30
Planetesimal Forma.on gas drag se1ling of dust turbulent diffusion damping and excita.on mechanisms for planetesimals embedded in disks minimum mass solar nebula par.cle growth core accre.on Radial dri= of par.cles is unstable to streaming instability Johansen & Youdin (2007); Youdin & Johansen (2007)

Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Planetesimal  Forma.on  

gas  drag    se1ling  of  dust  turbulent  diffusion  damping  and  excita.on  mechanisms  for  planetesimals  embedded  in  disks  minimum  mass  solar  nebula  par.cle  growth  core  accre.on    

Radial  dri=  of  par.cles  is  unstable  to  streaming  instability  Johansen  &  Youdin  (2007);  Youdin  &    Johansen  (2007)    

Page 2: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Gas  drag  

Gas  drag  force  

where  s  is  radius  of  body,  v  is  velocity  difference  •  Stokes  regime  when  Reynold’s  number  is  less  than  10  

•  High  Reynolds  number  regime  CD  ~0.5  for  a  sphere  •  If  body  is  smaller  than  the  mean  free  path  in  the  gas    Epstein  regime  (note  mean  free  path  could  be  meter  sized  in  a  low  density  disk)  

FD = CD⇥gas�s2v2/2

CD � 24Re�1

FD =4�

3⇥gass

2csvEssen.ally  ballis.c  except  the  cross  sec.on  can  be  integrated  over  angle  

Page 3: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Drag  Coefficient  

cri.cal  drop  moves  to  the  le=  in  main  stream  turbulence  or  if  the  surface  is  rough  

Note:  we  do  not  used  turbulent  viscosity  to  calculate  drag  coefficients  

Re =sv

Page 4: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Stopping  .mescale  

•  Stopping  .mescale,  ts,    is  that  for  the  par.cle  to  be  coupled  to  gas  mo.ons  

•  Smaller  par.cles  have  short  stopping  .mescales  

•  Useful  to  consider  a  dimensionless  number  tsΩ  which  is  approximately  the  Stokes  number  

F = Mdv/dt ts =Mv

FD

Page 5: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Se1ling  .mescale  for  dust  par.cles  

•  Use  gravita.onal  force  in  ver.cal  direc.on,  equate  to  drag  force  for  a  terminal  velocity  

•  Timescale  to  fall  to  midplane    

•  Par.cles  would  se1le  unless  something  is  stopping  them    

•  Turbulent  diffusion  via  coupling  to  gas  

Fz = Mdvz

dt�M

vz

tsFz = �M�2z

tsettle = z/z = z/vz = ��1(�ts)�1

vz = (ts�)z�

Page 6: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Turbulent  diffusion  

•  Diffusion  coefficient  for  gas  •  For  a  dust  par.cle  •  Schmidt  number  Sc  •  Stokes,  St,    number  is  ra.o  of  stopping  .me  to  eddy  turn  over  

.me    •  Eddy  sizes  and  veloci.es      

–  Eddy  turnover  .mes  are  of  order  t~Ω-­‐1  

•  In  Epstein  regime  

•  When  well  coupled  to  gas,  the  Diffusion  coefficient  is  the  same  as  for  the  gas  

•  When  less  well  coupled,  the  diffusion  coefficient  is  smaller  

D0 = �cshD = �csh/Sc

Sc = (1 + St)

St � 34�

M

s2

�⇥gcs

Following  Dullemond  &  Dominik  04  

l �⇥

�h dv �⇥

�cs

Page 7: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Mean  height  for  different  sized  par.cles    Diffusion  vs  se1ling  

•  Diffusion  processes  act  like  a      random  walk  

•  In  the  absence  of  se1ling  •  Diffusion  .mescale  

•  To  find  mean  z  equate  td  to  tse1le  

•  This  gives  

 and  so  a  predic.on  for  the  height  distribu.on  as  a  func.on  of  par.cle  size  

z =�

Dt

z =�

< z2 >

td � z/ ˙z ˙zz =D

2td = 2z2/D

tsettle = ��1(�ts)�1

z2 =D

2�(�ts)�1

Page 8: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Equilibrium  heights  

Dullemond  &  Dominik  04  

Page 9: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Effect  of  sedimenta.on  on  SED  

Dullemond  &  Dominik  04  

Page 10: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Minimum  Mass  Solar  Nebula  

•  Many  papers  work  with  the  MMSN,  but  what  is  it?    Commonly  used  for  references:    Gas    Dust  

•  Solids  (ices)  3-­‐4  .mes  dust  density  •  The  above  is  1.4  .mes  minimum  to  make  giant  planets  

with  current  spacing  –  Hyashi,  C.  1981,  Prog.  Theor.  Physics  Supp.  70,  35  

•  However  could  be  modified  to  take  into  account  closer  spacing  as  proposed  by  Nice  model  and  reversal  of  Uranus  +  Neptune  (e.g.  recent  paper  by  Steve  Desch)  

�g = 2400� r

1AU

⇥�3/2g cm�2

�d = 10� r

1AU

⇥�3/2g cm�2

Page 11: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Larger  par.cles  (~km  and  larger)  

•  Drag  forces:  – Gas  drag,  collisions,    – excita.on  of  spiral  density  waves,  (Tanaka  &  Ward)  – dynamical  fric.on        – All  damp  eccentrici.es  and  inclina.ons  

•  Excita.on  sources:  – Gravita.onal  s.rring  – Density  fluctua.ons  in  disk  caused  by  turbulence  (recently  Ogihara  et  al.  07)    

Page 12: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Damping  via  waves  •  In  addi.on  to  migra.on  both  eccentricity  and  inclina.on  on  averaged  damped  for  a  planet  embedded  in  a  disk.                            Tanaka  &  Ward  2004  

•  Damping  .mescale  is  short  for  earth  mass  objects  but  very  long  for  km  sized  bodies  

•  Balance  between  wave  damping  and  gravita.onal  s.rring  considered  by  Papaloizou  &  Larwood  2000  

e/e = �0.78 t�1wave

i/i = �0.54 t�1wave

twave = ⇥�1p

�Mp

M⇥

⇥�1⇤

�g(rp)r2p

M⇥

⌅�1 �cs

VK

⇥4

Note  more  recent  studies  get  much  higher  rates  of  eccentricity  damping!  

Page 13: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Excita.on  via  turbulence  Stochas.c  Migra.on  

•  Johnson  et  al.  2006,    Ogihara  et  al.  07,  Laughlin  04,  Nelson  et  al.  2005  

•  Diffusion  coefficient  set  by  torque  fluctua.ons  divided  by  a  .mescale  for  these  fluctua.ons  

•  Gravita.onal  force  due  to  a      density  enhancement  scales  with  

•  Torque  fluctua.ons  •  parameter  γ  depends  on  density  fluctua.ons  δΣ/Σ    •   γ~α      though  could  depend  on  the  nature  of  incompressible  

turbulence  •  See  recent  papers  by  Hanno  Rein,  Ketchum  et  al.  2011  

tfluc � ��1

Mp2�G�g

(⇥�)2 � (�Mp2⇤rG⇥g)2

Page 14: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Eccentricity  diffusion  because  of  turbulence  

•  We  expect  eccentricity  evolu.on  •  with  

•  or  in  the  absence  of  damping  

•  constant  taken  from  es.mate  by  Ida  et  al.  08  and  based  on  numerical  work  by  Ogihara  et  al.07  

•  Independent  of  mass  of  par.cle  •  Ida  et  al  08  balanced  this  against  gas  drag  to  es.mate  when  

planetesimals  would  be  below  destruc.vity  threshold        

< e2 >= Dt

D � (⇥�)2

L2⇤ � �2

�⇥gr2

M�

⇥2

e � 100�

��gr2

M�

⇥(⇥t)1/2

Page 15: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

In-­‐spiral  via  headwinds  

•  For  m  sized  par.cles  headwinds  can  be  large  –  possibly  stopped  by  

clumping  instabili.es  (Johanse  &  Youdin)  or  spiral  structure  (Rice)  

•  For  planetary  embryos  type  I  migra.on  is  problem  –  possibly  reduced  by  

turbulent  sca1ering  and  planetesimal  growth  (e.g.,  Johnson  et  al.  06)  

Heading  is  important  for  m  sized  bodies,  above  from  Weidenschilling  1977  

Page 16: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Density  peaks  Pressure  gradient  trapping  

•  Pressure  gradient  caused  by  a  density  peak  gives  sub  Keplerian  veloci.es  on  outer  side  (leading  to  a  headwind)  and  super  Keplerian  veloci.es  on  inner  side  (pushing  par.cles  outwards).      

•  Par.cles  are  pushed  toward  the  density  peak  from  both  sides.  

figures  by  Anders  Johansen  

Page 17: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Forma.on  of  gravita.onal  bound  clusters  of  boulders  

points  of  high  pressure  are  stable  and  collect  par.cles  

Johansen,  Oishi,  Mac  Low,  Klahr,  Henning,  &  Youdin  (2007)    

Page 18: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

The  restructuring/compac4on  growth  regime  (s1  ≈  s2  ≈  1  mm…1  cm;  v  ≈  10-­‐2…10-­‐1  m/s)    

  Collisions  result  in  s4cking  

  Impact  energy  exceeds  energy  to  overcome  rolling  fric4on    (Dominik  and  Tielens  1997;  Wada  et  al.  2007)  

  Dust  aggregates  become  non-­‐fractal  (?)  but  are  s4ll  highly  porous  

Low  impact  energy:  hit-­‐and-­‐s.ck  collisions  

Intermediate  impact  energy:  compac.on   Blum  &  Wurm  2000  Paszun  &  Dominik,    pers.  comm.  

From  a  talk  by  Blum!  

Page 19: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

contour  plot  by  Weidenschilling  &  Cuzzi  1993  

1  AU  

collisions  bounce  

collisions  erode    

from  a  talk  by  Blum  

Page 20: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Diameter

Dia

met

er

1 µm

100 m

100 µm

1 cm

1 m

1 µm 100 m 100 µm 1 cm 1 m

Non-fractal Aggregate Growth (Hit-and-Stick) Erosion

Non

-fra

ctal

Agg

rega

te

Stic

king

+ C

ompa

ctio

n

Cra

teri

ng/F

ragm

en-

tati

on/A

ccre

tion

Cratering/ Fragmentation

Restructuring/ Compaction

Eros

ion

N

on-f

ract

al A

ggre

gate

Gro

wth

(H

it-a

nd-S

tick

)

Non-fractal Aggregate Sticking + Compaction

Cratering/Fragmen-tation/Accretion

Cra

teri

ng/

Fr

agm

enta

tion

Mass loss

Mass conservation

Mass gain

* *

* *

* for compact targets only

Blum  &    Wurm  2008  

1  AU  

Page 21: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Clumps  

•  In  order  to  be  self-­‐gravita.ng  clump  must  be  inside  its  own  Roche  radius  

•  Concentra.ons  above  1000  or  so  at  AU  for  minimum  solar  mass  nebula  required  in  order  for  them  to  be  self-­‐gravita.ng  

�s > M⇥/r3 � 6� 10�7g cm�3

⇤M⇥M⇤

⌅ � r

1AU

⇥�3

s < rH s < r

��ss3

M�

⇥1/3

Page 22: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Clump  Weber  number  

•  Cuzzi  et  al.  08  suggested  that  a  clump  with  gravita.onal  Weber  number  We<  1  would  not  be  shredded  by  ram  pressure  associated  turbulence  

•  We  =  ra.o  of  ram  pressure  to  self-­‐gravita.onal  accelera.on  at  surface  of  clump  

•  Analogy  to  surface  tension  maintained  stability  for  falling  droplets  

•  Introduces  a  size-­‐scale  into  the  problem  for  a  given  Concentra.on  C  and  velocity  difference  c.    Cuzzi  et  al.  used  a  headwind  velocity  for  c,  but  one  could  also  consider  a  turbulent  velocity  

We =�gc2

G�2ds

2= C�2

⇤c

vK

⌅2 �r

s

⇥2⇤

M⇥/r3

�g

Page 23: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Growth  rates  of  planetesimals    by  collisions  

•  With  gravita.onal  focusing  

•  Density  of  planetsimal  disk  ρ,    •  Dispersion  of  planetesimals  σ  •  Σ=ρh,    σ=hΩ  •  Ignoring  gravita.onal  focusing  •  With  solu.on      

dM

dt= �s2⇥⇤

�1 +

v2esc

⇤2

dM

dt⇥�1 � �(M/�d)2/3

s � t

Page 24: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Growth  rate  including  focusing  

•  If  focusing  is  large  

•  with  solu.on                                                  quickly  reaches  infinity  •  As  largest  bodies  are  ones  where  gravita.onal  focusing  is  important,  largest  bodies  tend  to  get  most  of  the  mass  

Fg =�

1 +v2

esc

�2

⇥� M

s

dM

dt��1 �M4/3

s(t) ⇥ 1C � �t

Page 25: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Isola.on  mass  

•  Body  can  keep  growing  un.l  it  has  swept  out  an  annulus  of  width  rH  (hill  radius)  

•  Isola.on  mass  of  order  

•  Of  order  10  earth  masses  in  Jovian  region  for  solids  le=  in  a  minimum  mass  solar  nebula    

M = 2�a�rH rH = a(M/3M�)1/3

Miso � a3�3/2M�1/2⇥

Page 26: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Self-­‐similar  coagula.on  

•  Coefficients  dependent  on  s.cking  probability  as  a  func.on  of  mass  ra.o  

•  Simple  cases  leading  to  a  power-­‐  law  form  for  the  mass  distribu.on  but  with  cutoff  on  lower  mass  end  and  increasingly  dominated  by  larger  bodies  

•  dN(M)/dt  =  –  rate  smaller  bodies  combine  to  make  mass  M  

–  subtracted  by  rate  M  mass  bodies  combine  to  make  larger  mass  bodies  

Page 27: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Core  accre.on  (Earth  mass  cores)  

•  Planetesimals  raining  down  on  a  core  •  Energy  gained  leads  to  a  hydrosta.c  envelope  •  Energy  loss  via  radia.on  through  opaque  envelope  

•  Maximum  limit  to  core  mass  that  is  dependent  on  accre.on  rate  sezng  atmosphere  opacity    

•  Possibly  a1rac.ve  way  to  account  for  different  core  masses  in  Jovian  planets  

Page 28: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Giant  planet  forma.on  Core  accre.on  vs  Gravita.onal  Instability  

•  Two  compe.ng  models  for  giant  planet  forma.on  championed  by    

–  Pollack  (core  accre.on)      –  Alan  Boss  (gravita.onal  instability  of  en.re  disk)  

•  Gravita.onal  instability:    Clumps  will  not  form  in  a  disk  via  gravita.onal  instability  if  the  cooling  .me  is  longer  than  the  rota.on  period  (Gammie  2001)    

Where  U  is  the  thermal  energy  per  unit  area    

–  Applied  by  Rafikov  to  argue  that  fragmenta.on  in  a  gaseous  circumstellar  disk  is  impossible.        Applied  by  Murray-­‐Clay  and  collaborators  to  suggest  that  gravita.onal  instability  is  likely  in  dense  outer  disks  (HR8799A)  

•  Gas  accre.on  on  to  a  core.    Either  accre.on  limited  by  gap  opening  or  accre.on  con.nues  but  inefficiently  a=er  gap  opening  

tcool =U

�T 4� ��1

Page 29: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Connec.on  to  observa.ons  

•  Chondrules    •  Composi.on  of  different  solar  system  bodies  

•  Disk  deple.on  life.mes  

•  Disk  velocity  dispersion  as  seen  from  edge  on  disks  

•  Disk  structure,  composi.on  

•  Binary  sta.s.cs  

Page 30: Planetesimal* Formaon* - University of Rochesterastro.pas.rochester.edu/~aquillen/ast570/lectures/G_Planetesimal.pdfPlanetesimal* Formaon* gas*drag** se1ling*of*dust turbulentdiffusion*

Reading  •  Weidenschilling,  S.  J.  1977,  Areodynamics  of  Solid  bodies  in  the  solar  nebula,  

MNRAS,  180,  57  •  Dullemond,  C.P.  &  Dominik,  C.  2004,  The  effect  of  dust  se1ling  on  the  appearance  

of  protoplanetary  disks,    A&A,  421,  1075  •  Tanaka,  H.  &  Ward,  W.  R.  2004,  Three-­‐dimensional  Interac.on  Between  A  Planet  

And  An  Isothermal  Gaseous  Disk.  II.  Eccentricity  waves  and  bending  waves,    ApJ,  602,  388  

•  Johnson,  E.  T.,  Goodman,  J,  &  Menou,  K.  2006,  Diffusive  Migra.on  Of  Low-­‐mass  Protoplanets  In  Turbulent  Disks,  ApJ,  647,  1413      

•  Johansen,  A.,  Oishi,  J.  S.,  Mac-­‐Low,  M.  M.,  Klahr,  H.,  Henning,  T.  &  Youdin,  A.  2007,  Rapid  Planetesimal  forma.on  in  Turbulent  circumstellar  disks,  Nature,  448,  1022  

•  Cuzzi,  J.  N.,  Hogan,  R.  C.,  &  Shariff,  K.  2008,    Toward  Planetesimals:  Dense  Chondrule  Clumps  In  The  Protoplanetary  Nebula,  ApJ,  687,  143    

•  Blum,  J.  &  Wurm,  G.  2008,  ARA&A,  46,  21,  The  Growth  Mechanisms  of  Macroscopic  Bodies  in  Protoplanetary  Disks  

•  Armitage,  P.  2007  review  •  Ketchum  et  al.  2011  •  Rein,  H.  2012