35
Fundamentals & applications of plasmonics Svetlana V. Boriskina

plasmonics - bio-pagebio-page.org/boriskina/Plasmonics_Boriskina_lecture1.pdf · S.V. Boriskina, 2012 Overview: lecture 1 •Drude model •Theoretical models for plasmonics •Surface

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Fundamentals & applications of plasmonics

    Svetlana V. Boriskina

  • S.V. Boriskina, 2012

    Plasmonics in EE engineering

    E light

    current

    tens-to-hundreds nm

  • S.V. Boriskina, 2012

    Plasmonics in EE engineering

    Image credit: M. Brongersma & V. Shalaev

  • S.V. Boriskina, 2012

    Plasmonics in chemistry & biotechnology

    Image: Jain et al, Nano Today, 2(1) 2007, 18–29

    Particle synthesis

    Image: D. Pacifici, Brown University

    Sensing

    Theragnostics

    Image: Nanopartz Inc

    Image: Reinhard group, Boston University

    Spectroscopy

  • S.V. Boriskina, 2012

    Plasmonics in art & architecture

    Lycurgus Cup: Roman goblet, 4th century A.D

    Rayonnat Gothic rose window of north transept, Notre-Dame de Paris (Jean de Chelles, 13th century A.D.)

  • S.V. Boriskina, 2012

    Overview: lecture 1

    • Drude model

    • Theoretical models for plasmonics

    • Surface plasmon polariton (SPP) waves

    • Localized SP resonances - plasmonic atoms

    – Component miniaturization

    – Sub-resolution imaging

    • Temporal & spatial coherence of SP modes

    – Q-factor enhancement mechanisms

    • Plasmonic antennas & arrays

    • Plasmonic atoms & molecules

    – Plasmonic nanorulers & nanosensors

  • S.V. Boriskina, 2012

    Drude theory

    Material response to electric field:

    • Electrons in thermal equilibrium with the surrounding

    • No restoring force (free ideal electron gas)

    • No long-range interaction between electrons & ions

    • No short-range interaction between electrons

    • Instantaneous collisions with ions with a fixed probability per unit time dt: dt/τ.

    (τ - relaxation time; )

    • Electrons move with constant velocity

    e.g., N.W. Ashcroft and N.D. Mermin “Solid state Physics” (Saunders College, PA 1976)

    Image credit: Wikipedia

    Collision

    frequency

    1v

    electron velocity

    mean free path

    lv 1

    )()()(

    2

    2

    tet

    tm

    t

    tm ee E

    rr

  • S.V. Boriskina, 2012

    Drude theory

    )()()(

    2

    2

    tet

    tm

    t

    tm ee E

    rr

    Frequency-domain solution (monochromatic fields):

    tie

    )()(

    )(2

    Er

    im

    e

    e

    Macroscopic polarization (dipole moment per unit volume):

    )( 2

    2

    im

    nene

    e

    ErP

    Definition of the dielectric constant:

    EP 10

    )(1)(

    2

    2

    i

    p

    ep mne 022

    Drude permittivity function:

  • S.V. Boriskina, 2012

    Drude-Lorentz theory

    • Drude frequency of metals is in the ultra-violet range

    • Interband transitions should be taken into account

    • In the classical model, they are treated as the contribution from bound charges

    Au:

    ti

    e eett

    m

    0

    2

    02

    2

    Errr

    i

    p

    IB

    )(

    1)(22

    0

    2Damping factor (mostly radiative)

    ω0

    Hz10075.1 ,Hz108.13 1415 p

  • S.V. Boriskina, 2012

    Results • Bulk plasmon (SP) oscillation is a longitudinal wave

    • Light of frequency above the plasma frequency is transmitted, with frequency below that - reflected (electrons cannot respond fast enough to screen light)

    • Plasmon - a quasiparticle resulting from the quantization of plasma oscillations: ppE

    Permittivity Reflectance

  • S.V. Boriskina, 2012

    • Noble metals (Ag, Au, Pt, Cu, Al …) • Drude frequency in the ultra-violet range • Applications from visible to mid-IR • Ordal, M.A. et al, Appl. Opt., 1983. 22(7): p. 1099-1119.

    • Doped silicon • Drude frequency in the infra-red range • Ginn, J.C. et al, J. Appl. Phys. 2011. 110(4): p. 043110-6.

    • Oxides and nitrides • Al:ZnO, Ga:ZnO, ITO: near-IR frequency range • Transition-metal nitrides (TiN, ZrN): visible range • Naik, G.V. et al, Opt. Mater. Express, 2011. 1(6): p. 1090-1099.

    • Graphene • IR frequency range • Jablan, M. et al, Phys. Rev. B, 2009. 80(24): p. 245435. • Vakil, A. & Engheta, N. Science, 2011. 332(6035): pp. 1291-1294.

    Popular Drude-like materials

  • S.V. Boriskina, 2012

    Theoretical models for plasmonics ‘The oversimplification or extension afforded by the model is not error:

    the model, if well made, shows at least how the universe might behave,

    but logical errors bring us no closer to the reality of any universe.’

    Truesdell and Toupin (1960)

    • Classical electromagnetic theory • Local response approximation

    • Quasi-static approximation

    • Antenna-theory design

    • Circuit-theory design

    • Quantum theory • Drude model modifications

    • Ab initio density functional theory

    • Hydrodynamical models • Hydrodynamical model for electrons: non-local response

    • Hydrodynamical model for photons

    ),(),(),( rErrD

    Next lecture

    e.g. D. C. Marinica, e.g., Nano Lett. 12, 1333-1339 (2012).

  • S.V. Boriskina, 2012

    Quantum-mechanical effects electron velocity

    mean free path

    lv 1

    Velocity definition:

    Quantum size effects (particle size below the mean free path):

    eB mTkv 3TkE

    MBBeEf

    )(

    Classical Drude model of an ideal electron gas:

    Maxwell-Boltzmann statistics of energy distribution

    1

    1)(

    )(

    TkEEFD Bfe

    Ef

    Drude-Sommerfeld model:

    ef mEv 2

    Fermi-Dirac statistics of energy distribution

    Fermi energy

    • Discretized energy levels in conduction band • Free electron gas constrained by infinite potential barriers at the particle edges

    )( )(

    22

    2

    )()(

    i f if

    if

    pIBi

    S

    transitions from occupied (Ei) to

    excited (Ef ) energy levels

    J. Scholl, A. Koh & J. Dionne, Nature 483, 421, (2012)

  • S.V. Boriskina, 2012

    Surface plasmon-polariton wave

    • Planar interface between two media:

    • Eigensolutions of the Helmholtz equation:

    0),(),(),(2

    2

    rErrEc

    Solution: ziktixikj

    xx

    jzx eeEE

    )()(

    dielmetalj or

  • S.V. Boriskina, 2012

    Surface plasmon-polariton wave

    • Planar interface between two media:

    • Dispersion equation for a surface plasmon-polariton (SPP) wave:

    21

    dm

    dmx

    ck

    212

    )()(

    dm

    dmdm

    zc

    k

    Should be negative! Propagating along the interface: real kx

    Exponentially decaying away from it: imaginary kz

    < λ

    dmxk if

  • S.V. Boriskina, 2012

    Surface plasmon-polariton wave

    ω

    Re(kx)

    d

    p

    1

    d

    xck

    Propagating: real kz

    Surface: imaginary kz

    0 ,Hz108.13 15 p

    High DOS: ρ(ħω)∝(dω/dk)-1

    ω

    Re(kx)

    Experimental Au

    P. B. Johnson & R. W. Christy, Phys. Rev. B 6, 4370 (1972)

  • S.V. Boriskina, 2012

    SPP excitation SPPx

    photon

    x kk

    Via gratings:

    ankk photonxSPP

    x 2

    a

    Via prisms:

    p

    xck

    p

    Via localized sources (e.g. tips, molecules):

  • S.V. Boriskina, 2012

    Miniaturization of photonic components

    Gramotnev & Bozhevolnyi, Nature Photon 4, 83 - 91 (2010)

  • S.V. Boriskina, 2012

    Localized SPs on metal nanoparticles ),(or 0),(),(),(

    2

    2

    rErErrE inc

    + boundary conditions

    Multi-polar Mie theory formulation:

    Exact series solution:

    • Sphere (cluster of spheres) – fields expansion in the spherical-wave basis • Circular cylinders - fields expansion in the cylindrical-wave basis

    C.F. Bohren & Huffman, Absorption and Scattering of Light by Small Particles (Wiley) Novotny, L. & B. Hecht. Principles of Nano-Optics, Cambridge: Cambridge University Press

    More complex geometries require numerical treatment (FDTD, FEM, BEM …)

    • Object much smaller than the light wavelength: all points respond simultaneously

    • Helmholtz equation reduces to the Laplace equation

    Quasi-static limit:

    0 , 2 E

    Plasmon hybridization method (quasi-static): deformations of a charged, incompressible electron liquid expanded in a complete set of primitive plasmon modes (Peter Nordlander, Rice University)

  • S.V. Boriskina, 2012

    Localized SPs on metal nanoparticles • Modes with different angular momentum:

    analogs of electron orbitals of atoms

    • Higher-order modes have lower radiation losses; do not couple efficiently to propagating waves (dark plasmons)

    K.L. Kelly et al, J. Phys. Chem. B 2003, 107, 668-677.

    Extinction=scattering+absorption

    30nm Ag

    60nm Ag

    Image: Wikimedia commons (author: PoorLeno)

  • S.V. Boriskina, 2012

    Tuning LSP resonance

    W. A. Murray, W. L. Barnes, Adv. Mater. 19, 3771 (2007) .

    Particle

    shape: Nanosphere size:

    B. Yan, S.V. Boriskina &B.M. Reinhard J Phys Chem C 115 (50), 24437-24453 (2011)

    Cscatt

  • S.V. Boriskina, 2012

    Applications: sub-resolution imaging

    Image: http://www.xenophilia.com

    S. Kawata, Y. Inouye & P. Verma, Nat Photon 3, 388-394 (2009).

  • S.V. Boriskina, 2012

    SP modes characteristic lengthscales

    W.L. Barnes 2006 J. Opt. A: Pure Appl. Opt. 8 S87

  • S.V. Boriskina, 2012

    Coherence of SP modes Solutions of the SP dispersion equation:

    • complex-k solution: a complex wave number (k+iα) as a function of real frequency ω

    SP propagation length: 21SPL

    6-10fs T. Klar, et al, Phys.

    Rev. Lett. 80, 4249-4252 (1998).

    2-20μm T.B. Wild, et al, ACS Nano 6, 472-482 (2012)

    1

    • complex-ω solution: a complex frequency (ω+iγ) as a function of real wave number.

    SP lifetime:

  • S.V. Boriskina, 2012

    Q-factor as a measure of temporal coherence

    • Local fields enhancement: ~ Q • Spontaneous emission rate enhancement:

    Purcell factor ~ Q • Stimulated emission & absorption rates

    enhancement ~ Q • Spectral resolution of sensors: ~ Q • Enhancement of Coulomb interaction

    between distant charges ~ Q

    Q - the number of oscillations that occur coherently, during which the mode sustains its phase and accumulates energy

    resQ

    From experimental spectra:

    nnn i nnQ 2

    For eigenmode:

    Why large Q-values are important?

    http://www.nanowerk.com/spotlight/spotid=24124.php

    http://www.nanowerk.com/spotlight/spotid=24124.phphttp://www.nanowerk.com/spotlight/spotid=24124.php

  • S.V. Boriskina, 2012

    Coherence enhancement Coupling to photonic modes:

    Blanchard, R. et al, Opt. Express, 2011. 19(22): 22113. See also: Y. Chu, et al, Appl. Phys. Lett., 2008. 93(18): 181108-3; S. Zou, J. Chem. Phys., 2004. 120(23): 10871.

    Ahn, W., et al. ACS Nano, 2012. 6(1): p. 951-960. See also: Boriskina, S.V. & B.M. Reinhard, Proc. Natl. Acad. Sci., 2011. 108(8): p. 3147-3151; Santiago-Cordoba, M.A., et al. Appl. Phys. Lett., 2011. 99: p. 073701.

    Fano resonance engineering:

    Fan, J.A., et al. Science, 2010. 328(5982): 1135 also: Luk'yanchuk, B., et al. Nat Mater, 2010. 9(9): 707; Verellen, N., et al. Nano Lett., 2009. 9(4): 1663

    SP gain amplification:

    Grandidier, J., et al. Nano Lett. 2009. 9(8): p. 2935-2939. also: Noginov, M. A. et al. Opt. Express 16, 1385 (2008); De Leon, I. & P. Berini, Nat Photon, 2010. 4(6): 382-387.

  • S.V. Boriskina, 2012

    Antenna-theory design of SP components

    Au particle

    analog of a dipole antenna

    Alu & Engheta, Phys. Rev. B, 2008. 78(19): 195111; Nature Photon., 2008. 2(5): 307-310

    Plasmonic nanodimer as a Hertzian dipole

    Review: P. Bharadwaj, B. Deutsch & L. Novotny, Optical antennas. Adv. Opt. Photon., 2009. 1(3): p. 438-483.

  • S.V. Boriskina, 2012

    Antenna-theory design of SP components

    Phased nanoantenna arrays:

    Constructive/destructive interference between dipole fields of individual nanoparticles

    Y. Chu, et al, Appl. Phys. Lett., 2008. 93(18): p. 181108-3

    http://www.haarp.alaska.edu/haarp/

    Curto, A.G., et al. Science, 2010. 329(5994): p. 930-933.

    QD

    http://www.ehow.com/info_12198356_yagi-antenna.html

  • S.V. Boriskina, 2012

    Circuit-theory design of SP components

    Au particle

    Engheta, N. Science, 2007. 317(5845): p. 1698-1702.

  • S.V. Boriskina, 2012

    Chemical analogs: plasmonic molecules

    Credit: Capasso Lab, Harvard School of Engineering & Applied Sciences

    P. Nordlander, et al, Nano Lett. 4, 899-903 (2004).

    Bonding LSP mode Anti-bonding mode

  • S.V. Boriskina, 2012

    Spectra shaping

    B. Yan, S. V. Boriskina, & B. M. Reinhard, J. Phys. Chem. C 115, 4578-4583 (2011); J. Phys. Chem. C 115, 24437-24453

  • S.V. Boriskina, 2012

    Local field enhancement Diatomic plasmonic molecule:

    Cscatt |E|2

    B. Yan, S. V. Boriskina, & B. M. Reinhard, J. Phys. Chem. C 115, 24437-24453 (2011)

    Spectroscopy applications (next lecture)

  • S.V. Boriskina, 2012

    Applications: plasmon nanorulers

    N. Liu, et al, Science 332, 1407-1410 (2011)

    • Measuring distances below diffraction limit • Stable probes (no photobleaching)

    Alivisatos group, UC Berkeley; C. Sonnichsen, et al, Nat Biotech 23, 741-745 (2005)

  • S.V. Boriskina, 2012

    Applications: cell surface imaging

    Quantification of cell surface receptors, which are important biomarkers for many diseases

    Wang, Yu, Boriskina & Reinhard, Nano Lett., Article ASAP, DOI: 10.1021/nl3012227, 2012

  • S.V. Boriskina, 2012

    Overview: lecture 2

    • Refractive index, fluorescence & Raman sensing

    • SP-induced nanoscale optical forces

    – Optical trapping & manipulation of nano-objects

    • Near-field heat transfer via SPP waves

    • Plasmonics for photovoltaics

    • Hydrodynamical models

    – Hydrodynamical model for electrons: non-local response

    – Hydrodynamical model for photons

    • Magnetic effects

    • Plasmonic cloaking

    • Quantum effects

    • Further reading & software packages