25
Plasma and Nuclear Propulsion 1

Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Plasma  and  Nuclear  Propulsion  

1  

Page 2: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Thrust  and  Specific  Impulse  

•  Thrust  is  defined  as  the  force  generated  by  an  engine  or  rocket    

•  For  rockets  Fthrust  =  ce*dm;  dm  =  fuel  mass  flow  rate  

•  Specific  Impulse  measures  the  efficiency  of  a  rocket  engine  (not  a  physical  quanFty).  

•  It  is  effecFvely  equal  to  the  thrust  divided  by  the  amount  of  fuel  used  per  unit  Fme.  

•  It  is  measured  by  a  quanFty  called  Isp  =  ce/g    

2  

Page 3: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Types  of  Electric  Propulsion  1.    Electrothermal  –  uses  electricity  to  heat  a  neutral  gas    examples:  arcjet  

 2.  Electrosta/c  –  uses  a  staFc  electric  field  to  accelerate  

a  plasma.    StaFc  magneFc  field  are  someFmes  used  to  help  confine  the  plasma,  but  they  are  not  used  for  acceleraFon.    examples:  gridded  ion  thruster  

3.  Electromagne/c  –  uses  electric  and  magneFc  fields  to  accelerate  a  plasma.    examples:    hall  thruster,  pulsed  plasma  thruster  

3  

Page 4: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Electrothermal:  Arcjet  How  they  work:  1.  Neutral  gas  flows  through  the  

propellant  flow.  2.  An  electrical  arc  forms  between  the  

anode  and  cathode.      3.  A  small  amount  of  the  neutral  gas  is  

ionized  to  form  the  arc.  4.  The  remaining  gas  is  heated  as  it  passes  

through  the  arc.  Propellant:   Hydrazine  Ammonia  

Exhaust  speed:   4-­‐10  km/s  

Thrust  range:   200-­‐1000  mN*  

Power  required:   400  W  –  3  kW  

Efficiency:   30-­‐50%  

*  1  mN  is  about  the  weight  of  a  sheet  of  paper.   4  

Page 5: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

ElectrostaFc:  Gridded  Ion  Thruster  

Page 6: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

ElectrostaFc:  Gridded  Ion  Thruster  Vital  Stats:  

Propellant:   Argon,  Krypton,  Xenon  

Exhaust  speed:   15-­‐50  km/s  

Thrust  range:   0.01-­‐200  mN*  

Power  required:  

1-­‐10  kW  

Efficiency:   60-­‐80%  

Advantages:  1.  High  exhaust  speed  2.  High  efficiency  3.  Inert  propellant  

Disadvantages:  1.  Complex  power  processing  2.  Low  thrust  3.  Grid  and  cathode  lifeFme  

issues  4.  High  voltages  5.  Thrust  density  is  limited  

Uses:  1.  StaFon  keeping  2.  Orbital  change  

 LEO  to  GEO  3.    Primary  propulsion  

6  

*  1  mN  is  about  the  weight  of  a  sheet  of  paper.  

Page 7: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

ElectrostaFc:  Gridded  Ion  Thruster  Gridded  Ion  Thrusters  have  been  flown  as  the  primary  propulsion  of  several  satellites:  

 Deep  Space  1  (NASA;  Braille,  Borrelly)    Dawn  (NASA;  Ceres  &  Vesta)    Hayabusa  (JAXA;  sample  from  Itokawa)  

Deep  Space  1’s  NSTAR  Thruster:  1.  Exhaust  speed  35  km/s  2.  Used  74  kg  of  Xenon  fuel    3.  Low  thrust  (92  mN)  over  a  long  Fme  (678  days)  4.  Δv  due  to  thruster  (4.3  km/s)  

DAWN’s  Ion  Engine:  1.  Exhaust  speed  31  km/s  2.  Low  thrust  (90  mN)  over  a  long  Fme  (longer  

than  DS1)  3.  Larger  Δv  than  DS1  

7  

Page 8: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

ElectromagneFc:  Pulsed  Plasma  Thruster  (PPT)  

How  they  work:  1.  Arc  ablates  material  off  the  Teflon  

surface.  a.  Material  is  ionzied  b.  Current  flows  through  the  arc.  

2.  Current  generates  a  magneFc  field.  3.  MagneFc  field  and  current  interact  to  

accelerate  the  plasma.  Propellant:   Solid  Teflon  

Exhaust  speed:   6  -­‐  20  km/s  

Thrust  range:   0.05  -­‐  10  mN*  

Power  required:   5  -­‐500  W  

Efficiency:   10%  

*  1  mN  is  about  the  weight  of  a  sheet  of  paper.   8  

Page 9: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

ElectromagneFc:  Pulsed  Plasma  Thruster  (PPT)  

Advantages:  1.  Simple  design  2.  Low  power  3.  Solid  fuel  

a.  No  propellant  tanks/plumbing  b.  No  zero-­‐g  effects  on  propellant  

Disadvantages:  1.  Low  thrust  2.  Low  efficiency  3.  Toxic  products  

Uses  (flown  in  space):  StaFon  keeping  Precision  poinFng  

9  

Page 10: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

ElectromagneFc:  Hall  Thruster  How  they  work:  1.  Cathode  releases  electrons  which  

ionize  propellant.  2.  Electrons  from  ionizaFon  move  in  a  

circular  papern  (create  current).  3.  Current  interacts  with  radial  magneFc  

field  to  produce  ion  acceleraFon.  4.  Cathode  electrons  neutralize  the  

beam.  

Propellant:   Xenon  or  Argon  

Exhaust  speed:   15  -­‐  20  km/s  

Thrust  range:   0.01  -­‐  2000  mN*  

Power  required:   1  W  -­‐  200  kW  

Efficiency:   30-­‐50%  

*  1  mN  is  about  the  weight  of  a  sheet  of  paper.   10  

Page 11: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

ElectromagneFc:  Hall  Thruster  Advantages:  1.  High  exhaust  velocity  2.  Simple  power  supply  3.  Inert  propellant  4.  High  efficiency  5.  Desirable  exhaust  velocity  

Disadvantages:  1.  High  beam  divergence  2.  LifeFme  issues  (erosion)  

Uses  (flown  in  space):  StaFon  keeping  Orbital  transfer  (LEO  to  GEO)  Primary  Propulsion  (SMART-­‐1)  

11  

Page 12: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Variable  Specific  Impulse  Magnetoplasma  Rocket  (VASIMR)  

How  it  works  (VX-­‐200):  1.  Helicon  ionizes  neutral  gas  (30  kW).  2.  Plasma  flows  along  field  lines  and  is  compressed.  3.  Ion  Cyclotron  Resonance  HeaFng  (ICRH)  is  used  to  

heat  the  ions  (170  kW).  4.  MagneFc  nozzle  converts  temperature  into  directed  

flow.  5.  Plasma  detaches  from  the  magneFc  field.  

Page 13: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

VASIMR  

Advantages:  1.  Variable  exhaust  speed  2.  High  exhaust  speed  3.  Variable  thrust  4.  High  thruster  5.  No  grids  or  anode/cathode  6.  Variety  of  fuels  (H,  Ar,  Ne)  

Disadvantages:  1.  SuperconducFng  magnets  

required  2.  PotenFal  detachment  issues  3.  PotenFal  energy  conversion  

issues  4.  Requires  nuclear  reactor  

Page 14: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

EP  Summary  Types  of  EP:  Electrothermal:  resistojet,  arcjet  Electrosta/c:  gridded  ion  thruster  Electromagne/c:  Hall  thruster,  PPT,  MPD  thruster,  VASIMR  

Advantages:  High  exhaust  velocity  High  propellant  efficiency  High  spacecraq  speeds    

Disadvantages:  Power  intensive  Very  low  thrust  (in  space  only)  AcceleraFon  takes  Fme  PotenFal  lifeFme  issues    

14  

Page 15: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Nuclear  Propulsion  

15  

Page 16: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Radioisotope Thermal Generator (RTG):

RTGs have a good service history, but are still controversial.

How  they  work:  •  RadioacFve  decay  (oqen  238Pu)  •  Heat  generated  in  decay  •  Thermocouples  convert  heat  to  

electricity  

AddiFonal  informaFon:  •  10s-­‐100s  of  Waps  •  3-­‐7%  efficient  •  Well  suited  to  deep  space  roboFc  

missions  •  US  has  Flown  45  RTGs  in  25  missions  

•  Voyager  1&  2  •  Cassini  (870  W  -­‐  shown  leq)  •  Galileo  (570  W)  •  Viking  1  &  2  •  Pioneer  •  Ulysses  

RadioacFve  Heater  Units:  •  1  Wap  of  heat  power  •  Used  to  keep  spacecraq  warm  •  US  has  flown  more  than  240  

16  

Page 17: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Nuclear  Propulsion  Now  we’re  really  gerng  into  the  border  of  science  ficFon.      

However,  real  research  is  being  done  or  has  been  done  to  seriously  invesFgate  several  nuclear  propulsion  concepts.  

Types  of  nuclear  propulsion:  1. Nuclear  pulse  propulsion  –  uses  nuclear  explosions  to  

propel  a  spacecraq  

2. Nuclear  thermal  propulsion  –  uses  the  heat  of  a  nuclear  reactor  to  heat  a  gas  which  is  expelled  for  thrust  

3. Nuclear  electric  propulsion  –  uses  electrical  power  from  a  nuclear  reactor  to  power  an  electric  thruster  

17  

Page 18: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Nuclear  Pulse  Propulsion  Also  called  external  pulsed  plasma  propulsion.  

Uses  nuclear  explosions  to  generate  thrust.  

Programs:  1. Project  Orion  (1958  –  1963)  2. Project  Daedalus  (1973  –  1978)  3. Project  Longshot  (1987-­‐1988)  

18  

Page 19: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Project  Orion  Study  by  General  Atomics  led  by  Ted  Taylor  and  Freeman  Dyson  

Goal:  High  thrust  with  high  exhaust  speeds  

How  it  works:  1.  Drop  nuclear  bomb  out  the  back  of  the  spacecraq  2.  Nuclear  bomb  detonates  about  60  m  behind  the  spacecraq  3.  Explosion  hits  a  steel  plate,  which  propels  the  spacecraq  forward.  

Note:  shock  absorber  is  required  for  human  payload  due  to  the  high  g  involved.  

19  

Page 20: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Project  Orion  Performance:  EsFmated  thrust  >  1  mega-­‐newton  EsFmated  exhaust  velocity:  

20  –  30,000  km/s  EsFmated  spacecraq  speed:  

0.03c  –  0.1c  (c  =  speed  of  light)  

PotenFal  Missions:  Fast  travel  through  solar  system  with  massive  payloads  

Single  stage  to  Mars  Saturn’s  moons  Jupiter’s  moons  

Asteroid  deflecFon  Interstellar  travel  

PotenFal  Problems:  Plate  ablaFon/damage  Nuclear  fallout  on  Earth  High  acceleraFon  rate  Crew  shielding  

Project  Orion  was  terminated  by  the  ParFal  Test  Ban  Treaty  of  1963.  

20  

Page 21: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Orion  

21  

Page 22: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Commercializing  Human  Space  Flight  

Page 23: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

New  Commercial  Space  

•  NASA  COTS/CRS  –  Orbital  Sciences  –  SpaceX  

•  NASA  CCDev  Partners  –  Blue  Origin  –  Boeing  –  Paragon  –  Sierra  Nevada  –  United  Launch  Alliance  

•  Space  Tourism  –  Bigelow  Aerospace  –  Space  Adventures  –  Virgin  GalacFc  –  XCor  

Page 24: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Falcon  1/1e:  •  2  stages:  LOX-­‐Kerosene  •  670  kg  (1010  kg)  to  LEO    •  Achieved  orbit:  Sept.,  28,  2008  

•  2/5  successes  •  $10.9  M  

Page 25: Plasmaand&Nuclear&Propulsion&...Radioisotope Thermal Generator (RTG): RTGs have a good service history, but are still controversial. How&they&work: • RadioacFve&decay&(oqen&238Pu)&

Falcon  9:  •  2  stages:  LOX-­‐Kerosene  •  10,450  kg  to  LEO  •  4,540  kg  to  GTO  •  Dragon  Capability  •  Maiden  Flight:  June  4,  2010  

Placed  test  payload  in  orbit  •  Cost:  $45.8  –  $55.1  M  •  Flight  2:  Tuesday,  Dec  7,  2010  

–  First  Dragon  test  flight  –  First  private  company  to  return  a  capsule  from  orbit.  

 •  Next  launch  with  docking  to      ISS  soon  (5/19?)