55
Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Embed Size (px)

Citation preview

Page 1: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Polarized neutron reflectometry: encore presentation

M.R. Fitzsimmons

Los Alamos National Lab

Page 2: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Outline

• Description of a polarized neutron reflectometer.

– Ingredients of a polarized neutron reflectometer.

– Measurement of wavelength with the time-of-flight technique.

– How are polarized neutron beams made?

– How are spins flipped?

• An example worked in detail.

– What is the specific question?

– Formulate experimental procedure.

– Collect data.

– Fit/interpret data.

– Publish!

• So, why use neutron scattering?

Page 3: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

1st ingredient

• Knowledge and control of neutron beam polarization.

II

IIP

1

1

F

FP

I

IF

Spin up Spin down

Page 4: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

A need for well polarized neutron beams.

0 100

5 10-6

1 10-5

1.5 10-5

-100 0 100 200 300

++ (spin up)

-- (spin down)

Depth (y) into the sample [Å]

[Å-2

]

Fe

Si

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.05 0.1 0.15 0.2

R++ (P = 100%)R-- (P = 100%)

R--

R++

Pol

ariz

ed n

eutr

on r

efle

ctiv

ity

Q [Å-1]

R++ (P = 100%)--

R++ (P = 82%)

R-- (P = 82%)

Strongly magnetic materials best served by well polarized neutron beams.

Page 5: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

2nd ingredient

• Capability to measure the intensity and polarization of the neutron beam reflected by a sample.

Page 6: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

3rd ingredient

• Ability to measure intensity and polarization of the scattered beam as a function of wave vector transfer parallel and perpendicular to the sample surface.

Page 7: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Measuring with the time-of-flight technique.

Page 8: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Neutron guides

A neutron will stay inside the guide provided:

c

Glass

58Ni

For Ni: /ź1.0 c

º23.0~

Page 9: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Producing clean cold neutron beams.

2

<4Å

>4Å

Bragg’s law satisfied when <2d100

Principle of a Be filter

c

>14Å

<14Å

Principle of a frame overlap mirror

101

102

103

104

105

4 6 8 10 12

20 30 40 50 60N

eutr

ons

cou

nte

d

wavelength [Å]

time-of-flight [ms]

Page 10: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

101

102

103

104

105

4 6 8 10 12

SpectrumReflectivity of Si

20 30 40 50 60

Neu

tron

s co

unte

d

wavelength [Å]

time-of-flight [ms]

Reflectometry a good match.

101

102

103

104

105

4 6 8 10 12

20 30 40 50 60

Neu

tron

s co

unte

d

wavelength [Å]

time-of-flight [ms]

with polarization analyzer

10-4

10-3

10-2

10-1

100

0.005 0.01 0.015 0.02 0.025 0.03

Ref

leci

tivity

of S

i

Q [Å-1]

Si

(100

) B

e ed

ge

(110

) B

e ed

ge

)sin(4

Q

Page 11: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Covering an extended range in Q

10-5

10-4

10-3

10-2

10-1

100

101

102

0 0.05 0.1 0.15 0.2

2 = 0.58°2 = 1.02°2 = 2.02°2 = 4.62°2 = 7.96°

Spi

n F

lip R

efle

ctiv

ity

Q [A-1]

10-5

10-4

10-3

10-2

10-1

100

101

102

0 0.05 0.1 0.15 0.2

Spi

n F

lip R

efle

ctiv

ity

Q [A-1]

6 minutes

4 minutes

24 minutes

160 minutes

600 minutes

Page 12: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

How are polarized neutron beams made?

Answer: any magnetic film will polarize a neutron beam to some degree.

Fe

Si

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.02 0.04 0.06 0.08 0.1

Pol

ariz

ed n

eutr

on r

efle

ctiv

ity

Q [Å-1]

R++

R--

10-5

10-4

10-3

10-2

10-1

100

0 0.02 0.04 0.06 0.08 0.1Pol

ariz

ed n

eutr

on tr

ans

mis

sivi

ty

Q [Å-1]

R++

R--

-1

-0.5

0

0.5

1

0 0.02 0.04 0.06 0.08 0.1

Pol

ariz

atio

n (r

efle

ctio

n)

Q [Å-1]

-1

-0.5

0

0.5

1

0 0.02 0.04 0.06 0.08 0.1

Pol

ariz

atio

n (t

rans

mis

sio

n)

Q [Å-1]

Q ~ 0.005 Å-1

Page 13: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

A “first” PNR experiment

D.J. Hughes and M.T. Burgy, Phys. Rev., 81, 498 (1951).

Results supported Schwinger’s model of neutron moments as current loops and the predicted dependence on B not H (in contrast to Bloch’s model).

Spin down Qc Spin up Qc

Page 14: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Polarizing supermirrors.

10-5

10-4

10-3

10-2

10-1

100

0 0.02 0.04 0.06 0.08 0.1

R++ Fe/Si

R-- Fe/Si

R++ 3c SM

R-- 3c SM

0 1 2 3 4

Pol

ariz

ed

neu

tron

re

flect

ivity

Q [Å-1]

m

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0 0.5 1 1.5 2 2.5 3 3.5

Pol

ariz

atio

n (t

ran

smis

sio

n)

Q [Å-1]

m

Qmin

= 0.01 Å-1

Qmax

= 0.065 Å-1

Si

100 nm 0.1 nm

410)(n

dnd F. Mezei and P.A.

Dagleish, Comm. on Phys., 2, 41 (1977).

Page 15: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Traditional approach

[Å] Qmin

[Å-1]

Qmax [Å-

1]

5 0.01 0.065

15 0.003 0.01

0.018

Settings for = 5 Å.

An inefficient approach to simultaneously polarize multi-wavelength neutron beams.

Q

Qc(Si) = 0.01 Å-1 Qc(m=3) = 0.065 Å-1

= 5 Å

= 15 Å

Page 16: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Mezei polarization cavity

1. Efficient polarization of the neutron beam for > min = 4Å .

2. Maintains divergence of the neutron guide.3. Polarization of large beams, e.g., 25 mm

by 130 mm.4. No deflection of beam line. Ewald’s sphere

~

sin4

Q

Q

Q

small big

Page 17: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

The Asterix polarization cavity

Page 18: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Adiabatic rotation of neutron spins

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

Hx

Hz

Hx a

nd H

z [O

e]

distance [cm]

0 cm 30 cm

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

[°]

distance [cm]

x

z

0 100

2 105

4 105

6 105

8 105

1 106

1.2 106

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

|L|/4

|d/dt|

0 5 10 15 20 25 30 35

fre

quen

cy [

rad

/s]

time [ms]

distance [cm]

Note, the relation between distance and time is valid for a neutron with = 4 Å.

L

L

dt

d

B

B

Page 19: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Radio frequency gradient field spin flipper

0 100

1 105

2 105

3 105

4 105

0 0.1 0.2 0.3 0.4 0.5

|L|/4

|d/dt|

0 10 20 30 40 50

fre

quen

cy [

rad

/s]

time [ms]

distance [cm]

Note, the relation between distance and time is valid for a neutron with = 4 Å.

-80

-60

-40

-20

0

20

40

60

-20 -10 0 10 20

B0 -

B1

B [G

]

position [cm]

0

60

120

180

-20 -10 0 10 20

[°]

position [cm]

I. Rabi, N.F. Ramsey, J. Schwinger,Rev. of Mod. Phys., 26, 167 (1954).

Page 20: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Pictures of the RF gradient flipper

Page 21: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Polarized neutron reflectometry

z

Spin-flip cross-sections yield Mas a function of Q.

Non spin-flip cross-sections yield: M|| as a function of Q .

Page 22: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

A qualitative interpretation of RNSF and RSF

dyeyyQr

dyeyyyQr

yiQmBA

yiQmnBA

0

0

sin)(

cos)(

QmQR

QmQRQRQSFBA

BABANSF

cos1)(

cos1)()()(2

||

y

Page 23: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Why neutron reflectometry?

QmQR

QmQRQRQSFBA

BABANSF

cos1)(

cos1)()()(2

||

Domains are large compared to coherent region of the neutron beam.Sinha discusses the case of small domains this p.m.

Page 24: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

f = 0.74

f

W.T Lee, et al., PRB, 65, 224417 (2002).

10-3

10-2

10-1

100

0 0.01 0.02 0.03 0.04 0.05

NSF, (++) = (--)SF

Neu

tron

Ref

lect

ivity

Q [Å-1]

<sin2> = 0.74

magnetometry reflectometry

Quantity || to H <cos> R+-R- <cos>

Quantity to H <sin> RSF <sin2>

QmQRSFBA cos1)( 2

Domains are large compared to coherent region of the neutron beam.

Page 25: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Table of measurements and their meanings.Measurement feature Information obtained from a sample of cm2 or

so size

Position of critical edge, Qc

Nuclear (chemical) composition of the neutron-optically thick part of the sample, often the substrate.

Intensity for Q < Qc Unit reflectivity provides a means of normalization to an absolute scale.

Periodicity of the fringes

Provides measurement of layer thickness. Thickness measurement with uncertainty of 3% is routinely achieved. Thickness measurement to less than 1 nm can be achieved.

Amplitude of the fringes

Nuclear (chemical) contrast across an interface.

Attenuation of the reflectivity

Roughness of an interface(s) or diffusion across an interface(s). Attenuation of the reflectivity provide usually establishes a lower limit (typically of order 1-2 nm) of the sensitivity of reflectometry to detect thin layers.

Page 26: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

FeCo on GaAs: an example worked in detail.

• What is the specific question to be answered?

• Reality test: simulate possible answers.

• Formulate experimental protocol.

• Write proposal.

• Collect data.

• Interpret data.

• Write experiment report, publish results.

Page 27: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Magnetic vs. chemical thickness

How does the magnetization of the

FeCo/GaAs interface affect the polarization

of spin current passing through the

interface?

(1) A conducting and magnetically dead

interface is a source of unpolarized spins.

(2) Spins passing through the interface may

suffer spin flip scattering.

We need to understand the magnetic structure of the

as-prepared buried interface.

FeCo

GaAs (100) 2x4

Page 28: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Collaborators

LANL:S. Park

UMN:X. DongB.D. SchultzC.J. Palmstrøm

Page 29: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Magnetization of the sample.

-1

-0.5

0

0.5

1

-400 -200 0 200 400

Mr/M

s

H (Oe)

]101[

Fe48Co52 grown on

GaAs(100) 2x4

(As-rich) surface.

A.F. Isakovic, et al., JAP, 89, 6674 (2001).

]011[

Page 30: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

X-ray vs. polarized neutron scattering

RoentgenChadwick

0.05 0.10 0.15 0.20

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

X-r

ay

Re

flect

ivity

Q (Å-1)

0.00 0.05 0.10 0.15 0.20 0.25

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Ref

lect

ivity

Q (Å-1)

R+

R-

X-R

ay

refle

ctiv

ity

Ne

utr

on

ref

lect

ivity

Spin

H = 1 kOeSpin

X-r

ay r

efle

ctiv

ity

neut

ron

refle

ctiv

ity

Q [Å-1] Q [Å-1]0.20.2

FeCo

GaAs (100) 2x4

203.6±0.2 197.5±0.2

Page 31: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

X-rays

Page 32: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

True and perceived specular reflectivity

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FeCo on GaAs

specular

specular + diffuse

Ref

lect

ivity

Q [Å-1]

Homework: Quantify the influence on .

Page 33: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

wavelength

Contour of constant Q

FeCr

Spin down neutron scattering

Page 34: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Importance of diffuse scattering illustrated.

FeCr

AF Bragg reflection

Specular component

Diffuse scattering

Scatters specularly

Scatters diffusively

Page 35: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Qx ~ 0.003 Å-1

nmQx

200~2

Page 36: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

X-ray vs. polarized neutron scattering

RoentgenChadwick

0.05 0.10 0.15 0.20

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

X-r

ay

Re

flect

ivity

Q (Å-1)

0.00 0.05 0.10 0.15 0.20 0.25

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Ref

lect

ivity

Q (Å-1)

R+

R-

X-R

ay

refle

ctiv

ity

Ne

utr

on

ref

lect

ivity

Spin

H = 1 kOeSpin

X-r

ay r

efle

ctiv

ity

neut

ron

refle

ctiv

ity

Q [Å-1] Q [Å-1]0.20.2

FeCo

GaAs (100) 2x4

203.6±0.2 197.5±0.2

Page 37: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Uniaxial anisotropy offers a resolution.

-1

-0.5

0

0.5

1

-400 -200 0 200 400

Mr/M

s

H (Oe)

1 saturate

reduce2

Rotate 90º3

H=9 Oe

M M

Page 38: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Chemical thickness magnetic thickness

0.000 0.025 0.050 0.075 0.10010-6

10-5

10-4

10-3

10-2

10-1

100

Φ

H

M

Φ

H

M

[011]

Spin Spin Spin flip

Page 39: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Magnetic vs. chemical thickness

0.00

1.50x10-6

3.00x10-6

4.50x10-6

Scat

teri

ng le

ngth

den

sity

[Å-2

]

chemical magnetic

(a)

2 = 2.57

-50 0 50 100 150 200 250 300

0.00

1.50x10-6

3.00x10-6

4.50x10-6

2 = 3.89

2 = 3.94

Distacne from the surface [Å]

(b)

5.5 Å

202.7 Å

197.2 Å

Distance from surface [Å]

202.7 197.2

5.5Å

Chem MagFeCo FeCod d d

The FeCo/GaAs(100) 2x4

interface is not ferromagnetic

at 300 K (for this sample).

Al-oxide

FeCo

GaAs

Page 40: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

So, why use neutron scattering?

• Profiling non-uniformity in magnetic thin films.

– Example #1: Magnetic vs. chemical thickness of FeCo on GaAs.

– Example #2: Measuring depth dependence of Tc.

– Also, lateral non-uniformity (off-specular and diffuse scattering, Sinha).

• “Small” moment detection and discrimination.

– Example #3: Small moments in (Ga, Mn)As on GaAs.

– Example #4: Small moments in the presence of big moments, Co on LaFeO3.

• A different kind of vector magnetometer.

– Example #5: Asymmetric magnetization reversal and exchange bias (Schuller).

• Magnetic structure determination of anti-ferromagnets.

Page 41: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Example #2: Measuring Tc(z).

190-nm thick film of La0.7Sr0.3MnO3. J.-H. Park, et al., PRL, 81, 1953 (1998).

5 Å50 Å

1900 Å

Co

La0.7Sr0.3MnO3

A problem tailored-made for neutron scattering:(1) All length scales probed with one technique on the same

sample, and(2) Offers an opportunity to probe magnetization of a buried

interface (in addition to that near the surface).

Page 42: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Collaborators

LANL:S. ParkJ.D. Thompson

Uni-Wuerzburg:L. MolenkampG. SchottC. Gould

Page 43: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Neutron antennas

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

++ (not dead)

-- (not dead)

Ref

lect

ivity

Q [Ang-1]

Ga0.5Al0.5As

Ga0.5Al0.5As

Ga0.97Mn0.03As

GaAs

2 10 -5

4 10 -5

6 10 -5

8 10 -5

1 10 -4

1.2 10 -4

0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1

Ref

lect

ivity

Q [Ang-1]

Page 44: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

10-4

10-3

10-2

10-1

100

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

Ref

lect

ivity

Q [Ang-1]

10 K @ 5 kOe

300 K @ 5 kOe

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

10 K300 K

(do

wn

- u

p)

/ (d

ow

n +

up)

Q [Ang-1]

<300 K> = 0.06(0.04)

Magnetic signature most apparent.

Model reproduces data

using a uniform distribution

of magnetization.

Page 45: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Example #3: Small moment detection

(1) Magnetic (neutron) scattering

length density = 7.9x10-8 Å-2 (±10%)

(2) Number density of (Ga, Mn)As

formula units = 0.025 Å-3 (to 1%).

(3) Mn concentration = 3%.

(4) Using 1-3, we calculate Mn = 4B.

(5) The measured magnetic moment

is 2x10-4 emu.

(6) Magnetic vs. chemical thickness is

394 Å vs. 397 Å.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

not deaddeadobserved 10 K

(do

wn

- up

) / (

dow

n +

up)

Q [Ang-1]

Page 46: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

What is exchange bias?

FM

AFM

FM

AFM

FM

AFM

FM

AFM

FM

AFM

FM

AFM

Field Cool

T < T < TN C

HFC

M

HA

Assume FM interaction favored.

W.H. Meiklejohn, C.P. Bean, Phys Rev., 105, 904(1957).J. Nogués, Ivan K. Schuller, J. of Magn. Magn. Mater., 192, 203 (1999).

PM

Page 47: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Some theoretical pictures

Meiklejohn & Bean Model

HE Jint

Mt

2JexS 2

a21

Mt27, 000 Oe

Problems:

• HE is too large for nearly all systems.

• HE often large for compensated AF planes.

• Example: (110) plane of bulk FeF2 is compensated &

HE~400 Oe for Fe/FeF2.

Page 48: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Random-field, domain state, etc., models

HCF

+’ve HE

Frustrated super exchange (AF-coupling)

+1

-’ve HE

Super exchange (AF-coupling)

-1

HCF10nm

U. Nowak et al., JMMM, 240, 243 (2002).A.P. Malozemoff, JAP, 63, 3874 (1988).

Page 49: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Frozen moments in the AF?

FM

AFM

qCan anything be learned at Hsat?

J. Nogués, et al., PRB, 61 1315 (2000).

Mshift

He

Mshift

He

Page 50: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Collaborators

LANL:A. Hoffmann (now at ANL)

IBM, Zürich:J.W. SeoH. SiegwartJ. FompeyrineJ.P. Locquet

NIST:J. DuraC. Majkrzak

Page 51: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Magnetization depth profiling

10 Å Pt

25 Å Co (FM)

350 Å LaFeO3 (AFM)

(100) SrTiO3 substrate

The “Nature” Sample

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2

--++

Ref

lect

ivit

y*q

4 (

10-8 Å

-4)

q (1/Å)

10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.05 0.1 0.15 0.2

--++

Ref

lect

ivit

y

q (1/Å)

F. Nolting, et al., Nature, 405, 767 (2000).

Page 52: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Saturation at 300K, when He=0.

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2

--++

Ref

lect

ivit

y*q

4 (10

-8 Å

-4)

q (1/Å)

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2

--++

Ref

lec

tivi

ty*q

4 (10

-8 Å

-4)

q (1/Å)

- 7500 Oe + 7500 Oe

No difference for +/- saturation

Results well reproducible

FM

AFM

Page 53: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Saturation at 18K, when HE = -20 Oe.

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2

--++

Ref

lect

ivit

y*q

4 (

10-8 Å

-4)

q (1/Å)

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2

--++

Ref

lev

tivi

ty*q

4 (10

-8 Å

-4)

q (1/Å)

- 7500 Oe + 7500 Oe

Field cooled in +7500 Oe

Asymmetry for + and - saturation

FM

AFM

Page 54: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Example #4: Detecting small moments near large moments.

• Magnetization profiles are not the same for +’ve and -’ve

saturation.

– Effect correlated with magnitude of HE, and

– direction of cooling field.

• Greatest change of the profile observed for Hsat parallel to

the cooling field.

– Implies frozen magnetization in the AF aligned anti-parallel to the cooling

field.

– Result consistent with observed negative exchange bias.

A. Hoffmann et al., PRB, 6, 406 (2002).

Page 55: Polarized neutron reflectometry: encore presentation M.R. Fitzsimmons Los Alamos National Lab

Influence of cooling field on the magnetic order parameter of Zn0.2Fe0.8F2

11-T superconducting magnet

250 nm thick film sample

(100) AF Bragg reflection

D. Belanger (UCSD),D. Lederman (WVU)