24
PIP-II Injector Test LEBT Operation for the RFQ L. Prost for A. Shemyakin, J.-P. Carneiro and B. Hanna, and all other PI- Test team members PIP-II Technical Meeting 26 July 2016

PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

PIP-II Injector Test LEBT Operation for the RFQ

L. Prostfor A. Shemyakin, J.-P. Carneiro and B. Hanna, and all other PI-Test team membersPIP-II Technical Meeting26 July 2016

Page 2: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Outline

• LEBT transport scheme (reminder)

• Case studies in the LEBT– Profile measurements and simulations– Emittance measurements

• LEBT tuning for operation– Setup– RFQ transmission measurements

• Conclusion

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ2

Page 3: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

LEBT beam transport concept (reminder)• Ion source generates a uniform spatial density distribution

– Velocities have a Gaussian distribution• Completely neutralized beam transport from the ion source

through Solenoid #1• At the image plane of Solenoid #1, the distribution becomes

uniform again*

– Neutralization is interrupted here• Phase advance over the remaining length of the LEBT is kept

low– Beam distribution stays close to uniform and emittance growth

is suppressed

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ3

* theoretically, at a fixed location downstream of Solenoid #1, the beam current density distribution may be uniform or Gaussian depending of the solenoid current setting i.e. phase advance

Page 4: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

LEBT beam transport concept illustration• PIC-like simulations through one solenoid

– Initial distribution has a uniform current density distribution but Gaussian in the velocity space

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ4

Page 5: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

LEBT transport scheme (reminder)

• High vacuum pressure– Gas load from ion source

• Neutralizing particles confined by potential barrier

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ5

IS RFQ

Solenoid #1 Solenoid #2 Solenoid  #3Chopper

Neutralized section Un‐neutralized section

Potential barrier• Low vacuum pressure

– Vacuum pumping station– Limits rate of production of

neutralizing particles• Clearing electric field

– Sweeps neutralizing particles out of the beam path

Page 6: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Profiles measurements• Same ion source settings, different solenoid #1 currents

– 5 mA (DCCT), near the end of a 1 ms pulse

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ6

0

0.1

0.2

0.3

0.4

0.5

0.6

‐1.5 ‐1 ‐0.5 0 0.5 1 1.5

Sign

al intensity, m

A

Displacement, cm

Solenoid #1 = 155 A

Solenoid #1 = 140 A

1D beam profiles at the scrapers. Dashed curves arefits, assuming a uniform (green) or a Gaussian (red)distribution, normalized to give the same integral

Page 7: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Profiles – Measurements vs. Simulations• Simulations initialized with measured Twiss

parameters at the exit of the ion source– Distribution of particles is ideal (Uniform

density and Gaussian in velocity space)

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ7

Comparison of a 1D current densitydistribution from a back propagatedphase portrait (blue circles) and auniform distribution fit (red)

0

5

10

15

20

‐3 ‐1 1 3

Bin intensity, a.u.

X, mm

Backpropagation

‐0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

‐1.5 ‐1 ‐0.5 0 0.5 1 1.5

Displacement, cm

155 A 140 A

0

100

200

300

400

500

600

700

‐1.5 ‐1 ‐0.5 0 0.5 1 1.5

Displacement, cm

155 A 140 A

Phase space distribution at the exit of the ion source

Measurements

Simulations

Note: Binning interval (horizontal axis) is the same for simulations and measurements

Page 8: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Phase space measurements

• Phase space distributions for 2 different focusing solutions but the same ion source tune

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ8

BC

Sol. #1[A]

Sol. #2[A]

Sol. #3[A]

n (rms)[m]

[m]

B 154 187 223.5 0.25 -8.9 2.2C 143 158 240 0.16 -8.2 2.2

5 mA, 50 schopped pulse near the end of a 1.5 ms IS pulse

Page 9: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Phase space measurements vs. simulations• Measurements

– Blue = -8.9 ; Blue = 2.2 m– Red = -8.2 ; Red = 2.2 m

• Simulations– Blue = -21.3 ; Blue = 6.1 m– Red = -16.7 ; Red = 4.4 m

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ9

0 100 2000

1

2

3

4

0 100 2000

1

2

3

4

Blue ≡ Case BRed ≡ Case C

1 envelopes

cm

cm

• Measurements– Blue = 0.25 mm mrad– Red = 0.16 mm mrad

• Simulations– Blue = 0.26 mm mrad– Red = 0.14 mm mrad

0 100 20090

92

94

96

98

100

0.06

0.1

0.14

0.18

0.22

0.26

Tran

smis

sion

[%]

Emitt

ance

(n, r

ms)

[mm

mra

d]

0

2

4

6

0

Page 10: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Corresponding profiles simulations near EID #2• As expected from the model, the simulated profile for the

case that leads to the smaller measured emittance is uniformnear the theoretical transition from neutralized to un-neutralized transport (i.e. ~EID #2)

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ10

0

2000

4000

6000

8000

10000

12000

14000

16000

‐0.6 ‐0.4 ‐0.2 0 0.2 0.4 0.6

Bin intensity, a.u.

Displacement, cm

Meas. B Meas. C

1D beam profiles 20 cm downstream of EID #2 from simulationscorresponding to measurements settings B (orange) and C (blue). Dashed curves are fits, assuming a uniform (green) or a Gaussian(red) distribution.

Page 11: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

LEBT transport scheme - Conclusion• Convincing evidence that the transport scheme with an un-

neutralized section was realized:• Ion source current density distribution sufficiently close to uniform

(with help of scraping upstream of 1st solenoid)• Appropriate tuning of the phase advance through the 1st solenoid

such that the beam current density distribution is again uniform at the transition to the un-neutralized section

• Limited neutralization downstream of the kicker (good vacuum)• Low emittance at the end of the beam line

• Concurrently, improper tuning of the beam line leads to:• Unsatisfactory current density profile• Large emittance at the end of the beam line even with some

scraping upstream

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ11

Page 12: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Current LEBT configuration with RFQ

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ12

DCCT

Collimator

Chopper

LEBT scraper assembly

T. Hamerla

Ion Source

Beam stop

Vacuum valve

ToroidEmittance scanner

Solenoid #1 Solenoid #2 Solenoid #3

RFQ

• Beam stop for personnel protection– Will be removed when bending dipole magnet is installed

Page 13: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

y = 0.9733x ‐ 0.198R² = 0.9999

‐6

‐4

‐2

0

2

4

6

‐6 ‐4 ‐2 0 2 4 6

x meas., m

m

x calc., mm

LEBT basic tuning• Two components

– Twiss functions (→ IS settings, Solenoid currents)– Alignment (→ Position and angle of the beam at the entrance of

the RFQ)• Use tools and knowledge from commissioning activities

– Preferred optics solution including IS settings– Position & angle ‘bumps’ at the entrance of the RFQ

• Maximize transmissionthrough the RFQ– Not good enough for fine

tuning → Need to evaluateemittances

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ13

Data from phase space measurements

E.g.: Horizontal MULT 05/28/15

Page 14: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Transmission alone is not the best criterion to assess performance• According to simulations, the RFQ transmission for a properly

matched beam should be 99.8%– Relatively little dependence on Twiss functions

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ14

Simulations from J. Staples (2012 Project X collaboration meeting). Transmission >99% for all data points.

– Unfortunately, I am unaware of similar simulations for the effect of the input emittance on transmission

Page 15: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Transmission measurements setup• Identical, cross-calibrated current transformers before and

after the RFQ– Transmission efficiency: R50TOC/(L20TOC-L30ZPC)

• For averaged values “C” → “A”– Caveat: absolute values not very accurate due to background

subtraction difficulties and other ‘noise’ (e.g.: RF pulse)

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ15

Current transformer 

(L20TOC)

Current transformer 

(R50TOC)

Last LEBT solenoid Bunching 

cavity

LEBT scraper (L30ZPC)

Page 16: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Transmission for operation (based on 6/27/16 data)

• Best settings (IS on “high side”) 138.2/158/238.3 A for Solenoids #1, 2 and 3 respectively– 86% → 88-89% steering– 86% through 9-mm hole with LEBT scraper <0.2 mA

• Nominal settings before RFQ installation (7/6/15; IS on “high side”) 138.2/158/244.8 A for Solenoids #1, 2 and 3 respectively– 86%– 86% through 9-mm hole with LEBT scraper ~0.3 mA (min.

achievable)

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ16

≡ Difference may be easily explained with ‘known’ IS dri

Probably ~100% in reality

Page 17: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Measurements for case studies B & C• IS and LEBT settings same as Cases B & C measurements

on earlier slides– Except for steering– Measured Twiss parameters before RFQ installation are not

“matched” to the RFQ’s • “Low emittance” beam (Case C) transmission is ~5% higher

than the “High emittance” beam (Case B)– Data from 6/10/16– Mismatch is supposed to be the same– Best ‘operational’ settings were 15-20% higher !!

• Not optimal steering for either case ?

• Quad scans in MEBT (7/18/16 & 7/19/16) do not indicate that the emittance out of the RFQ is different between cases B and C

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ17

Page 18: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Conclusions

• Nominal settings obtained from LEBT commissioning are virtually the same as the settings that presently give best transmission through the RFQ– Measurements (beam size, emittance) taken before the RFQ

installation indicate that the transport scheme with un-neutralized section is realized

• At least qualitatively (i.e. trends), there is good agreement between simulations and measurements

• Transmission measurements of the case studies do not contradict conclusions from LEBT commissioning– Present quality/stability of the measurements (e.g.: toroids)

does not allow to be more quantitative

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ18

Page 19: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

References

• “Low Emittance Growth in a LEBT with Un-neutralized Section”, IPAC 2016 paper (http://accelconf.web.cern.ch/AccelConf/ipac2016/papers/tupmr033.pdf) and poster presentation

• “Scheme for Low Energy Beam Transport with a non-neutralized section”, arXiv:1504.06302(https://arxiv.org/abs/1504.06302)

• PIP-II Technical Meeting, “LEBT Commissioning Update”, March 24, 2015

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ19

Page 20: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Additional slides

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ20

Page 21: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Maximum vs. partial neutralization transport schemes• Beam potential profile along the beam line tailored by means of biasing electrodes

(located in solenoids #1 and #2, a.k.a. EID #1 & #2), the kicker plate and/or an additional electrode downstream (EID #3 or LEBT scraper)– Maximum neutralization: EID #1 @ +50V, EID #2 and kicker plate grounded,

EID #3 or LEBT scraper @ +50V– Partial neutralization: EID #1 & #2 @ +50 V, kicker plate at -300 V, EID #3 or

LEBT scraper positively biased or grounded

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ21

0 100 2000

0.5

1

1.5

2

2.5

3

0

1 103

2 103

3 103

4 103

5 103xyNeutralizationBz

z, cm

2.5

sigm

a en

velo

pes,

cm

Bz,

G

zkickerstart zkickerend

0 100 2000

0.5

1

1.5

2

2.5

3

0

1 103

2 103

3 103

4 103

5 103xyBz

z, cm

2.5

sigm

a en

velo

pes,

cm

Bz,

G

zkickerstart zkickerend

Partial neutralization scheme

Complete neutralization transport

For illustration only

Zero current Full current

Page 22: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Space-charge ‘enhanced’ configuration (i.e. partial neutralization scheme)

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ22

• Positive biasing of electrically isolated diaphragms to contain ions

• Clearing field at the chopper• Vacuum downstream of

solenoid #2: low 10-7 torr• Chopped beam

5 ms

3 ms

Ion source extractor voltage

Chopper voltage

0 kV

‐5 kV

1 ms‐300 V

+40 V +40 V

‐300 V

Ions trap

Ion clearingApproximate location of RFQ 1st vane

Page 23: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Configuration without ion clearing (i.e. maximum neutralization scheme

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ23

• Positive biasing of electrically isolated diaphragms• No DC offset at the kicker

plate• Chopped beam

5 ms

3 ms

Ion source extractor voltage

Chopper voltage

0 kV

‐5 kV

1 ms

+40 V +40 V

Grounded

Ions trapApproximate location of RFQ 1st vane

Page 24: PIP-II Injector Test LEBT Operation for the RFQ · 14 L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ 7/26/2016 Simulations from J. Staples (2012 Project X collaboration

Relative transmission measurements• Various issues with instrumentation currently prevent

absolute measurements to better than 10-20%– ISNS dump > IMEBT toroid !!– Relative measurements

are sufficient foroptimization of theoptics and trajectories

7/26/2016L. Prost et al. | PIP-II Injector Test LEBT Operation for RFQ24

DCCTLEBT toroid

MEBT toroid

SNS dump