17
Polyamides from renewable resources' past, present and future From Dr. Harald Haeger Vice President Process and Product Development BU Performance Polymers German-Russian Forum Biotechnology Hannover, 10.10.2011

Polyamides from renewable resources' - Ost-West

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Polyamides from

renewable resources'past, present and future

From Dr. Harald Haeger

Vice President Process and Product Development

BU Performance Polymers

German-Russian Forum Biotechnology

Hannover, 10.10.2011

Dr. Harald Häger, Seite | 2

Outline

• Introduction

• Monomers from renewable resources

• Polyamide synthesis

• Applications examples for polyamides from renewable

resources

• LCA analysis of PA610

• Summary outlook

Dr. Harald Häger, Seite | 3

Bio-renewable or petrochemically

based: Only polyamides are

offering a wide range of products

in both sectors;

Most bio-degradable polymers are

competing with polyolefins in the

commodity sector.

PP, PS, PE,

PVC, etc.PE, PVC, PLA,

PHB, etc

PMMA, PA6,

PA66, PBT,

PET, PC

PA1010, PA610,

PTT, etc

PEEK,

PPSU,

PEI, PPA,

PA12

Bio-

PPA

PA11

PA1012

Engineering

plastics

High

performance

polymers

Based on petro-

chemical feedstock

Based on bio-

renewable feedstock

Polyamides based on renewable feedstock are readily

available and actively asked for from our customers

Dr. Harald Häger, Seite | 4

Source: KH Hill, Pure Appl Chem 2000

Natural Fats and Oils (castor, rape seed, palm kernel oil, …)

By using suitable technologies fatty acids derivates

can be converted to versatile polyamide building

blocks

Oleic acid

Ozono-

lysis

Dimeri-

sation

Azelaic

acid

Dimer

fatty acid

Ricinoleic acid

Caustic

oxidation

Thermo-

lysis

Sebacic

Acid

-

Aminoundeca

noic acid

Biocatalysis

C10, C12,

C14….

diacids

Fatty acid (C10,

C12, C14, …)

Diamines are accessible via the corresponding diacids!

Dr. Harald Häger, Seite | 5

Preparation of Polyamides

a) Diacids and Diamines

n HOOC-R-COOH + n H2N-R’-NH2 HO-[-OC-R-CO-NH-R’-NH-]n-H + (2n-1) H2O Examples: Polyamide 66: Hexamethylenediamine, Adipic acid

Polyamide 612: Hexamethylene diamine, Dodecanoic diacid

b) Lactams

n --CO-NH-- HO-[-OC-- --NH-]n-H Examples: Polyamide 6: Caprolactame

Polyamide 12: Laurolactame

Dr. Harald Häger, Seite | 6

Polyamides based on renewable resources

PA612,

Up to 65% based on

bio-renewables

N N

O10 10

On

H H

PA1012,

45% to100% based on

bio-renewables

N N

O10 8

On

H H

PA1010,

100% based on

bio-renewables

N N

O6 8

On

H H

PA610,

62% based on

bio-renewables

HT-Polyamides

40% to 60% based on

bio-renewable monomers

microcristalline-

Polyamides

40% to 50% based on

bio-renewable monomers

N N

O6 10

On

H H

Dr. Harald Häger, Seite | 7

Results are indicating that PA610 GF30 could

replace PA612 GF30

0,50,6

0,7

0,8

0,9

1

1,1

1,2

1,31,4

E-Modulus

Tensile strength

Tensile strength

after wet ageing

Tensile strength after

ageing @140°C for 5000 h

elongation @ break

Impact strength

unnotched @ 23°C

Impact strength

unnotched @ 0°CImpact strenght

unnotched @ -30°C

Impact strength unnotched

@ 23°C wet ageing*

Impact strength notched

@ 23°C wet ageing*

Impact strength unnotched

@ 23°C ageing at 140°C for 3000 h

Vicat A

Vicat B

water absorption

saturation

VESTAMID D GF30

VESTAMID® Terra HS GF30

Dr. Harald Häger, Seite | 8

Melting point and water absorption of different

polymers

350

200

150

250

300

8 10 122 4 60 0

Me

ltin

g p

oin

t [

°C ]

Water absorption [ % ] Test (acc. ISO62) in water by +23°C

PPA

PEEK

PA46

PA6

PA66

PA

612

LCP

PES

PPSU

PSU

PA12

PA11

PBT

PET

PPS

PEI

610

30 % glass fiber

reinforced polymersVESTAMID

HTplus

M3000

PA10T with a successful combination of excellent mechanical and thermal properties and low water uptake

Dr. Harald Häger, Seite | 9

Product characteristics

PA10T basic properties

+ =

• next generation PPA

• up to 50% renewable

• lower water absorption

• better dimensional stability

• higher hydrolysis resistance

• improved processing window

Vestamid HTplus with 30% filler

Tmp 290 °C

Tg 125 °C

HDT 290 °C

Tensile Strength 190 MPa

Tensile Modulus 9500 MPa

moisture uptake

dimensional stability

hydrolysis resistance

chemical resistance

stiffness

tensile strength

elongation at break

impact strength unnotched

impact strength notched

processability

VESTAMID HTplus M1000 VESTAMID HTplus M3000

Dr. Harald Häger, Seite | 10

PA10T a successful combination of excellent

mechanical and thermal properties and low water

uptake

Dr. Harald Häger, Seite | 11

VESTAMID® HTplus for LED - whiter, brighter, longer

lasting

76

78

80

82

84

86

88

90

92

94

96

VESTAMID HTplus PA10T PA6T

0 96 144 192

% reflectance, 85°C, 85% r.h.

Dr. Harald Häger, Seite | 12

• high degree of reflectivity

• superior aging behavior

• excellent UV-stability

• high dimensional stability due to low water absorption

• broader processing window compared to PA6T/X

• good bondage to metal and silicone

Why use VESTAMID®HTplus PA10T grade?

VESTAMID® HTplus for LED - whiter, brighter, longer

lasting

Dr. Harald Häger, Seite | 13

PA 610 1 Polymerisation – standard procedereGaBi 4 process plan: Reference quantities

The names of the basic procces are shown.

DE: PA610-Polymerisation, klass. Herstellung EV

CH: treatment, sewage,

to wastewater treatment,

Class 5

X m³

DE: PA 610

Rohgranulat

Weitergabe EV1 kg

CPM ThE supply steam

CPM Power supply

transport land (lorry)

DE

transport land (lorry)

DE

DE: Water deionized PE

RER: tap water, at user

Water (surface water) PE

DE: Nitrogen (gaseous)

PE

HMDA Transport

nach Marl (per Landweg)

FR:

Hexamethylenediamine

(HMDA; from butadiene

via adiponitrilte) PE

_transport sea

(ocean ship)

DE: Sebacic acid

(by product 2-Octanol)

(via ricinus oil) PE

Sebacinsäure Transport

von China, über Shanghai

nach Marl, ca. 19.000 km

ges. per Schiff/Land

(500 Land, 18.500 Schiff)X kg

X kg

X kg

X kg

X kg

X kg

X MJ

X kg

X kg

Xkg

0,729 kg

X MJ

CPM Power supplyCPM Power supplyX MJ

GLO: Compressed air 7 bar

(high power consumption) PE [b]RER: tap water, at user

GLO: Cooling Water

Recycling EV

X Nm³

X kg

RER: heat, natural gas,

at industrial fumace > 100kW

X MJ

X kg

X kg

Dr. Harald Häger, Seite | 14

PA 610 Compounding to GF30GaBi 4 process plan: Reference quantities

The names of the basic procces are shown.

DE: PA610-Konfektionierung EV

DE: PA 610 Granulat

verkaufsfertig

Weitergabe EV1 kg

X MJ

_CPM Power supply

GLO: Compressed air 7 bar

(high power consumption) PE [b]

0,075 Nm³

Glasfasern gemahlen

Transport

nach Marl (per Landweg)

_glass fiber milled

X kg

X kg

X kg

Power supply mix,

Infracor (Marl)

_transport land (lorry)

DE

DE: Nitrogen (gaseous)

PE

DE: PA 610 Rohgranulat

Weitergabe EV

_CPM ThE supply steam

(5 bar)

X kg

X kg

X MJ

Dr. Harald Häger, Seite | 15

PA 610 GF 30 (renewable materials) Carbon Footprint

4,61,7

2,9

0

1

2

3

4

5

6

7

8

class.

polymeri

zation

compou

nding

GF 30

PA 610

GF 30

GaBi-

Referen

ce PA 6

GF 30

7,3

CO2-Equiv. / kg PA 610

-37%

3,51,7

1,8

0

1

2

3

4

5

6

7

8

compou

nding

GF 30

PA 610

GF 30

GaBi-

Referen

ce PA 6

GF 30

7,3

Optim.

polymeri

sation

CO2-Equiv. / kg PA 610

-52%

LCA by Evonik Reference data (fossil)

Dr. Harald Häger, Seite | 16

Conclusion and Outlook

• Currently polyamides from renewable resources are mainly based

on castor seeds!

• The monomer synthesis id still based on a 70 year old chemistry.

• There are first signs in the market that dodecanoic diacid can be

made also from renewable resources.

• At least for long chain polyamides, fatty acid derivatives will be an

important feedstock for the future.

• Biotechnology is an interesting and already proven method to

produce -diacids from n-alkanes or fatty acid derivatives

• New polyamides based on renewables are offering an very

interesting potential for new applications

Dr. Harald Häger, Seite | 17