33
POLI POLI di di MI MI tecnico tecnico lano lano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello Politecnico di Milano Italy 31st European Rotorcraft Forum Firenze, Italy, 13-15 September 2005

POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

PO

LIPO

LI

di

di M

IM

Itecn

ico

tecn

ico

lano

lano

PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS

WITH COMPREHENSIVE CODES

Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Politecnico di MilanoItaly

31st European Rotorcraft ForumFirenze, Italy, 13-15 September 2005

PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS

WITH COMPREHENSIVE CODES

Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Politecnico di MilanoItaly

31st European Rotorcraft ForumFirenze, Italy, 13-15 September 2005

Page 2: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

• Limiting factorsLimiting factors (maximum loads, vibrations, noise, etc.) are experienced during maneuvering flightmaneuvering flight and at flight envelope boundaries.

• It is virtually impossible to guess the controlsimpossible to guess the controls that will fly a complexcomplex maneuver of long durationlong duration, guaranteeing to stay within the flight envelope boundarieswithin the flight envelope boundaries.

Maneuvering Multibody DynamicsManeuvering Multibody Dynamics

TDP

ExampleExample: Cat-A continued take-off.

Cat-A certification requirements: 1) achieve positive rate of climb; 2) achieve VTOSS; 3) clear obstacle of given height; 4) bring rotor speed back to nominal at end of maneuver, etc.

Many related problemsMany related problems:

Fixed wing (Frezza), motorcycles (Da Lio, Ambrósio), cars (Minen), sail boats, etc.

Page 3: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

OutlineOutline

• Overview: the Multi-Model Steering Algorithm (MMSAMMSA) for Maneuvering Multibody Dynamics (MMBDMMBD);

• Detailed description of the methodology:

– Neural-augmented adaptive reduced modeladaptive reduced model;

– Path planningPath planning (trajectory optimization);

– Path trackingPath tracking (receding horizon model predictive control);

– SteeringSteering of comprehensive vehicle models;

• Numerical examples;

• Conclusions.

Page 4: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Maneuver DefinitionManeuver DefinitionManeuversManeuvers can be formulated as Optimal Control (OC) Optimal Control (OC) problemsproblems whose ingredients are:

• A cost functioncost function (index of performance);

• ConstraintsConstraints:

– Vehicle equations of motion;

– Physical limitations (limited control authority, flight envelope boundaries, etc.);

– Procedural limitations.

SolutionSolution yields: trajectorytrajectory and controlscontrols that fly the vehicle along it.

However, the solution of optimal control problems with the solution of optimal control problems with large comprehensive models is not feasible/attractive large comprehensive models is not feasible/attractive (e.g. flexible vehicle+CFD: cost and problem size, controllability issues).

Proposed solutionProposed solution: : design a virtual pilot capable of piloting the virtual vehicle model according to the OC maneuver definition.

Page 5: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Reduced modelReduced model: few dofs, captures flight mechanics solution.

Comprehensive modelComprehensive model: many dofs, captures fine scale solution details.

The Multi-Model Steering Algorithm (MMSA)

The Multi-Model Steering Algorithm (MMSA)

Sys Sys

IdId MotivationMotivation:

• Solve expensive optimal control problems with reduced model;

• Use comprehensive model only for initial value problems (known control inputs).

Page 6: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

The Multi-Model Steering Algorithm (MMSA)

The Multi-Model Steering Algorithm (MMSA)

1. Maneuver planning problem (reduced model)

Reference trajectory2. Tracking

problem (reduced model)

Trajectory flown by comprehensive model

4. Reduced model update

Predictive solutions

3. Steering problem (comprehensive model)

Prediction window

Steering window

Tracking cost

Prediction error

Prediction window

Tracking cost

Steering window

Prediction error

Tracking costPrediction window

Steering window

Prediction error

5. Re-plan with updated reduced model

Updated reference trajectory

Reference trajectory

Fly the comprehensive modelcomprehensive model along the reference trajectory and, at the same time, updateupdate the reduced model (learning).

Page 7: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

The Multi-Model Steering Algorithm (MMSA)

The Multi-Model Steering Algorithm (MMSA)

HighlightsHighlights:

• Computationally feasibleComputationally feasible: reduced model for expensive BVP, comprehensive model for IVP;

• Applicable to any comprehensive codeany comprehensive code without the need for modifications;

• MPC can deal with inputinput (limited authority) and outputoutput (flight envelope boundary, procedures, etc.) constraintsconstraints;

• MPC is based on non-linearnon-linear flight mechanics (reduced) models;

• MPC is provably stableprovably stable under reasonable conditions;

• Applicable to unstable vehiclesunstable vehicles;

• Adaptivity of reduced model ensures convergenceconvergence, i.e. small tracking errors.

Page 8: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

GoalGoal:

• Develop reduced modelreduced model capable of predicting the behavior predicting the behavior of the plantof the plant with minimum error (same outputs when subjected to same inputs);

• Reduced model must be self-adaptiveself-adaptive (capable of learning) to adjust to varying flying conditions.

Reduced model will be used for model-predictive planning & model-predictive planning & trackingtracking.

Predictive solutions

Prediction (tracking) window

Steering window

Prediction Prediction error to be error to be minimizedminimized

Reduced Model IdentificationReduced Model Identification

Page 9: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Reduced Model IdentificationReduced Model Identification

Comprehensive (multibody based) governing equations:

where are the states, the controls, the Lagrange multipliers.

• Define outputs that capture the vehicle flight capture the vehicle flight mechanicsmechanics:

• Find reduced parametricreduced parametric flight mechanics model

such that when

i.e.

the flight mechanics reduced model captures the captures the gross motiongross motion of the comprehensive one (plant).

euex e

ey = eh(ex):

ef ( _ex; ex; e; eu) = 0;

ec( _ex; ex) = 0;

f ( _y;y;u;p) = 0;

ey

ey ¼y eu = u,

Page 10: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Reduced ModelReduced Model

Reduced flight mechanics model:

- Reference modelReference model:

two-dimensional rigid body model with rotor aerodynamics based on blade element theory with uniform inflow.

= CG position vector, CG velocity, pitch angle, pitch rate, rotor angular velocity;

= main & tail rotor collective, lateral & longitudinal cyclics, available power.

- Augmented reduced modelAugmented reduced model:

where is the unknownunknown reference model defectdefect that ensures

when

f ref( _y;y;u) = 0;

d

ey ¼y

y

u

f ref( _y;y;u) = d(y(n); : : : ;y;u);

eu = u.

Page 11: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Reduced Model IdentificationReduced Model IdentificationApproximate with single-hidden-layer neural networkssingle-hidden-layer neural networks, one for each component:

where

and

= reconstruction error (universal approximator, );

= matrices of synaptic weights and biases;

= sigmoid activation functions;

= network input.

The reduced model parametersreduced model parameters are readily identified with the synaptic weights and biases of the networks:

di (y(n); : : : ;y;u) = diN N (y(n); : : : ; ;u) +"i ;

d

W i ;V i ;ai ;bi

¾(Á) = (¾(Á1); : : : ;¾(ÁN n))T

x = (y(n)T ; : : : ;yT ;uT )T

p = (::: ;pi T ; : : :)T ; pi = (::: ;W ij k;V i

j k;aij k;bi

j k; : : :)T :

p

"i j"i j · C; 8C > 0

diN N (y(n); : : : ;y;u) = W i T ¾(V i T x +ai ) +bi ;

Page 12: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Reduced Model IdentificationReduced Model Identification

pik+1 = pi

k +¢ pik;

MinimizeMinimize functional reconstruction error (sole function of network parameters ):

Steepest descentSteepest descent corrections:

= learning rate.

p

´

¢ pik = ¡ ´

@E i (T trackk )

@pik

;

E i (Tadaptk ) = (f i

ref(_ey¤

h; ey¤h;u¤

h) ¡ diN N (ey¤(n)

h ; : : : ; ey¤h;u¤

h))2¯¯T adapt

k

Page 13: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

RemarkRemark: tracking and steering grids are different.

= coarsecoarse grid, captures flight mechanics scalesflight mechanics scales;

= finefine grid, captures aeroelastic scalesaeroelastic scales.

T trackh

T steerh

Reduced Model IdentificationReduced Model Identification

1.1. FilterFilter aeroelastic solution ;

2.2. ProjectProject filter outputs onto adaption grid:

3.3. Compute derivativesCompute derivatives based on interpolationinterpolation of filtered and projected outputs.

F (ey¤h)

ey¤h

ey¤hjT adapt

h= P ¡ 1(F (ey¤

hjT steerh

));

ey¤(n)h

Page 14: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Reduced Model IdentificationReduced Model IdentificationEffect of system identificationsystem identification by model defect adaptionmodel defect adaption:

Output of multibody, reference, and neural-augmented reference with same prescribed inputs .u

Short Short transient = transient =

fast adaptionfast adaption

Page 15: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Maneuver optimal control problemManeuver optimal control problem: solution yields reference to-be-tracked trajectory .

Optimize performance index

Subjected to:

• Reduced model equations:

• Boundary conditions: (initial)

(final)

• Constraints:

RemarkRemark: cost function, constraints and bounds collectively define in a compact and mathematically clear way a maneuver.

Trajectory Planning Trajectory Planning

Ã(y(T0)) 2 [Ã0min;Ã0max

];Ã(y(T)) 2 [ÃTmin

;ÃTmax];

J plan = Á(y;u)¯¯T

+Z T

T0

L(y;u) dt;

f ( _y;y;u;p¤) = 0;

gplan(y;u;T) 2 [gplanmin ;gplan

max ]:

Trajectory to be followed by tracking problem

Page 16: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Model-predictive tracking problemModel-predictive tracking problem: solution yields steering controls .

Minimize cost

Subjected to:

• Reduced model equations:

• Initial conditions:

• Constraints:

RemarkRemark: formally identical to the planning problem, the two can be solved using the same softwaresame software.

Trajectory Tracking Trajectory Tracking

f ( _y;y;u;p¤) = 0;

y(T track0 ) = ey0;

gtrack(y;u;T) 2 [gtrackmin ;gtrack

max ]:

Tracking window

Steering window

Tracking cost

Tracking trajectory from planning problem

J trackh =

Z T t rack

T t rack0

(jjyh ¡ y¤hjjS t rack

y+jj _uhjjS t rack

_u) dt;

Page 17: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

March forward in timeMarch forward in time multibody solver with given control given control inputsinputs as computed by the tracking problem:

• Project controlsProject controls from tracking grid to steering grid :

• Solve initial value probleminitial value problem from current state on steering window:

Steering ProblemSteering Problem

Steering window

ef ( _exh; exh; eh;u¤

h) = 0;

ec( _exh; exh) = 0;

ex(Tsteer0 ) = ex0:

ex0

u¤hjT steer

h= P (u¤

hjT t rackh

):

T trackh T steer

h

Current state (tracking initial condition)

ex0

Page 18: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

RequirementsRequirements:• Achieve positive rate of climb;• Achieve VTOSS; • Clear obstacle of given height;• Bring rotor speed back to nominal.

Cat-A Continued TOCat-A Continued TO

Normal take-off

Continued take-off

Rejected take-off

Take-off decisionpoint

Page 19: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Lower pairs:

• Sensors;

• Actuators, controls.

Other models:

• Flexible joints;

• Unilateral contacts;

Non-linearly stable energy-energy-preserving-decayingpreserving-decaying scheme.

Body models: geometrically exact, composite ready beams and shells; rigid bodies.

Rotorcraft Aeroelastic ModelsRotorcraft Aeroelastic ModelsFinite element based MB codeFinite element based MB code (Bauchau & Bottasso 2001).

Page 20: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Cost functionCost function:

where T1 is unknown internal event (minimum altitude) and T unknown maneuver duration.

ConstraintsConstraints:

- Control bounds

- Initial conditions obtained by forward integration for 1 sec from hover to account for pilot reaction (free fall)

Cat-A Continued TOCat-A Continued TO

J plan = ¡ Z(T0) +wT (T ¡ T1) +w1

T ¡ T0

Z T

T0

_B21 dt;

Page 21: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Constraints (continued)Constraints (continued):

- Internal conditions

- Final conditions

- Power limitations

For (pilot reaction):

where: maximum one-engine power in emergency;

one-engine power in hover;

, engine time constants.

For :

Cat-A Continued TOCat-A Continued TO

Page 22: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Flap, lag, andpitch hinges

Blade

Hub

Shaft

FuselageHorizontallifting surface

Rigid body

Beam

Revolute joint

Planar joint constrainingmotion to a vertical plane

A:

B: i

Cat-A Continued TOCat-A Continued TO

Multibody model (one single blade shown, for clarity)

Page 23: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Cat-A Continued TOCat-A Continued TO

Page 24: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Cat-A Continued TOCat-A Continued TO

(Legend: comprehensive model, flight mechanics model)

Page 25: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Cat-A Continued TOCat-A Continued TO

Effect of re-planning iterations:

(Solid line: comprehensive model)

Page 26: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Cat-A Continued TOCat-A Continued TO

Effect of re-planning iterations:

(Solid line: comprehensive model)

Page 27: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Cat-A Continued TOCat-A Continued TO

(Legend: comprehensive model, flight mechanics model)

MPC every 1 sec. MPC every 0.2 sec.

Effect of MPC activation frequency:

Page 28: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Optimal Control ProblemOptimal Control Problem (with unknown internal event at T1)

• Cost function:

• Constraints and bounds:

- Initial trimmed conditions at 30 m/s

- Power limitations

Minimum Time Obstacle AvoidanceMinimum Time Obstacle Avoidance

Page 29: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Minimum Time Obstacle AvoidanceMinimum Time Obstacle Avoidance

Page 30: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Minimum Time Obstacle AvoidanceMinimum Time Obstacle Avoidance

(Legend: comprehensive model, flight mechanics model)

Trajectories at 1st iteration

Trajectories at 4th iteration

Effect of reduced model adaption:

Page 31: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

Minimum Time Obstacle AvoidanceMinimum Time Obstacle Avoidance

(Legend: comprehensive model, flight mechanics model)

Pitch vs. time at 1st iteration

Pitch vs. time at 4th iteration

Effect of reduced model adaption:

Page 32: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

ConclusionsConclusions

• Computational procedures for maneuvering maneuvering comprehensive flying modelscomprehensive flying models were proposed, that blend aeroelasticity with flight mechanics;

• Multi-model approach allows reasonable computational reasonable computational costscosts even for very large aeroelastic models;

• No modificationsNo modifications to comprehensive codes are necessary in order to analyze maneuvering flight conditions;

• Basic idea applicable also to the steeringsteering of other vehicle models, e.g. automobilesautomobiles and motorcyclesmotorcycles;

• Receding horizon formulation of MMSA allows for the analysis of unstable systemsunstable systems, such as helicopters;

• MMSA can deal with inputinput and output constraintsoutput constraints.

Page 33: POLI di MI tecnicolano PROCEDURES FOR ENABLING THE SIMULATION OF MANEUVERS WITH COMPREHENSIVE CODES Carlo L. Bottasso, Alessandro Croce, Domenico Leonello

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

Man

eu

veri

ng

Roto

rcra

ft D

yn

am

ics

POLITECNICO di MILANO

AcknowledgementsAcknowledgements

• This work is supported in part by the US Army Research US Army Research OfficeOffice, through contract no. 99010 with the Georgia Institute of Technology, and a sub-contract with the Politecnico di Milano (Dr. Gary Anderson, technical monitor).

• Domenico Leonello is supported by a fellowship of Agusta-Agusta-WestlandWestland.