22
20150228EMODOO Oxford, United Kingdom 25 th May 2016 5 th Interplanetary CubeSat Workshop iCubeSat 2016 PIXE 2016: PocketSpacecraft.com Integrated exploration Environment update Michael Johnson [email protected] 1 Graphics courtesy: Alan Taylor kokogiak.com

PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Oxford, United Kingdom25th May 2016

5th Interplanetary CubeSat WorkshopiCubeSat 2016

PIXE 2016: PocketSpacecraft.com Integrated exploration Environment 

updateMichael Johnson

[email protected]

1Graphics courtesy: Alan Taylor kokogiak.com

Page 2: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

About JA

• Founded 2010• Ops in China, UK & USA• Creates, encourages, funds, manages or otherwise supports more than two dozen open source open access space exploration infrastructure projects

• Nine flight projects• Collaborate with academia, enthusiasts, government, industry and non‐profits

• >300 volunteers, >30 countries2

Page 3: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

goalsend spacecraft to orbit and/or land on the surface of every body in the solar system over the next 25 19 years

3

Page 4: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

goalsend spacecraft to orbit and/or land on the surface of every body in the solar system over the next 25 19 years

>101 > ~ 5000km radius>102 > ~ 100 km radius>104 > ~ 20 km radius>106 > ~ 0.5km radius asteroids alone

Graphics courtesy: Alan Taylor, kokogiak.com4

Page 5: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

5

The Solution?

Graphics courtesy: JA / PocketSpacecraft.com

personal space agethe era of exploration of space by private individuals for science, general interest and profit

pocket spacecrafta spacecraft that an individual can afford to buy, launch and operate with little or no technical expertise

Page 6: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

• science goals• be useful, be responsible• work within existing frameworks and systems where possible• enable many of the >95% of missions not down selected 

• consumer goals• support 106 participating explorers• video game size quantum of exploration• instant gratification and mass customisation• appeal to everyone from collectors to citizen space engineers

• easy to use for everyone• point and click/touch design, collaboration and autonomous operation

• sustainable• fun, interactive, immersive for years or decades• spread risk, be comfortable not knowing where it may lead• legal, honest, decent and truthful• make affordable ‐ crowd source, fractionate and automate everything

• symbiotic and respectful• scientists need explorers, explorers need scientists• everyone needs engineers• all skill levels can contribute something – apps/money both ways 6

Modular Interplanetary Mission Architecture

Page 7: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Video game metrics• Global video game market = $65 billion (NASA FY15: $18 billion)• >200 million games consoles (PlayStation, Wii, Xbox)• Console retail price (RP) $100 ‐ $300 (loss leader)• AAA video game RP = ~ $50

(cost to develop = $50‐$100 million)• Rule of thumb for consumer electronics: 

Bill of Materials (BOM) = 20% RP• ∴ need $10 spacecraft including launch

Launch cost metrics• Cost of launch = ~ $10K‐$50K per payload kilo 

(~ $20‐$100 million per entire rocket)• ∴ spacecraft mass <<1g

Show stopper? 7Data: Reuters, Wikipedia; Graphics: gameinformer.com

Page 8: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

KickSat

• Crowd sourced funding via 315 KickStarterbackers– 67 @ $25– 67 @ $75– 88 @ $300    – 26 @ $1000  – 0 @ $5000– 1 @ $10000

• NASA ELaNa 5 launch April 2014, CRS‐5 2016

• Student labour• Reuse existing open 

source systems• Very inexpensive• Very short lived

88Graphics: KickStarter.com, Wikimedia

Page 9: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

99Graphics courtesy: JA / PocketSpacecraft.com, STFC

Thin‐Film Spacecraft/Lander/Rovers

9

• Very thin (<50μm) low mass (<1g) self‐sufficient TF‐SLR probes designed for large scale (100s‐1000s) low overhead (<100g) deployment

• Up to 945mW @ 1AU from solar cells backed by thin film energy storage

• Integrated processing, storage, communications, sensors, imagers

• Can return data to traditional orbiters, deployment device, or each other using custom or CCSDS compatible UHF

• Robust, disposable, customisable• Designed for COSPAR Class IV PP processes• Ideal for high risk high return science• TRL8, path to TRL9 by end of year

Page 10: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Resistance:– ‘They will never work’– ‘You can’t do anything useful’– ‘They are just for students’– ‘You can’t do real science’– ’You can’t fit real instruments’– ‘You can’t do useful imaging with such small apertures’– ‘They don’t have enough power’– ‘They’re unreliable’

10

“It’s hard to imagine [ChipSats and TF‐SLRs] will be capable enough,but that’s exactly what people said about CubeSats.”

Therese Moretto Jorgensen, Program Director, National Science FoundationNature 508, 300‐301 (17 April 2014)

Graphics:  Imperial College London

Page 11: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Resistance:– ‘They will never work’– ‘You can’t do anything useful’– ‘They are just for students’– ‘You can’t do real science’– ’You can’t fit real instruments’– ‘You can’t do useful imaging with such small apertures’– ‘They don’t have enough power’– ‘They’re unreliable’

11

“It’s hard to imagine [ChipSats and TF‐SLRs] will be capable enough, but that’s exactly what people said about CubeSats.”

Therese Moretto Jorgensen, Program Director, National Science FoundationNature 508, 300‐301 (17 April 2014)

Graphics: Imperial College London

Page 12: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO Graphics courtesy: ASTRON, JA, LuxSpace, STFC

Communications and navigation

Page 13: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Parametric subsystems

• Structures with integrated shielding– 0.5U → 6U– Parametrically defined– Combined structure with 

spot shielding– PocketPayload to PC/104

• Deployable TF Solar arrays– Single 1U face:

100W @ 1AU ([email protected])– Single 6U face:

400W @ 1AU ([email protected])• + antennas, booms,  

communications (UVSX), rad hard avionics, etc.

• TRL6, path to TRL9 end of year

Structures and avionics sized to accommodate up to 32mm Al spot shielding

80mm to 1200mm+ diameter thin‐film and flex/rigid solar arrays

Graphics: JA / PocketSpacecraft.com, Imperial College London

Page 14: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

• Rad‐hard open source Spacecraft on Chip (SpoC) IP core– Bit‐serial, optimised for very low power (ASIC: <0.1‐10 mW)– Variable size memory efficient micro architecture (1‐128 bit)– Parametrically defined processing, storage, communication, general purpose input/output and sensor(e.g. pH, temperature) capabilities

• Process independent – Compatible with GaAs, SOI, thin‐film & more– Suitable for ASIC, FPGA, MEMS, solar cell& thin‐film substrate integration + SMD

– Apply to existing devices / surfaces withfocused ion beam or materials printer

• TRL3 (FPGA), path to TRL9 (ASIC) by 2017 14Graphics courtesy: Imperial College London CfBIT, JA / PocketSpacecraft.com

Spacecraft‐on‐Chip (SpoC)

IC EEE CfBIT ISFET array

Page 15: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO Graphics: Anon, Imperial College London, JA / PocketSpacecraft.com

• PocketRTG radioisotope thermoelectric generator– One to six <0.5g Americium 241 (preferred), Plutonium 238 or Strontium 90 pellets 

– Up to 50mW electrical output for decades– <50x50x50mm, <500g– Configurable with direct or decoupled electrical and thermal payload interfaces

– Repackaging as RHU with substantial mass/volume savings viable

• Safety– designed to relevant ESA/NASA standards– penetrator mission concept parameters within design limits– potential for light touch regulation due to minimal fuel mass

• TRL4 (241Am) 2016, path to TRL9 TBD (?2018/19)

A 1974 Pu‐238 powered Medtronic 70mm Ø pacemaker (Pu removed)

Interplanetary CubeSat PocketRTGuse case concept

PocketRTG prototype components

Page 16: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Citizen Explorers

16Photos courtesy: JA / OpenMissionControl.org

Page 17: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Challenges – number of spacecraft

• 3881 payloads catalogued on orbit by U.S. Space Surveillance Network

• KickSat proof of concept low earth orbit mission 2014 (+ Q3 2016): 104 spacecraft

• Pocket Spacecraft interplanetary proof of concept mission 2017: >1000 spacecraft

• Potentially >1 million TF‐SLRs to come over next two decades

• Number of spacecraft may be unknown at launch and could vary by orders of magnitude

0

500

1000

1500

2000

2500

20002002200420062008201020121014

Graphics: Ben Bishop, JA

Page 18: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Challenges – economics

• Current regulatory fees for spacecraft that can profitably be manufactured, launched and operated for less than $99 each can be disproportionate (>$10,000 per spacecraft)

• License application fee (no guarantee of success): UK: £6,500 per mission (£0 in China, USA, etc.)

• €60 million third party insurance cover per mission: UK: €600,000 per year indefinitely(£0 in China, USA, etc.)

Graphics: UKSA

Page 19: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

Challenges – international & fluid ownership

• Pocket Spacecraft interplanetary proof of concept mission has spacecraft backed by participants from >40 countries

• Spacecraft could be designed, manufactured, launched, deployed, managed or operated by different children and adults with multiple citizenships with ownership changing at every step and over time

Graphics: Twitter

Page 20: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO Graphics courtesy: JA, Matt Bennett‐JPL

20Graphics courtesy: JA / PocketSpacecraft.com

Page 21: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

• A crowd sourced system for the rapid development, deployment and operation of millions of missions

• Design missions and spacecraft on the ground using easy to use web and iPadapps and library of spacecraft and mission components

• Upload design to Prepositioned Orbiting 3D Printer (POPs) and print it using Insulator, Conductor, Energy and Semiconductor (ICES) cartridges 

• Launch and explore• Parabolic flight test planned 2016,  

path to TRL 9 (LEO) 2017/18

Graphics courtesy:  Anon, JA, N.Gabbani

Spacecraft‐on‐Demand

21

Page 22: PIXE 2016: PocketSpacecraft.com Integrated exploration ... · Graphics courtesy: JA / PocketSpacecraft.com, STFC9 Thin‐Film Spacecraft/Lander/Rovers 9 • Very thin (

20150228EMODOO

[email protected]@mySpacecraft

Graphics: Twitter22

Graphics courtesy: iCubeSat.orgGraphics: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

Where do you want to explore today?