35
Plan for the Nuclear Symmetry Energy Measurements at RAON, LAMPS Facility Byungsik Hong (Korea University) 3 rd International Symposium on Nuclear Symmetry Energy (NuSYM13) NSCL/FRIB, East Lansing, Michigan, U.S.A. 22-26 July, 2013 22-26 July 2013 NuSYM13 1

Plan for the Nuclear Symmetry Energy Measurementsat RAON ... · Nuclear Symmetry Energy Measurementsat RAON, LAMPS Facility ... Separator Charge Stripper ... ISOL Design 22-26 July

Embed Size (px)

Citation preview

Plan for theNuclear Symmetry Energy Measurements at RAON,

LAMPS Facility

Byungsik Hong(Korea University)

3rd International Symposium on Nuclear Symmetry Energy (NuSYM13)NSCL/FRIB, East Lansing, Michigan, U.S.A.

22-26 July, 2013

22-26 July 2013 NuSYM13 1

Outline1. Introduction to RISP

− Rare Isotope Science Project in Korea− RAON rare isotope beam facility

2. KOBRA− Broad acceptance recoil spectrometer at low-

energy experimental area3. LAMPS

− Large-acceptance multipurpose spectrometer− A dedicated system for symmetry energy at

high-energy experimental area− In addition, low-energy LAMPS will be also

built and used at KOBRA for symmetry energy4. Summary

22-26 July 2013 NuSYM13 2

RAON

22-26 July 2013 NuSYM13 3

ECR-IS (10keV/u,12 pμA)LEBT

RFQ (300keV/u, 9.5 pμA)

MEBT

SCL1 (18.5MeV/u, 9.5 pμA)

SCL2 (200MeV/u, 8.3 pμA for U+78)(600MeV, 660 μA for p)

SCL3 (18.5MeV/u)

ECR-IS

RFQ

MEBT CB

HRMS

RFCooler

ISOLTarget

IF Target

Fragment Separator

ChargeStripper

Driver LINAC

Post Accelerator

IF system

ISOL system

μSRMedical research

Atom/Ion Trap

Cyclotron (p, 70 MeV, 1 mA)

Low-Energy Experimental

AreaHigh-Energy

Experimental Area

RAON is a unique facility that has both IF and ISOL systems.

IF and ISOL systems can run independently, serving more users at the same time.

IF and ISOL can be combined for more variety of RI beams at higher energies.

Beam Parameters of RAON

22-26 July 2013 NuSYM13 4

Driver Linac Post Acc. Cyclotron

Particle H+ O+8 Xe+54 U+79 RI beam proton

Beam energy (MeV/u)

600 320 251 200 18.5 70

Beam current (pμA)

660 78 11 8.3 - 1000

Power on target (kW)

>400 400 400 400 - 70

ISOL Design

22-26 July 2013 NuSYM13 5

DriverCyclotron 70 MeV proton500 A + 500 A (2 ports)low-density (2.5~5 g/cm3),

porous, thin multi-disk UCx target

RI Yield Estimation

22-26 July 2013 NuSYM13 6

• BERTINI-ORNL model for 2.5 g/cm3 target • Assuming overall efficiency of ~0.5 %

10 kW 35 kW

Deposited power (kW) 5.1 32.2

In-target fission rate (s-1) 1.6 x 1013 7.3 x 1013

In-target 132Sn production rate (s-1) 2.3 x 109 9.7 x 109

132Sn release rate (s-1) 2.2 x 109 8.2 x 109

Experimental hall (s-1) 1.1 x 107 4.1 x 107

132Sn intensities for 10 kW and 35 kW ISOL targets

YISOL = ΦP σf Ntargetεreleaseεionizationεcoolerεtransportεcharge-breedingεacceleration.

B.-H. Kang at RISP/IBS

IF Design

22-26 July 2013 NuSYM13 7

Pre Separator

Main Separator

High radiation region

Matching Section

Target

High radiation region:- 6 HTS quadrupoles, 1 HTS dipole

Other region:- 15 LTS quadrupole magnet triplets- 7 LTS (or resistive) dipole magnets

Degrader type: Wedge@F3, F6, F8Production target at F0: Be, Graphite

Main Parameters of IF Separator

22-26 July 2013 NuSYM13 8

Parameter Design Goal

Angular acceptance 90 mrad (H), 100 mrad (V)

Momentum acceptance 8%

Maximum rigidity 10 Tm

Momentum dispersion 2.7 cm/% @F6 & F8

Resolving power (p/p) 1,350 @F6 & F8

C. C. Yun, RISP/IBS

Production of More Exotic RIB

22-26 July 2013 NuSYM13 9

r-process

LISE++ calculation• EPAX2 model• dp /p = 2.23%• Target thickness and beam line parameters

are optimized for each nuclide

N =82

N =50

Z = 28

Z =50

nuclide Estimated Intensity (pps)

110Y 1.8110Zr 1.8114Nb 1.1116Mo 3.8118Tc 1.4

RAON can reach new n-rich isotope with rates of 10-3 ~10 pps.

142Xe (ISOL) post-accelerator Driver Linac IF target Fragment separator Experiment

Note that ~103 times higher than 136Xe (350 MeV/u, 10 pnA)+Be.

Research Topics

22-26 July 2013 NuSYM13 10

Nuclear Physics Exotic nuclei near the neutron drip line Equation-of-state (EoS) of nuclear matter

Material science Production & Characterization of new materials -NMR / SR

Nuclear Astrophysics Origin of nuclei Neutron stars and supernovae Nucleosynthesis Superheavies

Medical & Biosciences Advanced therapy technology Mutation of DNA New isotopes for imaging

Nuclear data with fast neutrons

Basic nuclear reaction data for future nuclear energy

Nuclear waste transmutation

Atomic/Particle Physics Atomic trap Fundamental symmetries

RIS

P

KOBRA

22-26 July 2013 NuSYM13 11

F1

F2

F3

F4 F5

D1 D2

D3

W1

W2

F0

Korea Broad Acceptance Recoil Spectrometer

and Apparatusat low-energy

experimental area

Stage 1

Stage 2 High-performance spectrometer with detection systems

Main experimental facility for nuclear physics with low-energy beams up to 18.5 MeV/u

KOBRA

22-26 July 2013 NuSYM13 12

F1

F2

F3

F4 F5

D1 D2

D3

W1

W2

F0 SCL1

SCL2

SCL3

ECR

ECR

ISOL

Stable ion beamsvia SCL1 or SCL3

RIB via ISOL+SCL3RI production target at F0

Experimental target and detection system

at F3

Focal plane detection system

at F5

Stage 1 (F0~F3): Production and separation of RIBs by in-flight method with high-intensity stable ion beams from ECRs

Experimental target at F3 (available space of ~3 m): In-beam -ray spectroscopy, Symmetry energy & charged particle spectroscopy, Spin dependence, etc.

Stage 2 (F3~F5): Big-bite spectrometer with Wien filter

Target and Detection Systems for KOBRA

22-26 July 2013 13

F1

F2

F3

F4 F5

D1 D2

D3

W1

W2

F0

Low-energy LAMPS

Gamma array

Si-CsI

Neutron array

Supersonic gas-jet target

JENSA, USA

HPGe array

NuSYM13

KOBRA

22-26 July 2013 NuSYM13 14

F1

F2

F3

F4 F5

D1 D2

D3

W1

W2

F0

Stage 1: In-flight SeparatorF0~F3

{QQDQQ-QQDQQ-QQWQQ}

Stage 2: Large-Acceptance Spectrometer F3~F5

{QQWQQ-QQD}

Maximum magnetic rigidityMass resolution (M/M)DispersionMomentum acceptance @ stage1Angular acceptance @ stage2

~3 T∙m< 200

~2 cm/%14%

40 mrad (H)200 mrad (V)

D1 & D2: Gap 20 cm/Radius 1.5 m/Deflection angle 45º D3: Gap 20 cm/Radius 1.5 m/Deflection angle 60º

W1: Length 2 m/E. gap 20 cm/±300 kV W2: Length 4 m/E. gap 20 cm/±300 kV

F0, F2, F3 & F4: Achromatic focusingF1: Dispersive focus (D=2.03 cm/%)F5: Dispersive focus (D=2.05 cm/%)

KOBRA: Physics Program1. Nuclear structure

– Comparison of the nuclear structures for the isobaric mirror nuclei at drip lines (charge symmetry and/or independence)

– Resonant conditions of unbound nuclear states– Spin dependence of basic properties

2. Nuclear astrophysics– Capture reactions: (p,), (,), (n,)– Transfer reactions: (d,p), (,p), etc. – Resonant scattering: p and resonant elastic scattering

3. Rare events– Super-heavy elements– Decay spectroscopy

4. Nuclear symmetry energy– Charged particle and neutron productions in central collisions– Electric dipole excitations

22-26 July 2013 NuSYM13 15

New Neutron-Rich Heavy Nuclei

22-26 July 2013 NuSYM13 16

186

186

186

186

186

186

186

186

191

191

191

191

191

191

191

191

188

188

188

188

188

188

188

188

193

193

193

193

193

193

193

193

196

196

196

196

196

196

196

196

199

199

199

199

199

199 202

202

202

202

206

206

206

205

205

205

187

187

187

187

187

187

187

187

192

192

192

192

192

192

192

192

195

195

195

195

195

195

195

195

198

198

198

198

198

198

198

185

185

185

185

185

185

185

190

190

190

190

190

190

190

190

189

189

189

189

189

189

189

189

194

194

194

194

194

194

194

194

197

197

197

197

197

197

197 201

201

201

201

201

200

200

200

200

200

204

204

204

204

203

203

203

203203

207

207

207

184

184

184

184

184

184

183

183

183

183

183

183

180

180

180

182

182

182

182

182

179

179

178ErTmYbLuHfTaWReOsIrPtAuHgTl

126120N

Z

116110

68

70

72

74

76

78

80

181

181

181

181

184

185

191188 193 196 199 202 206205192 195 198190189 194 197 201200 204 208

208

208

203 207186 187

191188 193 196 199 202 206205 209

209

209

209

187 192 195 198190189 194 197 201200 204 208203 207

191188 193 196 199 202 206 210

210

210

210

210

205 209192 195 198190189 194 197 201200 204 208203 207

191 193 196 199 202 206 210205 209192 195 198190189 194 197 201200 204 208203 207 211

211

211

211

211

191 193 196 199 202 206 210205 209192 195 198190 194 197 201200 204 208 212

212

212

212

212

212

203 207 211

191 193 196 199 202 206 210 217

217

217

217

217

205 209 216

216

216

216

216

213

213

213

213

213

213

213

220

220

220

220

222

222

223

221

221

192 195 198194 197 201200 204 208 215

215

215

215

215

215

212 219

219

219

221

219

203 207 214

214

214

214

214

214

211 218

218

218

218

s-process

Sn + Pb => W132 208 200126

Xe + Pb => Yb144 208 196126

Sn + Pb => Pt132 208 210132

Xe + Pb => Pt144 208 220142

at E = 10A MeV

at E = 200A MeV

“High Intensity Stable Beams in Europe”NUPECC Report (July 2007)

22-26 July 2013 NuSYM13 17

25Al

24Mg

23Na

22Ne21Ne20Ne

22Na

23Mg

24Al

21Na

22Mg

19F

18O

21Mg

20Na

19Ne

18F

17O

18Ne

17F

16O

15N

15O14O

13N

12C 13C

14N

Stable

Unstable

CNO cycle : T9 < 0.2 HCNO cycle: 0.2 < T9 < 0.5rp-process : T9 > 0.5

Hot-CNO ICNO cycle

Hot-CNO IIrp-process

Breakout paths to rp-process

15O()19Ne Reaction Experimental requirements for

direct measurement of − Beam intensity (15O) > 1010 pps− Target density (4He) > 1018/cm2

− Recoil det. efficiency > 40%⇒ >1 Count/hr

Nova models in nuclear astrophysics

22-26 July 2013 NuSYM13 18

44Ti(p)47V Reaction

22-26 July 2013 NuSYM13 19

The et al., Astrophys. J. 504 (1998)

44Ti(p)47V Reaction

Presently, TRIUMF, CERN, CNS CRIB are working on this reaction.

At RISP, the direct measurement will be possible with an active target in the IF mode of KOBRA.

EOS & Symmetry Energy

22-26 July 2013 NuSYM13 20

L.W. Chen et al., PRL 94, 032701 (2005)

)(ρsymE(M

eV)

(fm-3)

, , 0 ⋯

where and

Symmetry Energy

22-26 July 2013 NuSYM13 21

A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Report 411, 325 (2005)

Symmetry Energy & Neutron Stars

22-26 July 2013 NuSYM13 22

Neutron star stability against gravitational collapse Determine stellar density profile and internal structure Observational consequences

− Cooling rates of proto-neutron stars − Stellar masses, radii & moment of inertia from temperatures

& luminosities of X-ray bursters M vs. R relationship

− Uncertainty of softness of EOS and influence of

Need to provide additional laboratory constraints at specific densities

P. Krastev, B.A. Li, and A. Worley, Astrophys. J. 676, 1170 (2008)

Experimental Observables

22-26 July 2013 NuSYM13 23

1. Particle ratios of mirror nuclei and pions− n/p, 3H/3He, 7Li/7Be, -/+, etc.

2. Collective flow− Directed (or sideward) and elliptic flow

parameters of n, p, and heavier fragments

3. Various isospin-dependent phenomena− Isoscaling in nuclear multifragmentation− Isospin transport/diffusion

4. Electric dipole resonances− Energy spectra of the excitation energy

and/or gammas− PDR~the size of n-skin for unstable nuclei

Experimental Requirements

22-26 July 2013 NuSYM13 24

1. We need to accommodate– Large acceptance– Precise measurement of momentum (or energy)

for variety of particle species, including +/- and neutrons, with high efficiency

– Gamma detection for electric dipole resonances– Keep flexibility for other physics topics

2. This leads to the design of LAMPS– Large-acceptance Multipurpose Spectrometer– Low-energy LAMPS at F3 of KOBRA– High-energy LAMPS

LAMPS

22-26 July 2013 NuSYM13 25

Central and peripheral collisions 132Sn+112Sn, 132Sn+118Sn, 132Sn+124Sn 124Sn+112Sn, 124Sn+118Sn, 124Sn+124Sn 112Sn+112Sn, 112Sn+118Sn, 112Sn+124Sn 106Sn+112Sn, 106Sn+118Sn, 106Sn+124Sn

etc.

Time Projection Chamber

22-26 July 2013 NuSYM13 26

Simulation with triple GEM readouts at both ends by Garfield++− Gas mixture: Ar 90%+CO2 10%, Voltage for each foil: 450 V− <Gain>~1.4Χ106, <Drift velocity>~50 mm/s− <Dispersion> after 60 cm (maximum drift distance) < 3 mm

300 mm

900 mm

500 mm

400 mm53.1° 24.0°

=-0.7 (127o) =1.6 (24o)

Beam

150 mm

Target

Genie Jhang(Korea Univ.)

Time Projection Chamber

22-26 July 2013 NuSYM13 27

Central Au+Au at 250 AMeV(IQMD)

Genie Jhang (Korea Univ.)

Color scale: the number of electrons in each pad

Pad− Shape: hexagonal− Total number

90,000 for 2.5 mm20,000 for 5 mm

Signal processing− GET: General

Electronics for TPC 2.5 mm

Si-CsI

22-26 July 2013 NuSYM13 28

1.6 < < 2.1(14o < Lab < 24o)

Suhyun & Songkyo Lee(Korea Univ.)

Si-CsI

22-26 July 2013 NuSYM13 29

Suhyun & Songkyo Lee(Korea Univ.)

E=E1+E2+E3Etot=E+Ec

E=E1+E2+E3 is preferred at high energies

E=E1 is preferred at low energies

Neutron Detector Array

22-26 July 2013 NuSYM13 30

Kisoo Lee & Eunah Joo (Korea Univ.)

veto

Cross section of each bar:10Χ10 cm2

Construction of the prototype and test with radiation sources− Dimension: 0.1Χ0.1Χ1.0 m3

− Sources: 60Co and 252Cf − Time resolution: 488 ps, Position resolution: ~8 cm for CFD

Neutron Detector Array

22-26 July 2013 NuSYM13 31

Kisoo Lee & Benard Mulilo (Korea Univ.)

252Cf

Watt spectrum: ⁄ ∝ sinhwith =0.88 MeV-1 and =2.0 MeV-1

Ref) B. Watt, Physical Review 87, 1037 (1952)

Dipole Spectrometer

22-26 July 2013 NuSYM13 32

Songkyo Lee (Korea Univ.)Chong Cheoul Yun (RISP/IBS)

Ion optics calculation by the matrix method

(GICOSY code)

Dipole Spectrometer

22-26 July 2013 NuSYM13 33

Songkyo Lee (Korea Univ.) & Chong Cheoul Yun (RISP/IBS)

Large angular acceptance75 mrad (H)100 mrad (V)

Coulomb Breakup & Transfer Reactions

22-26 July 2013 NuSYM13 34

NeutronDetector

Array

Dipole Spectrometer-Array

- Photoabsorption measurements• PDR/GDR measurements via

124,130,132Sn+208Pb, 68,70,72Ni+208Pb, 50,54,60Ca+208Pb, etc. • 1n and 2n removal cross sections for unstable nuclei• Measuring E* from beam fragment, n’s, and ’s

- For example, 2n transfer reaction is important for the structure

Summary1. RAON

– First large-scale facility for nuclear physics in Korea2. KOBRA

– Broad acceptance recoil spectrometer at low-energy experimental area

– To cover nuclear structure, nuclear astrophysics, super-heavy elements, and nuclear symmetry energy

3. LAMPS– Large-acceptance multipurpose spectrometer at high-

energy experimental area (Low-energy version of LAMPS at KOBRA)

– Primary purpose is to measure the nuclear symmetry energy at sub- and supra-saturation densities

– Useful also to study various photoabsorption processes and transfer reactions

22-26 July 2013 NuSYM13 35