12
Edited by Wolfgang Knoll and Rigoberto C. Advincula Functional Polymer Films Volume 2 Characterization and Applications WILEY- VCH WILEY-VCH Verlag GmbH & Co. KG a A

Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Edited by Wolfgang Knoll and Rigoberto C. Advincula

Functional Polymer Films

Volume 2

Characterization and Applications

WILEY-VCH

WILEY-VCH Verlag GmbH & Co. KGaA

Page 2: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Contents of Volume 1

Part I Preparation 1

A Perspective and Introduction to Organic and Polymer Ultrathin Films:

Deposition, Nanostructuring, Biological Function, and Surface

Analytical Methods 3

Rigobe.no C. Advincula and Wolfgang Knoll

Multifunctional Layer-by-Layer Architectures for BiologicalApplications 11

Rita J. El-khouri, Rafael Szamocki, Yulia Sergeeva, Olivier Felix, and

Gero Decker

The Layer-by-Layer Assemblies of Polyelectrolytes and Nanomaterials as

Films and Particle Coatings 73

Mi-Kyoung Park and Rigoberto C. Advincula

Langmuir-Blodgett-Kuhn Multilayer Assemblies: Past, Present, and

Future ofthe LB Technology 113

Dtbora T. Balogh, Marystela Ferreira, and Osvaldo N. Oliveira

Self-Assembled Monolayers: the Development ofFunctional Nanoscale

Films 151

Andrew C. Jamison, Pawilai Chinwangso, and T. Randall Lee

Polyelectrolyte Brushes: Twenty Years After 219

Patrick Guenoun

Preparation of Polymer Brushes Using "Grafting-From"Techniques 239

Zhiyi Bao, Ying Zheng, Gregory L. Baker, and Merlin L. Bruening

Ultrathin Functional Polymer Films Using Plasma-Assisted

Deposition 265

Renate Forch

Page 3: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

VI Contents

9 Preparation of Polymer Thin Films by Physical Vapor Deposition 287

Hiroaki Usui

10 Electro-Optical Applications of Conjugated Polymer Thin Films 319

Nicholas Marshall, S. Kyle Sontag, andJason Locklin

11 Ultrathin Films ofConjugated Polymer Networks: A Precursor PolymerApproach Toward Electro-Optical Devices, Sensors, and

Nanopatterning 379

Rigoberto C. Advincula

Part II Patterning 402

12 Nanopatterning and Functionality ofBlock-CopolymerThin Films 403

Soojin Park and Thomas P. Russell

13 Patterning by Photolithography 475

Anuja De Silva and Christopher K. Ober

14 Nanopatterning of Polymer Brush Thin Films by Electron-Beam

Lithography and Scanning Probe Lithography 501

Tao Chen, Jianming Zhang, Andres Garcia, Robert Ducker, and

Stefan Zauscher

15 Direct Patterning for Active Polymers 519

Eunkyoung Kim, Jungmok You, Yuna Kim, and Jeanghun Kim

16 Nanopatterning ofPhotosensitive Polymer Films 571

Zouheir Sehkat, Hidekazu Ishitohi, Mamoru Tanabe,Tsunemi Hiramatsu, and Satoshi Kawata

Contents of Volume 2

Preface XVII

List ofContributors XIX

Part III Characterization 592

17 Dynamics and Thermomechanics of Polymer Films 593Benoit Loppinet and George Fytas

17.1 Introduction 593

17.2 Experimental Techniques 59417.2.1 Dynamic Light Scattering 594

17.2.1.1 Microphoton Correlation Spectroscopy (/n-PCS) and EW- DLS 596

Page 4: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Contents VII

17.2.1.2 Brillouin Light-Scattering Spectroscopy (BLS) 598

17.2.2 Fluorescence Correlation Spectroscopy (FCS) 599

17.3 Dynamics 600

17.3.1 Hydrogel Layers Anchored to Solid Surfaces 600

17.3.2 Grafted Polymer Brushes 602

17.3.2.1 Concentration Dynamics 602

17.3.2.2 Probe Diffusivities Near to Soft Surfaces 605

17.4 Thermomechanical Properties 607

17.4.1 Thin Polymer Films 607

17.4.1.1 Inplane Elastic Properties 607

17.4.1.2 Out-of-Plane Elastic Properties 610

17.4.2 Periodic Multilayer Polymer Films 612

17.4.2.1 Effective Medium and Confinement Effects 612

17.4.2.2 Interaction Elastic Waves and Structure 634

17.4.3 Mechanical Anisotropy 616

17.4.4 One-Dimensional Phononic Films 629

17.4.5 Particle-Shape Fluctuations (Vibration Modes) 620

17.5 Conclusion and Outlook 622

References 623

18 Investigations ofSoft Organic Films with Ellipsometry 629

Diethdm Johannsmann18.1 Introduction 629

18.2 Modeling 630

18.2.1 Importance ofAngle Measurements 630

18.2.2 Null-Ellipsometry 631

18.2.3 Single-Layer Systems 632

18.2.3.1 Refractive Indices 634

18.2.3.2 Roughness 635

18.2.3.3 Anisotropy and Birefringence 636

18.2.4 Multilayers and Refractive-Index Profiles 637

18.3 Multiple-Angle Ellipsometry and Total Internal Reflection

Ellipsometry 639

18.4 Fourier-Transform Ellipsometry 641

18.5 Comparison ofOptical and Acoustic Refiectometry 644

18.6 Summary and Conclusions 646

Acknowledgments 646

References 647

19 Swelling Behavior ofThin Hydrogel Coatings 649

Ryan Toomey, Ajay Vidyasagar, and Ophir Ortiz

19.1 Introduction 649

19.2 Fabrication ofSurface-Attached Networks and Characterization

Techniques 650

19.3 Thermodynamics ofConfined Hydrogels 651

Page 5: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

VIII Contents

19.4 Thermodynamics of Confined, Responsive Hydrogels 654

19.5 Swelling-Induced Surface Instabilities in Confined Hydrogels 659

19.6 Summary and Concluding Remarks 663

Acknowledgments 664

References 664

20 Scattering Techniques for Thin Polymer Films 669

Gila E. Sttin

20.1 Introduction 669

20.2 Structure of Polymer/Polymer Interfaces Revealed by Reflectivity 670

20.3 Block Copolymer Thin Films Measured with Grazing-Incidence

Small-Angle X-Ray Scattering 676

20.3.1 GISAXS Patterns ofCylindrical, Hexagonally Perforated Lamellar, and

Gyroid Diblock Copolymer Phases 678

20.3.2 Packing Symmetries of Spherical Domain Block Copolymers in Thin

Films 679

20.3.3 Controlling Domain Orientations in Lamellar and CylindricalPhases 681

20.3.4 Rod-Coil Block Copolymers in Thin Films 684

20.3.5 Templated Self-Assembly 684

20.4 Thin Films ofOrganic Semiconductors Measured with X-Ray

Scattering 686

20.4.1 Thin-Film Transistors 686

20.4.2 Polymer Solar Cells 687

20.5 Transmission X-Ray Scattering 688

20.6 Summary 689

References 690

21 Nanostructured Optical Waveguides for Thin-Film

Characterization 695

Hatice Duran, K.H. Aaron Lau, Petra J. Cameron, Antonis Gitsas,

Martin Steinhart, and Wolfgang Knoll

21.1 Introduction 695

21.2 Experimental Techniques 699

21.2.1 Optical Waveguide Spectroscopy (OWS) Setup 699

21.2.2 Nanoporous Anodic Aluminum Oxide (Nanoporous AAO) 699

21.2.3 Ti02 Particle Thin Films 700

21.2.4 Polymeric Nanorod Arrays 700

21.3 Theoretical Descriptions 701

21.4 Cylindrical Nanostructures as Optical Waveguides 702

21.4.1 Nanoporous Anodic Aluminum Oxide (AAO) 702

21.4.1.1 Other Types of Nanoporous AAO Optical Sensor Designs 707

21.4.1.2 AAO Waveguide Fabrication Advances 709

21.4.2 PS-co-PMMA Block Copolymers 709

21.4.3 Other Cylindrical Nanoporous Waveguide Materials 710

Page 6: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Contents IX

21.5 Isotropic Mesoporous Waveguides 723

21.5.1 Ti02 Foam Films 722

21.5.2 OWS Combined with Electrochemical Measurements 711

21.5.3 Dye-Uptake Measurements for Dye-Sensitized Solar Cells

(DSSCs) 713

21.6 Nanostructured Nanorod Arrays by Templating Strategies 714

21.6.1 Plasmonic Metallic Nanoarrays 714

21.6.2 Polymeric Nanorod Arrays 725

21.7 Conclusions 727

Acknowledgments 717

References 72 7

22 Electrochemical Surface Plasmon Resonance Methods for Polymer Thin

Films 723

Akira Baba, Futao Kaneko, Rigoberto Advincula, and Wolfgang Knoll

22.1 Introduction 723

22.2 Electrochemical Surface Plasmon Spectroscopy 724

22.3 Evaluation ofPolymer Thin Films by EC-SPR 725

22.4 Electrochemical SPR-SPPL 728

22.5 Electrochemical SPR Microscopy 730

22.6 Simultaneous Electrochemical-Atomic Force Microscopy-SPR 732

22.7 Application to Bio/Chemical Sensors 736

22.8 EC-SPR Method - Grating-Coupling Surface Plasmon Excitation 739

22.9 Combination of Electrochemical-Quartz Crystal Microbalance 739

22.10 Electrochemical SPR under High Pressure 741

22.11 Conclusions 742

Acknowledgments 743

References 743

23 Characterization of Molecularly Thin Polymer Layers with the Surface

Forces Apparatus (SFA) 745

Marina Ruths

23.1 Introduction: Polymer Layers Adsorbed on and Confined between

Solid Surfaces 745

23.2 Force Measurements with the Surface Forces Apparatus (SFA) 746

23.3 Forces in Systems with Adsorbing or NonadsorbingHomopolymer 748

23.3.1 Bridging Interactions 750

23.3.2 Depletion Interactions 752

23.4 Forces in Systems with End-Adsorbed Polymer 755

23.5 Interactions between Dry Polymer Layers: Adhesion 760

23.6 Importance ofPolymer Interactions for Applications 763

Acknowledgments 763

References 763

Page 7: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Xj Contents

24 Biomimetic Thin Films as a QCM-D Sensor Platform to Detect

Macromolecular Interactions 771

Nam-Joan Cho and Curtis W. Frank

24.1 Introduction 772

24.2 BriefOverview of Quartz Crystals 772

24.3 QCM Methodologies: Steady-State versus Transient Behavior 773

24.3.1 Sauerbrey Model 774

24.3.2 Voigt-Voinova Model 775

24.4 QCM-D Analysis ofBiomimetic Thin Films: Assembly and

Applications 776

24.4.1 Design and Characterization of Biomimetic Thin Films 777

24.4.2 Two-Dimensional, Planar Bilayer Platform 781

24.4.3 Intact Vesicle Platform 782

24.4.4 Bilayer-Tethered Vesicle Platform 785

24.4.5 Biological Membrane-on-a-Chip Platform 786

24.5 Conclusion 787

References 788

25 Electrochemical Impedance Spectroscopy (EIS) 791

Renate L.C. Naumann

25.1 Basic Principles 791

25.1.1 Data Presentation 795

25.1.2 Data Analysis 796

25.2 Polymer Films 797

25.2.1 Corrosion-Protective Coatings 797

25.2.2 Ionic Conducting Films 798

25.2.3 Electron-Conducting Films 800

25.2.4 Conductive Films on Semiconductor Supports 802

25.3 Stratified Films 802

25.3.1 Solid-Supported (s)BLMs 802

25.3.2 Polymer-Supported BLMs and tBLMs 803

25.3.3 Ion Transport through Channels Incorporated into a tBLM 803

References 805

26 Characterization ofResponsive Polymer Brushes at Solid/LiquidInterfaces by Electrochemical Impedance Spectroscopy 809

OmarAzzaroni and Claudio Gervasi

26.1 Introduction 809

26.2 Electrochemical Impedance Spectroscopy-Basic Principles 80926.3 Electrochemistry as a Tool to Characterize Thin Polymer Films 81226.4 Probing the Responsive Properties of Polymer Brushes through EIS

Measurements 814

26.5 Molecular Transport within Polymer Brushes Studied by EIS 82026.6 Time-Resolved EIS Measurements on Responsive Polymer

Brushes 827

Page 8: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Contents XI

26.7 Concluding Remarks 828

Acknowledgments 828

References 829

27 X-Ray Photoelectron Spectroscopy of Ultrathin Organic Films 831

Xingyu Gao and Andrew T.S. Wee

27.1 Introduction 831

27.2 Binding Energy 832

27.2.1 Chemical Shifts 834

27.2.2 Band Bending 837

27.3 Angle-Resolved XPS 841

27.3.1 Depth Profiling 841

27.3.2 Photoelectron Diffraction 844

27.4 Photodegradation of Organic Films 852

27.5 Conclusion 851

References 852

Part IV Applications 855

28 Self-Assembled Multifunctional Polymers for Biointerfaces 857

G6raldine Coullerez, Ganna Gorodyska, Erik Reimhult, Marcus Textor,

and H. Michelle Grandin

28.1 Introduction 857

28.2 Immobilization and Conformation of Polymers at Biointerfaces 859

28.2.1 Surface Immobilization of Polymers via the "Grafting-To"Method 859

28.2.1.1 Physisorption ofBlock-and Graft-Copolymers 859

28.2.1.2 Self-Assembled Monolayers (SAMs) 86.2

28.2.1.3 Chemisorption of End-Functionalized Polymers 861

28.2.2 Surface Immobilization of Polymers via the "Grafting-From" Method:

Surface-Initiated Polymerization ofPolymer Brushes 862

28.2.3 Conformations of Polymers at Interfaces 863

28.3 Surface Strategies for Bio-Oriented Applications 866

28.3.1 Surface Passivation 866

28.3.1.1 Polyethylene Glycol) Nonfouling Surfaces 866

28.3.1.2 Polyoxazoline Nonfouling Surfaces 870

28.3.1.3 Glycocalyx Mimetics: Polymers with Oligosaccharide Grafts 872

28.3.1.4 Bioinspired Anchorage Strategies for the Attachment of Polymers to

Interfaces 872

28.3.2 Bioactive Surfaces 875

28.3.2.1 Biotin-Functionalized Surfaces for (Strept)avidin-BasedImmobilization of Biotionylated Biomolecules 875

28.3.2.2 NTA-Functionalized Polymeric Surfaces for Selective and Reversible

Binding of Oligo-Histidine-Tagged Proteins 876

Page 9: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

XII Contents

28.3.2.3 RGD-Peptide Surfaces 878

28.3.2.4 Carbohydrate-Functionalized Surfaces 881

28.3.3 Micropatterning by Combining Lithographical and Self-Assembly

Techniques 884

28.4 Summary and Outlook 889

Acknowledgments 891

References 891

29 Fabrication, Properties, and Biomedical Applications of

Nanosheets 907

Toshinori Fujie, Yosuke Okamura, and Shinji Takeoka

29.1 Introduction 907

29.2 Nanosheets of Micrometer Size as Platelet Substitutes 909

29.2.1 Fabrication of Freestanding Nanosheets Derived from Proteins and

Nanoparticles 909

29.2.2 Freestanding Albumin Nanosheets 911

29.2.3 Freestanding Nanoparticle-Fused Nanosheets 923

29.3 Giant Nanosheets as Nanoadhesive Plasters 915

29.3.1 Quasi-Two-Dimensional Freestanding Nanosheets 915

29.3.2 Freestanding Polysaccharide Nanosheets 916

29.3.3 Freestanding Poly(L-Lactic Acid) Nanosheets 919

29.3.4 Nanoadhesive Plaster Including Ubiquitous Transference ofthe

Nanosheets 920

29.4 Surgical Applications ofNanoadhesive Plasters 922

29.4.1 Freestanding Polysaccharide Nanosheet Integrated for Tissue-Defect

Repair 922

29.4.2 Freestanding PLLA Nanosheet for Sealing Operations 924

29.5 Nanosheets for the Next Generation 926

29.5.1 Nanosheets Bearing Stimuli-Responsive Functional Surfaces 926

29.5.2 Remote Controllable Nanosheets Driven by a Magnetic Field 928

29.6 Concluding Remarks 928

Acknowledgments 928

References 929

30 Hybrid Multilayer Films Containing Nano-Objects 933

Yeongseon Jang, Bongjun Yeom, and Kookheon Char

30.1 Introduction 933

30.2 Preparation Methods for Hybrid Multilayer Films 934

30.2.1 Layer-by-Layer Assembly 934

30.2.2 Solution-Dipping Method 935

30.2.3 Spin-Coating Method 935

30.2.4 Spraying Method 937

30.3 Building-Block Materials for Hybrid Multilayer Films 938

30.3.1 Inorganic Nano-Objects 939

30.3.1.1 Nanoparticles 939

Page 10: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Contents XIII

30.3.1.2 Nanorods and Nanowires (NWs) 940

30.3.1.3 Nanosheets 941

30.3.2 Organic Nano-Objects 942

30.3.2.1 Polymeric Micelles 942

30.3.2.2 Organic Dyes 944

30.3.2.3 Carbon Nanotubes 946

30.3.2.4 Graphene Oxide (GO) 947

30.3.3 Biological Nano-Objects 948

30.3.3.1 Nucleic Acids 948

30.3.3.2 Proteins 950

30.3.3.3 Viruses 951

30.4 Conclusion 953

References 953

31 Light-Directed Smart Responses in Azobenzene-Containing

Liquid-Crystalline Polymer Thin Films 962

Takahiro Seki

31.1 Introduction 961

31.2 Photoalignment ofMolecular Aggregates (Nanoscale Regions) 962

31.2.1 Surfactant Aggregate/Silica Nanohybrids 963

31.2.2 Chromonic Dye Aggregate/Silica Nanohybrids 964

31.2.3 Azobenzene (Az)-Containing Liquid-Crystalline Grafted PolymerFilms 966

31.3 Block-Copolymer Microphase Separation (MPS) Structure (Mesoscale

Region) 967

31.3.1 Photocontrolled Morphological Change ofMPS 968

31.3.2 Photoalignment ofMPS Structure 970

31.4 Surface-Relief Formation (Microscale Regions) 970

31.4.1 Features ofLiquid-Crystalline Polymer Materials 970

31.4.2 Hierarchical Structure Formation in Block-Copolymer Systems 971

31.4.3 Supramolecular Strategy 972

31.4.4 Organic-Inorganic Hybrid Materials 974

31.5 Summary 976

References 978

32 Thin-Film Applications of Electroactive Polymers 983

Jennifer A. Irvin and Katie Winkel

32.1 Introduction 983

32.1.1 Background 983

32.1.2 Common EAPs 984

32.1.3 Polymer Solubility and Processing 985

32.2 Applications 985

32.2.1 Field Effect Transistors 985

32.2.1.1 Background 985

32.2.1.2 Materials for FETs 986

Page 11: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Contents

32.2.1.3 Processing Considerations for OFETs 987

32.2.2 Polymer Light-Emitting Devices 988

32.2.2.1 Background 988

32.2.2.2 PLED Emissive Layer Materials 989

32.2.2.3 Processing Advances for PLEDs 990

32.2.3 Photovoltaics 991

32.2.3.1 Background 991

32.2.3.2 Materials for Photovoltaics 992

32.2.3.3 Novel Approaches for Photovoltaic Device Fabrication 992

32.2.4 Electrochromics 993

32.2.4.1 Background 993

32.2.4.2 Materials for Electrochromics 994

32.2.4.3 Electrochromic Device Designs 996

32.2.5 EAP Battery Electrodes 997

32.2.5.1 Background 997

32.2.5.2 EAPs as Battery Materials 997

32.2.6 EAP-Based Electrochemical Capacitors 998

32.2.6.1 Background 998

32.2.6.2 Electrochemical Capacitor Materials 1000

32.2.7 Sensors 1002

32.2.7.1 Background 1002

32.2.7.2 Materials for Sensors 1002

32.2.7.3 Sensor Designs 1002

32.2.8 Miscellaneous Applications 1004

32.2.8.1 Antistatic Coatings 1004

32.2.8.2 Transparent Polymeric Electrodes 1005

32.2.8.3 Corrosion Inhibition 1005

32.3 Conclusions and Future Outlook 1005

Acknowledgments 1006

References 1006

33 Hybrid Nanomaterials in Ultrathin Films: the Sol-Gel Method and

Il-Conjugated Polymers 1017

Antonio Francesco Frau and Rigoberto C. Advincula

33.1 Why Hybrid Nanomaterials and Thin Films? 1017

33.2 How to Fabricate Hybrid, Layered, Thin-Film Nanomaterials 1018

33.3 Hybrid Nanomaterials: More than Just "Clay" and "Plastic" 1022

33.4 Sol-Gel Chemistry for Nanostructuring 1023

33.4.1 Basics 1023

33.4.2 Hydrolysis versus Condensation 1025

33.4.3 Sol-Gel Process and Materials Science: the State-of-the-Art 1026

33.5 Conducting Polymers for Nanostructuring 1029

33.5.1 Basics 1029

33.5.2 Electro-Optical Thin-Film Materials 1030

33.5.3 Anticorrosion Coatings 1034

Page 12: Polymer thin films / 2 / Characterization and applicationsLangmuir-Blodgett-KuhnMultilayerAssemblies:Past, Present, and Futureofthe LBTechnology 113 Dtbora T. Balogh, MarystelaFerreira,

Contents XV

33.6 Hybrid Inorganic-Oxide-Polymer Materials: the State-of-the-Art 1035

33.6.1 Survey 1035

33.6.2 Hybrid Nanomaterials and Sol-Gel Process 1037

33.6.3 Hybrid Nanomaterials for Optoelectronic Devices 1038

33.6.4 Hybrid Nanomaterials for Anticorrosion Coatings 1039

33.7 Summary 1042

Acknowledgment 1042

References 1042

Index 2051