringen metro system while saving time and money.

AUTHORS BIO:Paolo Cavalcoli is a Trevi geotechnical

engineer and manager of the Cityringen project. Vincent Jue is a vice president with Soilmec North America. Soilmec manufactures drilling and ground engineering construction equipment. Reach Vincent at [email protected]. n

2020 BANTREE STREET, OTTAWA, ONTARIO K1B 5A4

www.eastrock.com

TF: 1-877-737-3963T: 613-737-3963F: 613-737-3908

E: [email protected]

Eastrock now offers financing programs.Let us know how we can help you.

• Down the hole consumables• Geothermal• Geotechnical• Foundation• Mobile services

Timely Expert Solutions

SALES RENTALS PARTS SERVICE

Page 36: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201436

Piling industry CanadaPIC

The site of One Bloor is located at the core of toronto, on the South-east corner of yonge Street and bloor Street. This dramatic site finds itself at the junction of two subway lines, surrounded by high-fashion boutiques and designer shops. Such is the backdrop for the spectacular 75-storey Great Gulf flagship con-dominium, hotel and retail centre building complex under construction at one bloor St east. This pinnacle project, one of the many projects that Anchor Shoring & Caissons ltd. has completed in this area, required shoring for an excavation up to 22.5 metres in depth and structural caisson foundations socket-ted in rock at a depth of more than 43 metres below grade. with the presence of wet sand layers under pressure, this drilling is very dif-ficult. The yonge bloor area presents many daunting subsurface challenges to overcome due to the close proximity of subway lines and adjacent structures and countless below grade utilities. breaking ground in these conditions becomes no small feat.

Anchor Shoring has taken a vital role for more than four decades in the reshaping of the yonge and bloor skyline. harnessing the cu-mulative experience gained from prior work, they collaborate with owners, consultants and contractors to develop innovative solutions

The Foundation of ExcellenceAnchOr shOring & cAissOns ltd.,A histOry OF innOvAtiOn At yOnge And BlOOr

By dawn deMetriCk – tattle, P. eng., President, Partner anChor shoring & Caissons ltd.

Anchor Shoring drilling rock socket caissons at One Bloor with a BG40 drill rig. A 110 Ton Linkbelt crawler crane at street level lowers material to the work area below. A second 110 Ton crane services the drilling operation from within the excavation. Previous Anchor projects 2 Bloor West and 2 Bloor East buildings are visible to the north.

Anchor projects completed near Yonge and Bloor

Page 37: Piling Industry Canada Issue 1, 2014

Piling Industry Canada • June 2014 37

Piling industry Canada PIC

for the progressively bolder and more challenging projects being con-structed in this area. Anchor’s first involvement in the transformation of the area began with shoring for the 2 bloor St east and 2 bloor St west office towers in the early 1970s. The local knowledge gained from these projects provided Anchor with an intimate view of the complex subsur-face of the area. This assisted Anchor in their preparation of an alterna-tive design to complete the shoring and caisson work for the office tower constructed at 33 bloor St east in 1989.

33 BlOOr st. eAstThe developer’s original design at 33 bloor called for caissons to be

drilled through wet sand layers and socketted in the shale bedrock at about 41 metres below grade and required the base of all caissons to be handcleaned by a worker lowered to the base of each hole. The require-ment to handclean the caisson bases under these site conditions present-ed a safety concern. In addition with the limitations to drilling technol-ogy that existed at that time the cost to install the caissons in this manner would have been prohibitive. from previous experience in the area and available soil bore hole data, Anchor Shoring was aware of the presence of a very dense till layer located roughly 15 metres below grade. based on this knowledge Anchor prepared and priced an alternative design terminating all caissons on this till layer, which increased the safety of the work, reduced drilling lengths by two thirds and completely avoided the necessity of drilling through the wet, caving sand layers to bedrock. Anchor retained rwb engineering to complete the shoring and caisson designs. by working together with the general contractor PCl Construc-tors at the initial stages of the project and consulting with the developers, the structural and the geotechnical consultants, it was possible to seam-lessly incorporate the proposed changes to the caissons and any resulting impacts on the structure into the issued for construction drawings. This allowed the developer to capture the maximum savings in cost and time from the alternative caisson design.

however, even with this caisson installation challenge solved there remained a further, serious complication. The existing bloor Subway cut a wide swath through the centre of the 33 bloor site and the roof of the subway structure was not capable of supporting the equipment and material loads. This severely restricted site access for all aspects of the work as well as leaving only two narrow strips on either side of the subway structure to locate the caissons. Anchor addressed this limi-tation together with PCl Constructors in developing and constructing an innovative system of prefabricated interlocking steel/wood mats that would span the width of subway roof and safety support equipment up to 92,000 kg in weight. This decking system was used for all aspects of the

subsurface construction work, not just the shoring and caissons. These innovative alternatives, and the proactive, cooperative approach

offered by all members of the 33 bloor construction and consulting team resulted in the developer realizing cost savings in the order of a million dollars, a reduction in the required duration of the shoring and caisson work by more than half and safe execution of the work.

cOntinued develOPment At yOnge BlOOrover the years the yonge and bloor area has continued to develop

and Anchor completed a growing number of projects in the immediate vicinity of the iconic intersection: the shoring and caissons for Signa-tures on bloor located at 55 bloor east (immediately east of 33 bloor), the Charles/hayden Parking Garage, ttC station improvements (across

33 Bloor Project-shored excavation with caisson wall to support existing building and lagging to support Bloor Street. Top of existing subway visible on right. Caisson top being exposed for cap construction.

Lagged shoring for 2 Bloor East (year 1972).

Page 38: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201438

Piling industry CanadaPIChayden Street immediately to the south),The bloor Street Neighbour-hood, Casa ll and The Chaz. developing and maintaining long term client relationships has been a core value at Anchor since its inception in 1968. Therefore, it is not surprising that each of these projects was completed for a client Anchor had worked with previously.

One BlOOr st. eAstIn 2011, Anchor once again found itself on that familiar yonge bloor

street corner, this time at the site of one bloor. like its neighbouring projects, this site presented the daunting challenges of difficult ground conditions, proximity to two intersecting subway lines and existing foun-dation elements at adjacent buildings. unlike its neighbours though, one bloor presented new challenges for Anchor to contend with: inter-ferences of the below grade structure at 33 bloor St. east, drill depths that terminated well into the saturated sand layers and accommodating larger equipment to the base of an exceptionally deep excavation. The Construction Manager on the project, tucker hirise Construction Inc., whom Anchor had worked with previously, awarded the caisson wall and rock socketted structural caisson work at one bloor to Anchor Shoring.

cAissOn wAll sOil retentiOnA caisson wall is a soil retention system composed of a series of in-

terlocking drilled holes which in this case were backfilled with 4 MPa strength concrete. Steel soldier piles were placed at specified intervals in the wall to provide lateral and vertical support. The caisson walls at this site were designed by Isherwood Geostructural engineers. due to the large footprint of the site, drilling of 400 holes 1000 milimetres in diam-eter and up to 27.5 metres in depth were required to form the continu-ous caisson wall around the perimeter of the excavation. The cumulative length of all the vertical holes totalled more than 9 linear kilometres of drilling.

The presence of 33 bloor immediately east of the site was the source of many complications to the construction. This building is supported by large diameter caissons founded in the till layer. At one bloor, the excavation depth along the east caisson wall was roughly 7 meters under the founding elevation of the existing 33 bloor St. caissons. Adding to the complexity were the saturated sand layers under hydrostatic pres-sure, located within the 7 meters below the till. This made it particularly important to ensure that loss of soil during drilling of piles and fillers did not occur as it could potentially undermine the existing caissons leading to settlement of the existing building.

to address these safety concerns Anchor used 2-bG40 bauer drill rigs at the one bloor site. This drilling technology is a monumental advance-ment from the conventional equipment which was available in 1989 when the 33 bloor east project was constructed. The bauer rigs are able

to install casings in sections without the need to use a vibratory ham-mer, a crucial feature at sites where it is necessary to drill next to existing structures in areas of loose soil.

Pedestrian access to 33 bloor had to be maintained during construc-tion; this divided the site in two for the majority of the vertical drilling, severely restricting site access and complicating the safe movement of building materials. This pedestrian walkway in the middle of the site could only be relocated once the vertical drilling next to 33 bloor was completed, allowing a walkway to be constructed on top of the caisson wall. Coordination of the different phases of work and trades was par-ticularly important at this site. tucker hirise prepared comprehensive schedules to ensure that all parties knew their obligations regarding tim-ing and that all trades could complete their work in a safe and efficient manner.

regrOutABle tieBAcksThe 22.5 metre exposed height of caisson wall required up to 4 rows of

regroutable tiebacks. The tiebacks were constructed by drilling small di-ameter holes at a downward angle, through the caisson wall and into the soil behind. Steel strands and grout were placed in the holes. The strands were stressed at the face of the shoring wall to introduce a preload into the system once the grout reached its required strength. Anchor used a custom-built tieback drill rig for the 6,100 metres of tieback drilling that was required at the site. This drill rig automates installation of continu-ous casing which protects the safety of the workers and also ensures no loss of ground occurred during drilling.

Threading tiebacks between the existing 33 bloor caissons and through the previous shoring system was extremely intricate work. Many of the east wall tiebacks were skewed in attempts to avoid colliding with the caissons that support the 33 bloor St. east building. Anchor worked together with Isherwood and tucker to identify these interferences as early as possible and make every effort to resolve these conflicts as eco-nomically for the owner as possible. At some locations despite this pro-active approach there was simply no clear space to fit a tieback. In those locations, heavy steel beams were installed as walers to span that length of caisson wall to ensure it was braced and able to support the adjacent 33 bloor structure.

The PIPE MILL with FAST SERVICEProducing:24”-192” OD.312”-2.00” WallLengths up to 80 ft.Straight Seam - DSAW20 ft. Lengths in Stock

Shipping Nationwide and Canada

800-821-3475Fax: 815-964-0045

[email protected]

TMR A M M I N G Q U A L I T Y

ArntzenBC_AD_Blue_BG_06_11_09.indd 1 7/8/11 2:05:36 PM

Drilling caisson wall with BG40 against existing 33 Bloor St. East.Drilling caisson wall with BG40 against existing 33 Bloor St. East.Drilling caisson wall with BG40 against existing 33 Bloor St. East.

Page 39: Piling Industry Canada Issue 1, 2014

800.348.1890 HMC-US.COM

THE DRILLING REVOLUTION IS HERE

You’ll never look at your current foundation drilling equipment the same way again. Hercules has partnered

with the preeminent drill designer in the world and owner of HPM, Giuseppe Cartechini, to bring the most

robust, highest quality foundation drills in the world to North America. Designed using high-strength

materials, HPM foundation drills provide excellent stability without the need for a large base. That means

you get a high-performing, robust machine at a good value.

Hercules is the exclusive HPM drill dealer in North America. Call us today to fi nd out how you can

pre-order an HPM foundation drill.

Giuseppe Cartechini

HPM HYDRAULIC PERFORMANCE MACHINES

SRL

Page 40: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201440

Piling industry CanadaPIC

structurAl cAissOn FOundAtiOns

The base of the building was designed with a reinforced concrete raft foundation sup-ported by rock socketted caissons. The 1300 milimetre diameter caissons were designed to carry building loads of up to 30,300 kN each. to support these extremely high loads, each caisson was reinforced with a heavy full length reinforcing rebar cage and 55 MPa concrete was placed in the drilled shaft. Anticipating the complicated nature of the caisson drilling conditions and the safety concerns relating to the lifting and handling of the long, flexible and heavy rebar cages, Anchor Shoring began working together with the structural consul-tants Jablonsky, Ast and Partners, and the geo-technical consultants McClymont & rak very early in the project to develop fabrication de-tails and site procedures to address all hazards and ensure safe execution of the work.

Installation of the structural caissons was especially difficult. to keep the drill lengths within the depth limits of the bauer bG40 drill rig they could only be drilled from the base of the excavation. even from this lower work platform the drilled lengths still ranged from 30 metres to 34 metres with rock sockets of up to 6.5 metres. The tight limits of the site could only accommodate a steep construction ramp; certainly too steep for an assembled bG40 drill rig. This condition created an access challenge to the base of the excavation for equipment and materials. Initially the idea of installing shoring to reduce the footprint of the ramp

was explored together with tucker and Ish-erwood. This shoring would have increased the cost by more than a million dollars, so to-gether the team explored other options. As an alternative to ramp shoring, Anchor provided an lS 218 link-belt 110 ton crawler crane at street level to lower material and equipment delivered to the site into the excavation. The base body of the bG40 was unloaded at street level and walked down the ramp. The mast and other equipment parts were lowered into the excavation by the crane. A second lS218 crane was kept at the lower level excavation to handle caisson rebar cages, casings and assist in assembly of the drilling. This method was used successfully and resulted in a large overall savings to the project in cost and time from the ramp shoring option.

cOnclusiOnsThe difficult wet, sandy soil conditions that

exist at depth in the yonge bloor area present significant hazards and challenges to shor-ing and caisson work. Above and beyond the soil conditions, each project brought forth a unique set of challenges that were methodi-cally and cooperatively overcome to bring each project to safe, successful completion. work-ing together in a spirit of innovation is a core value at Anchor. by initiating early collabora-tion with the members of the project team, optimal solutions benefitting each project as a whole were achieved. This cross-discipline collaboration that spearheaded every one of the bloor yonge projects resulted in their safe completion and quantified time, cost and re-source savings for the clients. Safety, schedule, quality of work, experience and the ability to develop innovative solutions are always key ingredients to the success of any project, and it is certain they become even more critical in

the challenging conditions encountered in this area.

There appears to be a bright future for the continued development in the bloor yonge area. Anchor looks forward to applying their extensive experience and developing innova-tive solutions to fulfill the unique needs these future sites are certain to present!

About the Author:Prior to joining Anchor Shoring & Caissons

Ltd. as a partner in 1986 Dawn Demetrick-Tattle was a project engineer for a structural en-gineering consultant. This experience in overall building structure design provides Dawn with the insight necessary to provide creative solu-tions to soil retention and foundation problems.

In 1997 she assumed her role as President of Anchor Shoring & Caissons Ltd. Anchor was founded in 1968 and is a highly respected contracting firm specializing in innovative soil retention and engineered foundation solutions.

Dawn focuses on safety, quality control, in-novation in designs, and superior client service. She makes professional development in a pri-ority for herself and the other members of the Anchor team.

Dawn served as a member of the Vulnerable Worker Task Group with the Ministry of Labour (MOL) and was recently appointed by the Min-ister of Labour to serve as an employer member on the Prevention Council for Ontario.

Dawn received an award in the Trailblazers and Trendsetters Category of the Canada’s Most Powerful Women: Top 100 awards in November 2008 and again in the Professionals Category in 2010. Dawn also received the University of To-ronto 2T5 award in 2010. She is on the board of directors for the Toronto Construction Associa-tion and a Fellow of the Canadian Academy of Engineering, n

Caisson wall shoring for One Bloor excavation. Over 9 kilometres of vertical drilling and 6.1 kilometres of tieback drilling was completed by Anchor Shoring for this site.

Anchor Shoring installing caisson wall on One Bloor site next to 33 Bloor.

Page 41: Piling Industry Canada Issue 1, 2014

Be your own man with the Sonic SideGrip®. Don’t stand by waiting on other contractors.

Work your own schedule. Drive toward higher profits. The Sonic SideGrip® puts it all within

your reach. With two unique side-gripping jaws and one bottom jaw, the Sonic SideGrip®

vibratory pile driver has unmatched dexterity for handling, driving or extracting just about

any style of piling. Choose from a range of models with 40 to 100 tons drive force for

18 to 55 ton excavators. Grab the future and drive your success.

sonic side-grip®

800.348.1890 hmc-us.com

Page 42: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201442

PIC canada | U.s. | international

when the Interstate 5 bridge over the Skagit river collapsed on May 23, 2013, it started a chain reaction that would see three separate contractors working with the washington State department of transportation to rectify

the problem in the quickest and most efficient way possible.

Initial work focused on putting in place a temporary bridge. efforts to replace the dam-aged span on the existing bridge were soon

underway and once the bridge was brought back to its former glory, crews began retrofit-ting the structure to reduce the risk of a similar incident from occurring in the future. All in all, the hectic construction activity spanned a period of less than six months. Not bad for a process that would traditionally take more than double that time.

“This was one of the first design/build con-tracts for an emergency repair of this nature,” explains travis Phelps, spokesperson for the washington State department of transporta-tion. “It allowed us to get the work done in the shortest time possible and, at the same time, provide the residents of washington State with the best value for their money.”

the cOllAPseThe Interstate 5 bridge over the Skagit river

crosses between Mount vernon and burling-

Bridging the GapstructurAl cOllAPse cAlls FOr emergency meAsures

By Melanie Franner

Allnamics USA - 1411 Cumberland Rd - Tyler, TX 75703 - (903) 216-0038

w w w . a l l n a m i c s . e u

Your partner in pile testing and geo-technical engineering

Geotechnical experts pile testinG experts Geotechnical equipment

[email protected]

1411 cumberland rd

tyler, tx 75703

(903) 216-0038Wireless PDA/DlT sysTem WiTh Wifi:

• internal data back-up

• automatic sensor check

• fit for rapid load testing

Page 43: Piling Industry Canada Issue 1, 2014

800.348.1890 HMC-US.COM

Be the most versatile player on the worksite with the new Self-Contained Track Rig (STR). While other machines in

its class can perform only one function without the ability to switch tools, the STR tops them all by easily converting

from the Impact driver to the Vibro driver to the drill tool when installing small piles for solar or other applications.

One machine with the fl exibility of three tools right at your fi ngertips makes you the MVP of any worksite.

Discover how the STR can transform your business. Call us today to fi nd out how you can pre-order an STR.

STR

Page 44: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201444

Piling industry CanadaPIC

ton in washington State. It is located about 60 miles north of Seattle and is part of the pri-mary road transportation route between the metropolitan areas of Seattle and vancouver, british Columbia.

“The bridge carries about 75,000 cars a day,” explains Phelps. “It is one of the state’s major north-south corridors. when the bridge col-lapsed, it disrupted a lot of tourism and freight traffic. The bridge collapse had a huge impact on our economy – both locally and nationally.”

The Interstate 5 bridge over the Skagit river was built in 1955 and prior to the collapse, had been evaluated as being in safe and good con-dition. The four-lane bridge incorporates four consecutive, 160-foot spans over the river. The spans are built from triangulated steel girders, using a through-truss design where the road-way passes in an open tunnel between the left and right trusses and between the lower and upper truss work. The roadway had relatively

limited vertical clearance for tall vehicles due to the upper truss members.

The actual bridge collapse was caused by a semi-trailer truck hauling an oversize load and travelling in the outer lane, which was only 14 feet and seven inches high, as opposed to the inner lane, which measured 17 feet. The truck caused the first bridge span to collapse and also damaged a sway strut of the second span. The bridge was immediately closed down.

wOrking tOgetherThe bridge was closed from May 23rd, on

the day of the incident, through until June 19th, when the temporary bridge became op-erational. A separate contract was issued to cover this specific portion of the project.

“we started looking for emergency contacts right after the bridge collapse,” says Phelps. “we chose to go with Atkinson Construction and had them replace the bridge with a pair of two-lane ACrow bridges rolled onto the existing piers.”

The bulk of the bridge repair work, in the form of a $6.87 million contract, was awarded to Max J. kuney Construction of Spokane.

“Max kuney Construction is a fourth-gen-eration contractor,” explains Phelps. “The State has had multiple contracts with them over the years.”

Max. J. kuney Construction is a public works construction company with a long his-tory in building roads and structures, and with a recent focus on delivering vital bridge, dam, and heavy highway projects.

“we turned in our proposal on June 17th

and were awarded the project on June 19th,” explains Max kuney, president. “It was a crazy fast project. everything was incredibly com-pressed. The only way it ended up working was because of the amazing co-operation we got from everyone.”

kuney cites an example of this co-operation in the fact that the project was initially ap-proved for only 60 piles but that number be-came 68 after the design was finalized by team member Parsons brinkerhoff.

“we ended up getting the new permit with-in 24 hours,” he states. “Things don’t usually happen that fast on a project of this size.”

Max J. kuney Construction mobilized on the site almost immediately after being award-ed the contract, drove the pilings and built the replacement span. The skidding system was in-stalled by specialty contractor omega Morgan, which then moved the new span into place.

Max. J. kuney Construction constructed the permanent replacement span alongside the temporary bridge so as to not interrupt traf-fic. This involved driving the pilings, primar-ily from barges located on the river, to a depth of 60 to 70 feet. The 80-foot, pipe-style pilings were 24 inches in diameter.

once the replacement span was construct-ed, Max J. kuney still had the issue of remov-ing the temporary bridge and sliding the new one in place. The job was initially estimated to take 12 hours but ended up taking 19 hours due to the need to cut four 1 ¾-inch thick, steel plates that were not part of the original time estimate. This portion of the work took place during an overnight closure on September 14-15, 2013.

“There are always lessons learned when you are going that fast,” states kuney. “I think the big take-away from this experience was

Page 45: Piling Industry Canada Issue 1, 2014

Piling Industry Canada • June 2014 45

Piling industry Canada PIC

that you need to appreciate the amount of re-sources it would take to get something like this done. we had to pull a lot of key people from other projects in order to make the deadlines on this one. frankly, it’s all about communica-tion. A project of this speed needs great com-munication. The better that communication is, the better the project proceeds.”

work on retrofitting the three existing bridge spans got underway soon after Max J. kuney completed its work. PCl Constructors was the third and final contractor awarded work on the project.

“PCl retrofitted the overhead support structure of the bridge so that it measured 18 feet across all lanes,” explains Phelps. “Prior to the incident, it used to slope in the shoulder lanes.”

The retrofit work was completed on Novem-ber 11, 2013.

hAnds-On leArningThe collapse of the Interstate 5 bridge over

the Skagit river proved to be an interesting ex-perience for all parties involved. It generated some high-level activity that may very well change how such incidents are handled in the future.

“we’re definitely looking at design/build as one of the tools in our toolbox for future use,” states Phelps. “using the design/build con-struction method on this project showed us that it could be an effective way to deal with an incident that potentially can have a significant impact on the economy. In this case, it proved to be the fastest option with the most value.”

one of the challenges inherent in a project like this one is the co-ordination required to carry it off.

“we had three contracts run almost simul-taneously,” concludes Phelps. “The one con-tract finished within days of the other and, at times, even overlapped. luckily we had the full support of everyone involved. from the con-tractors to the affected cities, everyone was on board to make this happen as efficiently and as quickly as possible. In the end, it all turned out well. we were able to lessen the burden on Mount vernon and burlington by installing

a temporary bridge. It generated some added

complications, but everyone overcame the ob-

stacles and made it happen.”

today, the Interstate 5 bridge over the Skagit

river remains an important part of the State’s

primary road transportation system – acting

as a vital link between Mount vernon and bur-

lington and, more important, between Seattle

and vancouver. n

+1(281) 205-7261 | [email protected]

Page 46: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201446

Piling industry CanadaPIC

keeyask Camp, a planned three thousand per-son community to support construction of the impending keeyask dam Project for Manitoba hydro, is planned to be a fully enclosed com-munity. The community is to host a hospital, stores, pool, gymnasium with indoor running track, movie theatre, food and lodging facili-ties, and other various services. future project personnel will have services and amenities at their disposal. for now, just heaters and trail-ers, and lots of layers for the early project per-sonnel.

hard work. It’s a phrase that those who spend any time in the deep foundations in-dustry know well. Those that don’t know it, tend not to spend too much time in the deep foundations industry. for those involved in the keeyask Camp Project in Northern Manitoba, mostly seasoned industry veterans and a smat-tering of greenhorns, “hard work” took on a whole new meaning.

ten feet of seasonal frost, nine foot boul-ders, cobbles, and shield rock made for soil

conditions that was tougher than nails. days that were -30 c were warm, days that were -45 c were not uncommon. winds were recorded at 60-80 kPh. The closest town, Thompson, Manitoba, hosts a small airport, 200 kilome-tres away from the job site.

“we were in the middle of nowhere, with over 5,000 piles to get down,” recounts APe Canada Manager larry Mulanax. “This was a perfect job for the APe hd drivers and our high‐strength steel hd Piles™. If we were look-ing for a challenge on how the equipment and material would perform under extreme condi-tions, we found it.”

Geotechnical engineer on the project kent bannister of trek Geotechnical: “Geological conditions at the site consisted primarily of very dense sand tills overlying relatively shal-low bedrock. The geological setting and the relatively remote site conditions created con-cerns about using more conventional piling alternatives such as driven or bored piles.”

remOteNo “overnighting” any replacement parts to

this site. There wasn’t room for failure because the next option was complete shutdown – ev-erybody goes home. daily onsite operational costs were uS $70,000. There had to be backup in everything – the materials, the equipment, parts, the support supplies, etc...

The project design called for 5,300 piles to be installed via three excavator mounted hd drivers from American Piledriving equip-ment, Inc. (APe) for the support of the facility structures. The foundations contractor, ruskin foundations out of Prince George, b.C. initi-ated work in october 2013.

Are You Up For It?keeyAsk cAmP PrOJect in nOrthern mAnitOBA chAllenges even the mOst seAsOned deeP FOundAtiOns eXPerts

Page 47: Piling Industry Canada Issue 1, 2014

Piling Industry Canada • June 2014 47

Piling industry Canada PIC

“This was our first time out with this set-up” says ruskin Superin-tendent roy Mace. “we banged a lot of piles up on that hard pack permafrost in the beginning. we had 3‐4 men on each excava-tor‐mounted driver in the begin-ning. It was tough going. The APe down‐hole hammer attachment on the hd70 saved us. we initially were not permitted to pre-drill so the capability of the equipment to go from installer to a down-hole hammer tool on the fly was crucial.”

ruskin encountered 8‐12 feet of frozen earth below surface and everything else above was of course frozen as well. The matter of keeping materials and equipment moving was a constant challenge for the crews.

“we had heaters for the heaters,” exclaims Mace “we needed to build warming huts closer to the work and rotate guys in and out. we employed a military surplus parachute and heating shacks to house critical materials from hydraulic oil to hoses. everything was wrapped in tarps and heated. There’s no time to wait for oil when it’s flowing like molasses.”

The hd Piles were 7”, 9” and 11” diameter 80,000 ksi tubing with 100,000 ksi flights. Piles of seven-inch diameter had 16-inch flight, nine-inch diameter piles had 18-inch flight, and 11-inch diameter piles had 20-inch flight.

once pre-drilling was approved, 2,300 loca-tions were predrilled in order to adjust for the frozen ground and nine foot diameter boul-ders and cobbles on the eastern side of the site, flights were cut to 15 ¼ inches, and following down the hole hammer hole-drilling, screwed into rock. Piles were all driven to a predeter-mined depth of 20-26 feet.

Three excavators operated the three APe hd200 and two operated the hd70 drivers. The hd200 delivers 200,000 ft. lbs. direct drive tooling. with no gearbox, all radial pistons and direct drive motors delivering 20rPM at full torque, there are no metal on metal parts. “I don’t know how any other equipment would get this job done. No metal on metal was a big deal in these conditions.” Says superintendent Mace. “The cold was the hardest challenge.”

twenty piles in a day was good production when it all got started. by March, 50 to 60 piles

per machine was the norm, with

two to three man crews, including

the operator. ruskin never lost a

production day in five months due

to the climate. The tough-as-nails

crews had equipment running ev-

ery day installing piles from the

project start to finish.

“APe’s equipment, their willing-

ness to adapt as needed, and their

commitment to pile load testing

on the site to verify the performance of their

piles was critical to the success of the project,”

adds engineer bannister.

The logistical challenges of getting equip-

ment and constant flow of materials across

state, provincial, and national borders deliv-

ered to the “middle of nowhere” required the

same dedication back in warmer offices in

Prince George, british Columbia and kent,

washington. Good logistics and commu-

nications greased the skids for the actual

construction. on the ground, with state of

the art equipment that only APe could pro-

vide, the workers and Mother Nature herself

challenged the strengths and tested the weak-

nesses of the machinery and their own physi-

cal tolerance for the elements, and installed

over 5,000 piles. n

Page 48: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201448

Piling industry CanadaPIC

Any condo complex under construction can certainly test the patience of those who live and work nearby, but nothing is more taxing than the repetitive pounding of a pile driver.

one of the easiest ways to overcome this an-noying impact is to use sonic drilling technol-ogy which is quieter and quicker. Pile or an-chor holes can be drilled using high-frequency, low-amplitude vibrations and high-pressure water to clear away the cuttings. Since sonic vibrations are much higher than the natural frequency of the surrounding soil, they’re not transmitted beyond the immediacy of the hole – unlike a pile driver hammer which can cause severe vibrations to be transmitted a consider-able distance. It’s a thoughtful urban drilling option that many have come to appreciate.

Although pile installations have never been the number one application for sonic drilling technology, ironically, it was an early focus back in the 1960s when a sonic pile driving rig generated a whopping 1,000 hp from two former army tank engines. despite much ef-fort and a fair bit of money, by the 1980s, sonic pile driving research had fizzled out with only a small measure of limited success but not enough to pave the way towards full commer-cialization.

but, fast forward to today and you’ll discov-er an award-winning technology that is far su-perior in almost all drilling applications and is now in use around the world on six continents.

with three awards and numerous patents, ray roussy, the developer of modern day son-

ic drilling technology, is a Canadian engineer who has spent the past 30 years refining his revolutionary drill head.

As president of the Sonic drill Corpora-tion, roussy manufactures patented sonic drill heads which are matched with track or truck-mounted rigs, depending on the buyer’s prefer-ences. he also owns a fleet of sonic rigs that are used for contracting purposes through Sonic drilling ltd. in Surrey, b.C. which typically supplies the technology for projects involving geothermal installations, environmental inves-tigations and mineral explorations.

while ideal for pilings, sonic drilling tech-nology is less known in that application. how-ever, on the dominion, a new condo complex in New westminster, b.C., Sonic drilling ltd. was called in to drill the pile holes for the building which was constructed on a slope in the lower Mainland area – a known high risk earthquake zone.

located on the north bank of the fraser river, the city of New westminster was once the original capital of british Columbia (the capital is now victoria). Named by Queen vic-toria herself, New westminster was often re-ferred to as the “royal City.” fittingly, the new dominion condos, by developer ledingham McAllister, sit regally on royal Avenue.

“because of the slope of the site, this condo project required a number of holes at different depths,” says bill fitzgerald, operations man-ager for Sonic drilling ltd. “At the top of the hill, we used a truck-mounted sonic rig and at

the bottom we used a track-mounted sonic rig to come up the sides of the slope.”

As the track-mounted SdC-450 sonic rig climbed up the hill, excavators created a flat platform for the rig to move to at every stage. while the weather and terrain wasn’t a chal-lenge, the desire to keep all of the trees on the property forced the crews to work around them. “A few had to be dug up but they were replanted,” notes fitzgerald.

over a period of 10 days, a total of 2,400 feet was drilled by two sonic rigs, each with a crew of three. hired by Power Civil Contractors ltd., a contracting and shoring company with extensive expertise on projects throughout the lower Mainland, the sonic drills bored 80 six-inch holes which were used to then install 4.5-inch steel pipe. Grouting was completed by Power Civil Contractors.

fitzgerald says that one of the biggest rea-sons to use a sonic rig for piling is its “speed advantage.” drilling 3-5x faster through mixed soils, using no drilling mud (less mess to clean up) and operating more quietly, sonic drilling technology is a great option for project manag-ers who want a solution that keeps the neigh-bours happy and makes good business sense.

Nancy Argyle is one of Canada’s most expe-rienced disaster communicators. Based in Cal-gary, she is a university lecturer, former print re-porter and strategic communications consultant who writes on a variety of topics. She also holds a commercial pilot’s license. n

Super Sonicquiet, quick, And mAneuverABle, sOnic drill rigs mAke Piling eAsy

By nanCy argyle

Page 49: Piling Industry Canada Issue 1, 2014
Page 50: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201450

Piling industry CanadaPIC

dutch giant ballast Nedam is using some of the largest monopiles – the largest weighing up to 930 tonnes – for two separate offshore wind-farm contracts in the baltic Sea and the German bight respectively. but the applica-tion technology being used in these projects stems from the company’s construction of Canada’s very own Confederation bridge, the 12,900-metre bridge erected from 1993 to 1997 in order to link Prince edward Island and mainland New brunswick.

“ballast Nedam has built a large number of bridges during the years,” states edwin van de brug, commercial manager, ballast Nedam offshore. “The most striking of these are the ones built offshore, for example the Confeder-ation bridge in Canada. for these bridges, we developed a work method based on the pro-duction of large, prefabricated elements on-shore and placing them offshore with heavy-lift vessels. At present, we construct offshore wind farms based on the same design, fabrica-tion and installation policy.”

It is this same policy that is at the heart of the company’s growth in international mar-kets.

“by optimizing logistics and installation so-lutions, ballast Nedam is supporting the gen-eral development of offshore wind in europe,” notes van de brug.

grOwing uP strOngThe ballast Nedam company itself extends

back to 1877. It is the combination of two sepa-rate firms: one that started as a sand supplier and evolved into a construction firm with a focus on civil engineering and the other that started as a contractor for the construction of villas and country houses – and eventually the construction of the Peace Palace in the hague in 1913. The two companies came together in 1969.

today, ballast Nedam engages in integrated projects in The Netherlands in four areas of work: housing, mobility, energy, and nature. The company focuses on niche markets with-in: industrial construction, offshore wind tur-bines, secondary raw materials, and alternative fuels.

“In a number of areas of expertise, we also operate internationally,” says van de brug, who adds that the company employs some 3,000

people across its headquarters in Nieuwegein and its several regional offices. “our approach is based on life-cycle thinking and acting. we develop, construct, manage and recycle. we are involved in long-term management, main-tenance and operations of projects and orga-nize financial feasibility.”

Better in the BAlticballast Nedam has a long history in working

with offshore wind farms, where monopiles and jackets are the two typical types of foun-dations used due to the deeper waters usually found there. The company has the expertise and equipment to install both of these types of foundations.

The first monopiles to be introduced by bal-last Nedam were at a dutch wind farm in 1994. They weighed 71 tonnes. In 2006, the company was using monopiles that weighed 230 tonnes. today, they reach weights of 930 tonnes.

“within the present range of offshore wind farms, monopiles are considered to be more cost efficient than other solutions, especially because monopiles of larger dimensions can now be designed to handle the combination of

Blowin’ in the WindOFFshOre wind FArms cAPitAlize On lAtest technOlOgy

By Melanie Franner

Page 51: Piling Industry Canada Issue 1, 2014

Piling Industry Canada • June 2014 51

Piling industry Canada PIC

harsh conditions, larger turbines and deeper water depths,” explains van de brug.

The baltic 2 offshore wind farm consists of 39 monopiles and 41 jacket foundations for 80 Siemens 3.6 Mw wind turbines, for a total ca-pacity of 288 Mw. work on the project began in october 2013 and was finished in decem-ber of that same year.

The project was undertaken on behalf of ArGe bAltIC 2 foundations, a joint venture between hoChtIeff Solutions AG, Geo-Sea N.v. and hoChtIef offshore Crewing Gmbh.

“This project, in particular, showed the ca-pabilities of our company in handling large, monopile foundations,” states van de brug. “In fact, they were the largest monopiles used so far, with weights of up to 930 tonnes. our ca-pabilities applied to both the installation of the monopiles and the logistics approach we used of floating the monopiles towards the hlv Svanen.”

The heavy lift vessel (hlv) Svanen is one of the vessels designed by ballast Nedam to drive the foundations to the desired depth. It was originally developed for the construction of the Storebaelt bridge in denmark and fur-ther enlarged for the construction of the Con-federation bridge.

The Svanen measures approximately 100 by 70 metres, with a lifting capacity of 8,700 tonnes. to date, the Svanen has been used to install almost 400 foundations for offshore wind farms located in the united kingdom, belgium, The Netherlands, denmark, and Germany.

one of the challenges inherent in the baltic 2 offshore wind farm was the giant monopile that was used as part of the foundation. It mea-sures 73.50 metres long, with a bottom diame-tre of 6.5 metres and a weight of 930 tonnes.

“ballast Nedam transported the monopile using its ‘feeder’ principle: floating over a dis-tance of 62 nautical miles to a fabrication yard in rostock to the baltic 2 offshore site,” ex-plains van de brug. “upon arrival, the mono-pile was successfully upended and driven to the desired depth by our hlv Svanen.”

The water depths ranged from 23 to 35 me-tres.

In order to capitalize on the “feeder” prin-ciple, ballast Nedam ensures that the piles are equipped with plugs on both sides of the monopile while at the onshore site. This en-ables the monopile to float. The monopile is then launched by an onshore crane into the water at the quay. A tugboat then attaches a towing beam and transports the pile to the off-shore site.

Budding Butendiekballast Nedam is also involved in another

significantly sized offshore wind farm in the form of an 80-turbine project in the German bight, 32 kilometres west of the German island

Sylt. This project, undertaken on behalf of the wpd Group, will have a total capacity of 288 Mw.

“design was completed last year,” explains van de brug. “fabrication started last year and is ongoing. The offshore installation works started in March 2014 and the installation of the scour protection and foundations started in April 2014. we expect to complete the proj-ect early in the fourth quarter of 2014.”

water depth at the offshore site ranges be-tween 17 and 22 metres. The foundations will comprise a monopile and a transition piece, the latter of which connects the monopile with the wind turbine’s tower. The monopiles will measure between 53 to 68 metres high and will weigh between 535 and 840 tonnes. The hlv Svanen will also be used during the installation of these foundations.

ballast Nedam’s portion of the project, which includes the design, fabrication, trans-port, and installation of the foundations, has a budget of $250 million euros.

wOrld-renOwn eXPertisefor a company that owes its origins to hum-

ble activities like ferrying dune sand and en-gaging in dredging operations, ballast Nedam has evolved into an international leader in the offshore wind-farm arena. Its innovative approach, its proven expertise, and its glow-ing reputation have resulted in a long list of accomplishments that extends beyond high-profile projects to include technology and pro-cesses that continually raise the industry bar.

The baltic 2 and the butendiek offshore wind-farm projects are but two examples of how the company continues to evolve and push the limits. Canada’s very own Confedera-tion bridge is but another shining example of a company committed to its work and to its vision of “working together for a better living environment – today and tomorrow”. n

Page 52: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201452

Piling industry CanadaPIC

In recent years liebherr’s deep foundation equipment has become increasingly popular in North America, especially in Canada. In the past months a liebherr piling rig, type lrh 100, laid the foundation for a new bridge in Quebec.

The piling rig of the Canadian company Centurion fondation was equipped with the large hydraulic hammer h 85/6. Its task was to install about 120 piles with a diameter of ap-proximately 450 milimetres and total lengths between 30 metres and 36 metres.

restricted sPAce On the JOBsite

A major criterion of this jobsite was the nar-row work space offering little leeway for the piling rig to move in any direction. here, the innovative leader kinematics of the lrh 100 was of great advantage, allowing radii of up to 8.75 metres and inclinations of maximum 18 degrees in all directions. Thanks to this feature the operator was able to change the position of the leader in all directions without moving the undercarriage.

A heavily frequented highway through the

middle of the jobsite was a further complicat-ing factor for the operator of the piling rig. when lifting the piles into the helmet of the hammer the operator had to ensure that the traffic flow was not disturbed or halted.

high FleXiBility OF the lrh 100As the maximum pile length that can be

lifted by the lrh 100 is 19 metres, it was nec-essary to extend the piles until the required length was achieved. This was done by using the rig to place the extensions on the already hammered pile and to subsequently weld the parts together. during the welding process the piling rig installed the next pile so ensur-ing maximum efficiency. Then, the lrh 100 returned to the welded pile and hammered it down to the final depth.

The installation of the last piles proved to be the most challenging part. Since there was no more space available on site, the piling rig was placed on a self-constructed platform. Thanks to this approach the lrh 100 was able to reach even the last piles without damaging the al-ready existing ones. In total, the rig installed approximately 10 piles per day.

the lrh 100 – A POwerFul mAchine

The lrh 100 is based on the proven lb 20 carrier machine of the liebherr lb series of rotary drilling rigs. It is equipped with a pow-erful and emission-optimized 270 kw / 362 hp liebherr diesel engine and can be transported in one piece with the hammer mounted. The compact design of the carrier machine with three metre transport width allows for quick and cost-effective transportation. The lrh 100 from liebherr also offers a wide range of powerful equipment. This assures that the excellent performance of the basic machine is ideally converted into high productivity.

The lrh 100 is the smallest model of the liebherr series of pure piling rigs, offering three larger models. following the policy of “everything from a single source” liebherr also offers various other machines for special deep foundation tasks, including the lrb series of combined piling and drilling rigs, the lb se-ries of pure rotary drilling rigs with maximum torques up to 510 kNm, as well as the hS series of duty cycle crawler cranes. n

Close QuarterslieBherr Piling rig hAs tO cOPe with restricted wOrk sPAce in queBec

Page 53: Piling Industry Canada Issue 1, 2014
Page 54: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201454

Piling industry CanadaPIC

A large number of waterfront structures are supported on piles. The piles may be con-structed of timber, concrete, or steel sections. The adverse environment introduced by sea-water, high humidity, high temperature, and dry-wet cycles cause rapid deterioration of these structures. The most severe conditions are found in the splash zone are, which en-compasses the portion of the pile between the low- and high-tide water levels.

This article describes the traditional re-pair systems and introduces a newly invented product that offers significant advantages over these products. Applications to repair con-crete, steel and timber piles are also presented.

cOnventiOnAl Pile JAcketsThe pile repair jackets used to date are made

of high density Polyethylene (hdPe) or Glass fiber reinforced Polymer (GfrP) materials.

figure 1 shows a number of such products that are currently marketed in North America. These jackets are usually supplied as two half-shells that are attached together in the field by straps, bolts, or an epoxy adhesive to create a formwork around the pile; some versions are supplied with a single tongue and groove con-nection that are glued together in the field. The jackets are primarily a stay-in-place form and provide little structural benefit to the pile. There are several shortcomings with these jackets as discussed below.

The conventional jackets are made from materials that are very weak in tension. fig-

ure 2 shows the tensile strength of six of the most popular jackets. to protect manufactur-ers’ anonymity these have been designated as Jacket type A through f. The tensile strength values are based on the data provided by the manufacturers and range from only 10,000 to 24,000 psi.

when a concrete pile loaded in the axial di-rection approaches its failure, as the concrete crushes, it will dilate and will have a tendency to expand laterally due to Poisson’s effect. If the jacket is strong enough to resist this lateral expansion, the strength of the pile is increased tremendously. one of the problems with con-ventional jackets is that not only the materials are weak, but they cannot fully develop their capacity either, since the jacket will fail prema-turely at the bolted or glued tongue and groove seam. That is, these jackets will provide little

if any confining pressure for the concrete pile.It is well recognized that oxygen is the fuel

to the corrosion process. Studies at university of florida, for example, have demonstrated that when a concrete pile is encased in a jacket that prevents ingress of moisture or oxygen, the corrosion rate is significantly reduced. Conventional jackets, having a seam along the side, will allow moisture, and oxygen to pen-etrate and reach the concrete pile to fuel the corrosion of reinforcing steel.

from a constructability point of view, these jackets have to be ordered to size in advance,

adding to the wait time before the project can begin. Any variation in size results in further delays in the project. Moreover, the large bulky jackets add to shipping charges and require large staging areas on the job site.

FrP suPerlAminAte™following 25 years of research and develop-

ment, the author has invented a new process where layers of carbon or glass fabric are satu-rated with resin and pressed together to create very thin sheets. The thickness of these sheets varies between only 0.01 to 0.025 inches; this has been a challenging feature of this invention to create such a thin and strong product. The sheets are supplied in rolls that are typically four feet wide by 200 feet long. This reduces shipping costs and planning time, since a sheet can be wrapped around a pile of virtually any size or shape. As shown in figure 2, the ten-sile strength of Superlaminate™ is significantly higher than conventional jackets and ranges from 62,000 to 156,000 psi. The values in the figure are for a biaxial glass (bG), biaxial car-bon (bC), and unidirectional carbon (uC).

A comparison of the Superlaminate™ with conventional jackets is provided in table 1. These unique benefits are the reason why ma-jor organizations such as the u.S. Army Corps of engineers and the federal emergency Man-agement Administration (feMA) have singled out Superlaminate™ as the only approved product for repair of columns and piles. In the following examples for repair of concrete, tim-ber, and steel piles the unique features of this system will be described in more detail.

cOncrete PilesThe high concentration of chlorides in sea-

water allows it to penetrate and reach the re-inforcing steel, even in high-quality concrete. As a result, the passive layer that normally protects steel is destroyed, making the corro-sion of reinforcing or prestressing steel inevi-

Finding a Better WayAn engineered sOlutiOn FOr rePAir OF cOlumns And Piles

By Mo ehsani, Phd, Pe, se – ProFessor eMeritus oF Civil engineering, the university oF arizona and President, PileMediC, llC, tuCson, az

Fig. 1. Conventional HDPE and Fiberglass jackets.

Page 55: Piling Industry Canada Issue 1, 2014

Piling Industry Canada • June 2014 55

Piling industry Canada PIC

table. because corroded steel occupies a larger volume, it causes lateral pressure on the sur-rounding concrete that far exceeds the crack-ing strength of concrete. This results in crack-ing and spalling of the concrete cover, which in turn, accelerates the corrosion process.

The deterioration of concrete and the loss of cross sectional area of steel results in a reduc-tion in the capacity of the pile. Consequently, a structural repair should not only address the reconstruction of the deteriorated and corrod-ed materials, but more importantly it should restore the original strength of the pile. In some projects, for example in expansion of a port, it may even be necessary to strengthen the old piles to a higher capacity than the original pile.

The repair of a deteriorated concrete pile can be achieved as shown in figure 3. for ex-ample, for this 12-inch square pile, an approxi-mately 18-inch diameter circle with a circum-ference of 56 inches easily fits around the pile. A 120-inch length of Superlaminate™ that is slightly more than twice the circumference of the shell is cut. An epoxy paste that cures in water is provided and applied to one half of the Superlaminate™ sheet.

Since the water is shallow, the workers carry the laminate into water and wrap it around the pile, such that the second half which is coated with epoxy is bonded to the first half; the size of the jacket can be easily adjusted and tempo-rarily fixed using shrink wrap or ratchet straps.

table 1. Comparison of Superlaminate™ with Conventional Jackets

Conventional Jackets Drawbacks SuperLaminate™ Advantages

Custom Made

• Additional costs for labor, materials, storage and transportation

• Requires longer time to order and install

one Size fits All

• No delays waiting for customized jackets to be manufactured

• Fastest repair & strengthening system available

vertical Seam

• Provides no confinement pressure

• Moisture and oxygen can penetrate through the seam

• Metallic hardware will corrodeNo vertical Seam

• 360° of uniform confining pressure

• Seamless jacket will keep moisture and oxygen out to halt corrosion process

• No metallic hardware to corrode

• 3-15 times stronger than conventional

Grout Cannot be pressurized• Voids and cracks in the pile

remain unfilled• Deterioration continues

resin Can be Pressurized• All cracks and voids are filled• Achieve active confinement

for pile

Fig. 2. Comparison of tensile strength of conventional HDPE and Fiberglass jackets with SuperLaminate™.

Fig. 3. Repair of deteriorated concrete piles in shallow waters in Miami, FL; (a) deteriorated pile, (b) applying epoxy to SuperLaminate™, (c) wrapping and (d) securing laminate around the pile, (e) pumping tremie grout, (f) completed project.

Page 56: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201456

Piling industry CanadaPIC

because the laminate is not bonded to the pile, it is free to slide up or down along the height of the pile. If the repair length is more than four feet, an additional shell can be similarly cre-ated, overlapping and epoxied to the first shell

by a few inches. once the jacket is in its final position, the bottom of the annular space can be sealed and the annular space is filled with concrete or epoxy grout.

The jacket thus created in the field has no

seam along its height. Therefore there is no chance for oxygen or moisture to penetrate through the jacket and reach the concrete. furthermore, the combination of the high tensile strength of the laminate and the lack of any seam that allows full utilization of this high tensile strength, provides significant con-finement and additional strength to the pile as detailed in the example below.

The use of Superlaminate™ results in sig-nificant gain in strength for the pile too. Ig-noring the contribution of any longitudinal reinforcing steel, and assuming a compres-sive strength of 4,000 psi for the concrete, the pile has an axial load capacity of 490 kips. for brevity details of these calculations are not pre-sented here. If the pile is encased in a conven-tional 18-inch diameter jacket and filled with a 4,000-psi grout, the pile will have a capacity of 865 kips. This increase in capacity is solely due to the larger cross section, i.e. an 18-inch circle compared to a 12-inch square. In contrast, if a carbon Superlaminate™ jacket is utilized, the jacket creates a confining pressure that will in-crease the compressive strength of bot the old concrete and the new grout from 4,000 psi to more than 7,500 psi. This results in a load ca-pacity of 1,629 kips for the pile, which is 88 per cent higher than when a conventional jacket of the same size is used.

A recently completed study funded by the u.S. National Science foundation and Cali-fornia department of transportation dem-onstrates how these laminates can quickly restore the strength of a bridge pile that may be damaged in an earthquake. A short

Fig. 4. One of the four bridges in St. Louis, MO where corroded steel pilings were repaired with SuperLaminate™: bridge, close up of damage and stages of repair.

Fig. 5. Two four-foot tall segments of SuperLaminate™ are wrapped around the timber pile above water; the jacket is lowered into water and filled with grout.

Page 57: Piling Industry Canada Issue 1, 2014

Piling Industry Canada • June 2014 57

Piling industry Canada PIC

video about this study is available online at: http://goo.gl/hrhzjr

steel Piles And cOlumnsSubmerged steel piles often corrode severely

over the splash zone. In addition, when deic-ing chemicals are used to clean the roads, these chemicals cause corrosion of steel columns at and above the street level. Industrial plants, refineries, and mines also suffer from similar premature deterioration of steel columns. us-ing Superlaminate™, once the corroded steel is cleaned, a shell can be created around the pile and filled with grout. If required, additional longitudinal steel bars can be provided to fur-ther increase the strength of the column.

figure 4 shows the repair of bridge pilings in St. louis, Mo with this technique. A section of the concrete slab around the piles was cut and removed to expose the deteriorated pile. The piles were sandblasted to remove all rust and a layer of corrosion-inhibiting coating was applied to the damaged portion of the piles. each pile was repaired with a two-foot tall Su-perlaminate™ shell. These repairs required no major equipment that made them ideal for the limited access area on this site. A brief video of this project is available at http://goo.gl/npwxjt.

In 2012, texas department of transporta-tion funded a major study to investigate the effectiveness of PileMedic® laminates on repair of steel h piles. Those tests are in progress at

the university of houston and the findings should become available by the end of 2014.

timBer PilesMarine borers and shipworms are among

the major sources of damage to timber piles. The control of any marine borer depends on proper species identification. wood can be maintained free of decay by submerging the wood in water and thus depleting the oxygen requirement for many wood-decaying organ-isms. This method prevents most insect injury but promotes injury by marine wood borers, that may survive on the limited oxygen supply present in water.

wood placed in a marine environment, such as boat docks, must be treated with a ma-rine preservative. Creosote is sometimes insuf-ficient against some types of marine wood bor-ers. In these cases, the wood must be protected with creosote and an inorganic arsenical in a process known as dual treatment. This is abso-lutely critical for the long-term integrity of the structure in these hazardous conditions.

Shipworms will attack any untreated wood submerged in salt water. The greatest injury is done to pilings and wooden boats. untreated pilings may last less than a month in the loui-siana Gulf parishes. The replacement cost of pilings destroyed annually by shipworms is tremendous. These animals prefer warm salt waters. More than one-half of the volume of

a pile may easily be destroyed without any evidence of injury being apparent on the pile’s surface. only by cutting into the piling can its condition be ascertained. The greatest damage in a piling usually occurs just above the mud line, although entrance holes may be found throughout the submerged area. entrance holes about 1/16 inch in diameter are bored into the surface of the wood by the larvae.

In the repair shown in figure 5, two four-foot tall Superlaminate™ sheets were wrapped around the pile to create an eight-foot tall jacket. The shell can now be lowered into wa-ter and the process can be continued to create a very long shell with virtually no need for div-ers. Next, the annular space is filled with grout or resin.

Although some pile owners may prefer the lower cost cementitious grout, this is not a du-rable long-term solution. Moisture and oxygen will penetrate through the grout and allow the borers and shipworms to survive inside the timber pile; this is particularly true for conven-tional pile jackets that have a seam along the side and allow easy passage of moisture and oxygen into the concrete grout and pile.

As shown in figure 6, the preferred method of repair is to inject a low viscosity resin into the annular space. Such resins in conjunction with the Superlaminate™ shell will create an impervious layer around the pile. Addition-ally, the low viscosity resin will fill all voids, cracks and the nests of these bugs, putting an end to the decay of the pile. If necessary, the resin can be applied under pressure. This is a repair system that is not possible with conven-tional jackets since the resin will leak out of the seams of those jackets.

utility companies can also benefit from these repairs. we are currently testing this sys-tem with tucson electric Power; they are in-terested in increasing the strength of a decayed old timber pole to a new steel pole. These re-pairs can be performed while the pole remains fully in service, saving the utility significant time and money. A video of these tests is avail-able online at http://goo.gl/vxf1Mx.

AcknowledgementsThe design concepts, materials, and construc-

tion techniques presented in this paper are sub-ject to several U.S. and international patent ap-plications by the author. n

Fig. 6. The preferred method to repair a timber pile is to wrap it with SuperLaminate™ and inject resin in the annular space, (b) cut slices of the pile, and (c) & (d) close up views showing all cracks and voids are filled with resin.

Page 58: Piling Industry Canada Issue 1, 2014

PIC Magazine • June 201458

PIC INDEX TO ADVERTISERS

American Piledriving equipment c/o Construct Marketing llC 25

Arntzen Corporation 38Atlas tube JMC Steel Group 4bauer-Pileco Inc. 13bay Shore Systems, Inc. 11bermingham foundation Solutions 9Canadian Piledriving equipment Inc. ofC, 6dominion Pipe & Piling IfCeastrock Inc. 35eCA Canada 30, 31eSC Steel Inc. 45fraser river Pile & dredge (GP) Inc. 53Geokon, Incorporated 17hammer & Steel, Inc. obChCM Contractors, Inc. 21hercules Machinery Corporation 39, 41, 43

Independence tube Corporation 3Instantel 20keller Canada 27liebherr werk Nenzing GMbh 49loadtest 23MSe Group 29Northstar Inc. 5Pile dynamics Inc. 12Piledrivers local union 2404 14Platinum Grover International Inc. 19roll form Group 15rSt Instruments ltd. 37Selix equipment Inc. IbCSkyline Steel 7Soilmec North America 33verbeek Management Services 42westco drilling & Piles ltd. 12

Company Name: ___________________________________________________________________________________

Mailing Address: ___________________________________________________________________________________

_________________________________________________________________________________________________

Phone: _____________________________________ toll free:______________________________________________

fax: _______________________________________ toll free:______________________________________________

email: ____________________________________________________________________________________________

web: _____________________________________________________________________________________________

Contact: __________________________________________________________________________________________

Please select one:

o Pile Contractor o Consultant o engineer o Supplier o Manufacturer

o other: _________________________________________________________________________________________

Free directorylisting

directoryPlease complete this form and fax back to

del Communications Inc. before November 15, 2014.

Toll Free Fax: 1.866.711.5282

Launching January 2015

get Listed in PiLing industry canada’s new coiL-Bound directory -

Page 59: Piling Industry Canada Issue 1, 2014

Whatever your drilling needs may be... We have the answer!

1-888-990-0905 www.selix.ca

A-4080 Belgreen DriveOttawa, Ontario

K1G 3N2

Page 60: Piling Industry Canada Issue 1, 2014

DRILLING RIGS

www.hammersteel.com800-325-PILE (7453) • (314) 895-4600

Piling, Pile Driving & Drilling Equipment

SALES • RENTAL PARTS • SERVICE

Missouri800.325.PILE (7453) • 877.224.3356 • 904.284.6800 • 913.768.1505 • 952.469.6060 • 973.512.2940 • 936.257.8790

California Florida Kansas Minnesota New Jersey Texas

Hammer & Steel Sells and Rents Comacchio MC Line

The basic line of multiuse rigid and articulated hydraulic crawler drill rigs which are suitable for several types of specialized works, such as ground consolidation, anchor drilling, geotechnical works, water well drilling and geothermal energy.

Hammer & Steel has been in business for 25 years and offer superior after-sales service

on all equipment. We have stocking facilities throughout the U.S.