21
Faster Algorithms for Sparse Fourier Transform Haitham Hassanieh Piotr Indyk Dina Katabi Eric Price MIT Material from: Hassanieh, Indyk, Katabi, Price, “Simple and Practical Algorithms for Sparse Fourier Transform, SODA’12. Hassanieh, Indyk, Katabi, Price, “Nearly Optimal Sparse Fourier Transform”, STOC’12.

PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Faster Algorithms for Sparse Fourier Transform

Haitham HassaniehPiotr Indyk Dina Katabi Eric Price

MIT

Material from: •Hassanieh, Indyk, Katabi, Price, “Simple and Practical Algorithms for Sparse Fourier Transform, SODA’12.•Hassanieh, Indyk, Katabi, Price, “Nearly Optimal Sparse Fourier Transform”, STOC’12.

Page 2: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

The Discrete Fourier Transform• Discrete Fourier Transform:

– Given: a signal  ∈ – Goal: compute the frequency vector such that for  ∈ 1… :

∑ /

• Fundamental tool:– Compression (audio, image, video)– Signal processing– Data analysis– Wireless Communication– …

• FFT : O log timeSampled Audio Data (Time)DFT of Audio Samples (Frequency)

Page 3: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Sparse Fourier Transform

• Often the Fourier transform is dominated by a small number of  “peaks”

– Only few of the frequency coefficients are nonzero. – An exactly k‐sparse signal has only k nonzero frequency coefficients.– In practice : approximate a sparse signal using the k largest peaks.

• Problem : Can we recover the k‐sparse frequency spectrum faster than FFT?

Time Domain Signal Sparse Frequency Spectrum

Approximately Sparse Frequency Spectrum

Page 4: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Previous Work

• Algorithms:– Boolean cube : [KM92], [GL89]. What about  ?– Complex FT: [Mansour‐92, GGIMS02, AGS03, GMS05, Iwen10, Aka10]

• Best running time: [GMS05]  O– In theory : Improves over FFT for  / log3

– In Practice : Large constants; need / 40,000 to beat FFT

• Goal:– Theory: improve over FFT for all values of – Practice: faster runtime than FFT.

Page 5: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Our results• Randomized algorithms, with constant probability of success

• Exactly  ‐sparse case, recover :   log– Optimal if FFT optimal

• Approximately  ‐sparse case, recover  ′ :– Let Err min

– l2/l2 guarantee  ′ Err : log log /• Improves over FFT for any  ≪

– l∞/l2 guarantee  ′ Err : log log• Improves over FFT for  ≪ /log

Page 6: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Sparse FFT ‐ Algorithm

Page 7: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Intuitionn‐point DFT :  log

Frequency DomainTime Domain Signal

n‐point DFT of first B terms :  log

Cut off Time signal Frequency Domain

Boxcar  ∗sinc

B‐point DFT of first B terms:  log

First B samples  Frequency Domain Subsample  ∗ sinc

Alias  Boxcar

Page 8: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

• “Hashes” the  Fourier coefficients into buckets in O( log ) time

• Issues– Leakage :  

– Given these  buckets, how can we estimate the locations and values the  large frequencies? 

Framework 

n‐point DFTof all n samples

B‐point DFTof first B sample

n frequencies hash into B buckets

Subsample  ∗ sincSubsample  ∗ Filter

Page 9: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Filter: Sinc

– Polynomial decay– Leaking many buckets

Boxcar Sinc

Page 10: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

– Exponential decay

– Leaking to   buckets

Filter: Gaussian

Gaussian Gaussian

Page 11: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Filters: Wider Gaussian

– Exponential decay– Leaking to <1 buckets– But trivial contribution to the correct bucket

Wider Gaussian  Narrow  Gaussian 

Page 12: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Filters:  Sinc × Gaussian

– Boxcar size  / :   / frequencies hash into each bucket – Still exponential decay– Leaking to at most 1 bucket – Sufficient contribution to the correct bucket    /2 , /2– Replace Gaussians with “Dolph‐Chebyshev window functions”

Sinc × Gaussian Boxcar  ∗ Gaussian

Page 13: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Finding the support• = B‐point DFT  = Subsample

• Assume no collisions:– At most one large frequency hashes into each bucket.– Large frequency   hashes to bucket  :

=  ∆ leakage

– Recall:  DFT(  )  =   /

– = B‐point DFT  :=  / ∆ leakage

Page 14: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Finding the support• = B‐point DFT  = Subsample

• Assume no collisions:– At most one large frequency hashes into each bucket.– Large frequency   hashes to bucket  :

=  ∆=  / ∆

∠ mod∆

– Find all frequencies in  2 log

Page 15: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Random Hashing 

• Some Large frequencies collide:– Subtract and recurs – Small number of collisions  converges in few iterations

• Every iteration needs new random hashing:– Permute time domain signal  permute frequency domain

– is invertible mod  : ’ =  / ′ = 

– Permutation :  mod

Page 16: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Algorithm• Iteration i :

– ∝ /2– Permutespectrum: ’ =  /

– =  ‐point DFT  ′ = Subsample ′ ∗– Recover locations and values of large frequencies

• Each iteration takes O( ) time.• iterations • Total time : 

Page 17: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Experiments(exactly k‐sparse algorithm)

Page 18: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Setup

• Similar to earlier work:– Random 0‐1 k‐sparse vectors – Fix n, vary k– Fix k, vary n

Page 19: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Experiments

Page 20: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Experiments, ctd

Page 21: PiotrIndyk Dina Katabi Eric Price MIThaitham.ece.illinois.edu/Papers/sFFT_D.pdf · – Practice: faster runtime than FFT. Our results • Randomized algorithms, with constant probability

Conclusions• Sparse FFT with running times :

– for exactly sparse case– for approximately sparse case– Improves over FFT for 

• Significant improvement in practice

• time for approximately sparse signals?• Not clear:  log / samples needed, extra log for FT