77
1 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Robert Bernstein Sandia National Laboratories Organic Materials Department Albuquerque, NM [email protected] 505-284-3690 179 th Technical Meeting Rubber Division April 18-20, 2011 Akron, Ohio Polymers/Organic Materials Aging Overview

Polymers/Organic Materials Aging Overview

  • Upload
    maalik

  • View
    69

  • Download
    1

Embed Size (px)

DESCRIPTION

Polymers/Organic Materials Aging Overview. Robert Bernstein Sandia National Laboratories Organic Materials Department Albuquerque, NM [email protected] 505-284-3690 179 th Technical Meeting Rubber Division April 18-20, 2011 Akron, Ohio. - PowerPoint PPT Presentation

Citation preview

Page 1: Polymers/Organic Materials Aging Overview

1

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Robert Bernstein

Sandia National LaboratoriesOrganic Materials Department

Albuquerque, [email protected]

505-284-3690

179th Technical Meeting Rubber DivisionApril 18-20, 2011

Akron, Ohio

Polymers/Organic Materials Aging Overview

Page 2: Polymers/Organic Materials Aging Overview

2

O-rings Shorting Plugs

Textiles

Nuclear Power Plant Cable Insulation

CH2 CHCH3

n

13

CH2 CHCH3

n

13CH2 CH

CH3

n

CH2 CHCH3

n

13

Labeled Polymers

Organic Materials Problems; Organic Materials Aging and Degradation

Page 3: Polymers/Organic Materials Aging Overview

3

‘Accelerated Aging’Te

mpe

ratu

re

Reaction Coordinate

Page 4: Polymers/Organic Materials Aging Overview

4General Approach/Goals

Physical property Chemical PropertyMacroscopic level Molecular Level

Tensile StrengthUV-VIS

Spectroscopy

Infra-red Spectroscopy

Mol

ecul

ar W

eigh

t Ana

lysi

s

Density

Differen

tial S

canning C

alorim

etry

X-Ray AnalysisSurfa

ce Analy

sis

Additives

Nuclear Magnetic Resonance

Goals• Prediction of physical properties vs. time

• Predict remaining lifetime of field materials• Develop condition monitoring method

GPC

Permeation Elongation

Dimensional changes

Sealing Force Compression Set

Page 5: Polymers/Organic Materials Aging Overview

5Deception!

Conclusions derived from initial high temperature, short duration (even out to 1 year) accelerated aging can be misleading.

Chemistry / mechanisms must be understood.

Results must be critically analyzed to identify and understand mechanism changes

Page 6: Polymers/Organic Materials Aging Overview

6Thermal-oxidative Aging: Nylon

100

90

80

70

60

50

40

30

20

10

0

Ave

rage

% te

nsile

str

engt

h re

mai

ning

1 10 100 1000

Time in days at temperature

138 °C 138 °C 2nd Spool 124 °C 124 °C 2nd Run 124 °C 2nd Spool 109 °C 99 °C 95° C 95 °C 2nd Run 80 °C 64 °C 48 °C 37 °C

2000 days ~ 5.5 yearsBernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long-term thermal-oxidative and hydrolysis results 2010, 95, 1471-1479.

Page 7: Polymers/Organic Materials Aging Overview

7

k =Ae-Ea/RT

Arrhenius equation:

Arrhenius Equation

Old Chemist expression: increase rate by 10 °C will double the rate

Page 8: Polymers/Organic Materials Aging Overview

8Time Warp

Back to High School….

…..but only briefly….

Page 9: Polymers/Organic Materials Aging Overview

9Equation of a Line

y=mx + b

what you want

slopewhat you know

y-intercept

Page 10: Polymers/Organic Materials Aging Overview

10Function of a Line

y=mx + b

x

y

slope =m

y intercept =b

Page 11: Polymers/Organic Materials Aging Overview

11

k =Ae-Ea/RT

Empirical equation

Arrhenius Equation

rate

Pre-exponential factorTemperature (Kelvin)

Gas constant

e

Activation Energy

Page 12: Polymers/Organic Materials Aging Overview

12

k =Ae-Ea/RT ln(k) = ln(A) – Ea/RT

Arrhenius Equation

ln(k) =– Ea/RT + ln(A)

ln(k) =–( Ea/R)(1/T) + ln(A)

Page 13: Polymers/Organic Materials Aging Overview

13Function of a Line

y=mx + b

x

y

slope =m

y intercept =b

Page 14: Polymers/Organic Materials Aging Overview

14Function of a Line

1/T

ln(k)

slope = -Ea/R

y intercept =ln(A)ln(k) =–( Ea/R)(1/T) + ln(A)

Page 15: Polymers/Organic Materials Aging Overview

15

Plot log(aT) vs 1/T linear if Arrhenius

k =Ae-Ea/RT

Arrhenius equation:

Arrhenius Equation

What is Ea?

k = anything

ln(k) =–( Ea/R)(1/T) + ln(A)

Page 16: Polymers/Organic Materials Aging Overview

16Ea

Reaction coordinate

Energyreactants

products

---Imagine a marble---

Page 17: Polymers/Organic Materials Aging Overview

17Ea

Reaction coordinate

Energyreactants

products

Page 18: Polymers/Organic Materials Aging Overview

18Ea

Reaction coordinate

Energyreactants

products

Intermediates/Transition states

Ea

Page 19: Polymers/Organic Materials Aging Overview

19Are Diamonds forever?

Page 20: Polymers/Organic Materials Aging Overview

20Kinetics vs. Thermodynamics (really the same thing)

Reaction coordinate

EnergyDiamond

Graphite

Page 21: Polymers/Organic Materials Aging Overview

21Ea

Reaction coordinate

EnergyDiamond

Graphite

Intermediates/Transition states

Ea

Page 22: Polymers/Organic Materials Aging Overview

22

k =Ae-Ea/RT

Arrhenius Equation

Critical assumption is that Ea is CONSTANT

Ass-u-meAssume

Page 23: Polymers/Organic Materials Aging Overview

23

Time-Temperature Superposition

If same mechanism:• same shape (log graph)• should be constant acceleration (multiple)

Plot log(aT) vs 1/T linear if Arrhenius

Does mechanism change as a function of temperature?

1. Pick a reference temperature2. Multiply the time at each temperature by the

constant that gives the best overlap with the reference temperature data

3. Define that multiple as ‘aT’ (aT = 1 for ref. temp.)4. Find aT for each temperature

k =Ae-Ea/RT ln(k) = ln(A) – Ea/RT

Empirical equationArrhenius equation:Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Extrapolation of Accelerated Aging Data -Arrhenius or Erroneous? 1997, 5, 250-257.

Page 24: Polymers/Organic Materials Aging Overview

24

Thermal-oxidative Aging: Nylon

100

90

80

70

60

50

40

30

20

10

0

Ave

rage

% te

nsile

str

engt

h re

mai

ning

1 10 100 1000

Time in days at temperature

138 °C 138 °C 2nd Spool 124 °C 124 °C 2nd Run 124 °C 2nd Spool 109 °C 99 °C 95° C 95 °C 2nd Run 80 °C 64 °C 48 °C 37 °C

2000 days ~ 5.5 yearsBernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long-term thermal-oxidative and hydrolysis results 2010, 95, 1471-1479.

Page 25: Polymers/Organic Materials Aging Overview

25

Thermal-oxidative Aging: Nylon Shifted Data

100

90

80

70

60

50

40

30

20

10

0

Ave

rage

% te

nsile

str

engt

h re

mai

ning

1 10 100 1000Shifted time to 109 °C, days

Shift Factor 138 °C 8.5 138 °C 2nd Spool 9.0 124 °C 3.25 124 °C 2nd Run 2.75 124 °C 2nd Spool 3.0 109 °C 1.0 99 °C 0.45 95 °C 0.75 95 °C 2nd Run 0.65 80 °C 0.25 64 °C 0.20 48 °C 0.12 37 °C 0.08

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long-term thermal-oxidative and hydrolysis results 2010, 95, 1471-1479.

Page 26: Polymers/Organic Materials Aging Overview

26

Thermal-oxidative Aging: Nylon Shift Factor Graph

0.0001 0.0001

0.001 0.001

0.01 0.01

0.1 0.1

1 1

10 10

Shift

fact

or, a

T

3.53.43.33.23.13.02.92.82.72.62.52.4

1000/T, 1/K

~23 °C

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Nylon 6.6 accelerating aging studies: II. Long-term thermal-oxidative and hydrolysis results 2010, 95, 1471-1479.

Page 27: Polymers/Organic Materials Aging Overview

27Thermal Exposure

Polymer O2 Oxidized Polymer+

Thermal-Oxidation

Quantify amount of oxygen consumed• Simple in theory• Difficult in practice• Amazingly sensitive

Page 28: Polymers/Organic Materials Aging Overview

28

Schematic of Oxuptake

Initial Pressure of O2

O2

O2

O2

O2

O2O2

O2

O2

O2O2

O2

O2

O2D + Time

Polymer Oxidized Polymer

Final Pressure of O2

Page 29: Polymers/Organic Materials Aging Overview

29

Oxygen Consumption

Page 30: Polymers/Organic Materials Aging Overview

30

Enhanced Extrapolation ‘Good’

1/Temperature, K-1

Nor

mal

ized

Mea

sure

d Pr

oper

ty

XX

XX

X

X

OO

OO

O

O

O

OSh

ift F

acto

r, a T

High Temp Low Temp

X Measured PropertyO Oxygen Consumption

X

Page 31: Polymers/Organic Materials Aging Overview

31

Enhanced Extrapolation: ‘Bad’

1/Temperature, K-1

Nor

mal

ized

Mea

sure

d Pr

oper

ty

XX

XX

X

X

OO

OO

O

OO

OSh

ift F

acto

r, a T

High Temp Low Temp

X

X Measured PropertyO Oxygen Consumption

O

Page 32: Polymers/Organic Materials Aging Overview

32

Diffusion Limited Oxidation (DLO) effects if oxygen dissolved in material used up faster by reaction than it can be replenished by diffusion from surrounding air atmosphere

Race between: the oxygen consumption rate versus the oxygen diffusion rate

Therefore we need estimates of:

1. O2 permeability versus aging temperature2. O2 consumption versus aging temperature

DLO, Need to Know

Page 33: Polymers/Organic Materials Aging Overview

33

Diffusion-Limited Oxidation (DLO)

O2

O2O2

O2

O2

O2

O2

O2O2

O2

O2

O2

HomogeneousHeterogeneous

rxn rate > diffusion rate rxn rate < diffusion rate

Page 34: Polymers/Organic Materials Aging Overview

34

Modulus Profiling

Measure of Inverse tensile complianceClosely related to tensile modulus

Indentation technique ca. 50mm resolution

Excellent to examine ‘geneity’ of aging (heteo- or homo-) (DLO issues)

20 30 40 50 60 70 80 90 100Shore A hardness

1

10

100

Mod

ulus

, MPa

Modulus vs. Shore A

Page 35: Polymers/Organic Materials Aging Overview

35

Schematic of Modulus Profile Experiment

Mass is applied in two stepsProbe tip, sample and mass

Gillen, K. T.; Clough, R. L.; Quintana, C. A. Polym. Degrad. Stab., Modulus profiling of polymers 1987, 17, 31-47

Page 36: Polymers/Organic Materials Aging Overview

36

Modulus Profiler

Page 37: Polymers/Organic Materials Aging Overview

37

Modulus Profiler Sample

Page 38: Polymers/Organic Materials Aging Overview

38

Aging of a nitrile rubber at temperatures ranging from 65°C to 125°C

0 20 40 60 80 100P, %

735 days

497 days

350 days

226 days

0 days

65oC

B N M O D 65

Modulus profiles of samples aged at 65°C indicate the presence of homogeneous aging

Homogeneous Aging

Wise, J.; Gillen, K. T.; Clough, R. L. Polymer Degradation and Stability, An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers 1995, 49, 403-418.

Page 39: Polymers/Organic Materials Aging Overview

39

0 20 40 60 80 100P, %

1

10

100

1000

Mod

ulus

, MP

a

176 days

127 days

84 days

36 days

0 days

BN M O D 95

95oC

0 20 40 60 80 100P, %

1

10

100

1000

D-1

, MP

a

18 days

14 days

7 days

4 days

0 days

125oC

BNM O D 125

Modulus profiles for samples aged at 95°C show that diffusion-limited oxidation (DLO) is becoming important; at 125°C, DLO effects are very significant

Heterogeneous Aging

Wise, J.; Gillen, K. T.; Clough, R. L. Polymer Degradation and Stability, An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers 1995, 49, 403-418.

Page 40: Polymers/Organic Materials Aging Overview

40

Nylon: Tensile versus Oxygen Consumption

10-5 10-5

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

100 100

101 101

Shift

fact

or, a

T

3.43.23.02.82.62.41000/T, 1/K

Tensile Strength Shift Factor Oxygen Consumption Shift Factor

~23°C

Page 41: Polymers/Organic Materials Aging Overview

41Thermal-oxidative tensile:Prediction vs. Experimental

Arrhenius predictions severely off targetsuggest change in mechanism/non-Arrhenius behavior

Oxygen consumption suggests no change in thermal-oxidative mechanism

Possible explanation involving mechanism change?

64 °C Thermal-oxidative

Initial data Predicted: 92% at ca. 3700 days Observe: 92% at ca. 835 days

Arrhenius Predictions

Page 42: Polymers/Organic Materials Aging Overview

42

Nylon 6.6

HN

NH

O HN

OOn

1,6 -Hexanediamine

H2NNH2

O

OHO

OH

Adipic Acid

+

H2O

Nylon Structure

Page 43: Polymers/Organic Materials Aging Overview

43

Humidity Aging Schematic

Time,D

O2

O2

O2

O2

O2

O2

O2

O2

O2

H2O

H2O

H2O

H2O H2O

H2O

O2

O2

O2

O2

O2O2H2O

H2O

H2O

H2OH2O

H2OH2O

H2O

Page 44: Polymers/Organic Materials Aging Overview

44

Humidity Aging Hardware

Page 45: Polymers/Organic Materials Aging Overview

45

Organic Materials Aging and Degradation

Specifics -o-ringsGeneral path –most organic materials

This talk –details not important (all published)

Page 46: Polymers/Organic Materials Aging Overview

46

O-ring Published Documentation

Gillen, K. T.; Celina, M.; Bernstein, R. In Polymer Degradation and Stability Validation of Improved Methods for Predicting Long-Term Elastomeric Seal Lifetimes from Compression Stress-Relaxation and Oxygen Consumption

Techniques, 2003; Vol. 82, pp 25-35.

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Predicting and Confirming the Lifetime of O-rings 2005, 87, 257-270.

Chavez, S. L.; Domeier, L. A. "Laboratory Component Test Program (LCTP), Stockpile O-Rings," BB1A3964, 2004.

Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone O-Ring Aging Study," SAND2007-6781, Sandia National Laboratories, 2007.

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O-rings 2009, 94, 2107-2133.

Page 47: Polymers/Organic Materials Aging Overview

47

O-rings Background

Used as environmental seals or other seals

O-RING CROSS-SECTIONS

UNAGED 15 yr in field

Most systems filled with inert gas to protect interior componentsfrom oxidation & hydrolysis

Previously:No technique to measure equilibrium sealing forceNo technique to rapidly achieve equilibrium compression setNo correlation

Page 48: Polymers/Organic Materials Aging Overview

48

CSR Jigs

Gap of jig can be adjusted to any desired size

O-ring pieces cut to allow air circulation

Measurement of force involves very slow and slight compression until electrical contact is broken between the top and bottom plates

Jigs can be placed in ovens, thus providing isothermal measurements

Page 49: Polymers/Organic Materials Aging Overview

49

Compression Stress Relaxation (CSR)

Shawbury-Wallace Compression Stress Relaxometer (CSR) MK II

(Wallace Test Equipment, Cryodon, England)

Commercial InstrumentMeasure of Force

-O-ring sealing forceCan Adjust Gap Size to Approximate Actual Compression in System

Page 50: Polymers/Organic Materials Aging Overview

50

Accelerated aging

1) Physical force decay-Equilibrium values achieved –starting point-Ability to get field returned o-ring force –ending point

2) Chemical force decayPrediction of force changes as a function of aging

Page 51: Polymers/Organic Materials Aging Overview

51

Why we do isothermal measurements…

10 -4 10 -3 10 -2 10 -1 100 101 102

Tim e after rem oval from 110oC oven, days

0

1

2

3

4

5

6

7

8

9

F/L,

N/c

m

Sealing force per unit length versus time out of a 110 °C oven for two CSR jigs containing Butyl-A o-ring segments that had aged under 25% compression until the force degraded by ~42% (top curve) and ~72% (bottom curve), respectively.

~2 hrs

Gillen, K. T.; Celina, M.; Bernstein, R. In Polymer Degradation and Stability Validation of Improved Methods for Predicting Long-Term Elastomeric Seal Lifetimes from Compression Stress-Relaxation and Oxygen Consumption Techniques, 2003; Vol. 82, pp 25-35.

Page 52: Polymers/Organic Materials Aging Overview

52

All Jigs at Temperatures -Fluorosilicone100

90

80

70

60

50

40

30

20

10

0

% F

/Fo

0.1 1 10 100 1000Time, Days

Jig #3 138 °C Jig #4 138 °C Jig #5 138 °C Jig #1 138 °C Jig #5 124 °C Jig #6 124 °C Jig #8 124 °C Jig #14 109 °C Jig #15 109 °C Jig #4 80 °C Jig #7 80 °C

Bernstein, R.; Gillen, K. T. "Fluorosilicone and Silicone O-Ring Aging Study," SAND2007-6781, Sandia National Laboratories, 2007.Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O-rings 2009, 94, 2107-2133.

Page 53: Polymers/Organic Materials Aging Overview

53

Time-Temperature Superposition

If same mechanism:• same shape (log graph)• should be constant acceleration (multiple)

Plot log(aT) vs 1/T linear if Arrhenius

Does mechanism change as a function of temperature?

1. Pick a reference temperature2. Multiply the time at each temperature by the

constant that gives the best overlap with the reference temperature data

3. Define that multiple as ‘aT’ (aT = 1 for ref. temp.)4. Find aT for each temperature

k =Ae-Ea/RT ln(k) = ln(A) – Ea/RT

Empirical equationArrhenius equation:Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Extrapolation of Accelerated Aging Data -Arrhenius or Erroneous? 1997, 5, 250-257.

Page 54: Polymers/Organic Materials Aging Overview

54

Time-Temperature Superposition

100

90

80

70

60

50

40

30

20

10

0

% F

/Fo

0.1 1 10 100 1000 Shifted time to 109 °C, Days

Shift Factor S Jig #3 138 °C 7 S Jig #4 138 °C 5 S Jig #5 138 °C 3.5 S Jig #1 138 °C 6 S Jig #5 124 °C 2 S Jig #6 124 °C 3 S Jig #8 124 °C 2.5 S Jig #14 109 °C 1 S Jig #15 109 °C 0.9 S Jig #4 80 °C 0.5 S Jig #7 80 °C 0.4

Page 55: Polymers/Organic Materials Aging Overview

55

Shift Factor Plot

0.0001 0.0001

0.001 0.001

0.01 0.01

0.1 0.1

1 1

10 10

Shift

fact

or, a

T

3.53.43.33.23.13.02.92.82.72.62.52.4

1000/T, 1/K

~23 °C

~80 °C

Page 56: Polymers/Organic Materials Aging Overview

56

‘Accelerated Aging’Te

mpe

ratu

re

Reaction Coordinate

Page 57: Polymers/Organic Materials Aging Overview

57

Shift Factor Plot

0.0001 0.0001

0.001 0.001

0.01 0.01

0.1 0.1

1 1

10 10

Shift

fact

or, a

T

3.53.43.33.23.13.02.92.82.72.62.52.4

1000/T, 1/K

~23 °C

~80 °C 23 °C aT = 0.011

23 °C aT = 0.000926

23 °C aT =0.065

Page 58: Polymers/Organic Materials Aging Overview

58

Shifted Data with RT ‘Prediction’ w/o 80 C data

100

90

80

70

60

50

40

30

20

10

0

% F

/Fo

0.1 1 10 100 1000 Shifted time to 109 °C, Days

1 10 100 1000

Predicted Time at 23 °C, Years

Page 59: Polymers/Organic Materials Aging Overview

59

Shift Factor Plot

0.0001 0.0001

0.001 0.001

0.01 0.01

0.1 0.1

1 1

10 10

Shift

fact

or, a

T

3.53.43.33.23.13.02.92.82.72.62.52.4

1000/T, 1/K

~23 °C

~80 °C 23 °C aT = 0.011

23 °C aT = 0.000926

23 °C aT =0.065

Page 60: Polymers/Organic Materials Aging Overview

60Shifted Data with RT ‘Prediction’ All data

100

90

80

70

60

50

40

30

20

10

0

% F

/Fo

0.1 1 10 100 1000 Shifted time to 109 °C, Days

0.1 1 10 100

Predicted Time at 23 °C, Years

Page 61: Polymers/Organic Materials Aging Overview

61

Shift Factor Plot

0.0001 0.0001

0.001 0.001

0.01 0.01

0.1 0.1

1 1

10 10

Shift

fact

or, a

T

3.53.43.33.23.13.02.92.82.72.62.52.4

1000/T, 1/K

~23 °C

~80 °C 23 °C aT = 0.011

23 °C aT = 0.000926

23 °C aT =0.065

Page 62: Polymers/Organic Materials Aging Overview

62

Shifted Data with RT ‘Prediction’ 109 and 80 only

100

90

80

70

60

50

40

30

20

10

0

% F

/Fo

0.1 1 10 100 1000 Shifted time to 109 °C, Days

0.01 0.1 1 10 100

Predicted Time at 23 °C, Years

Page 63: Polymers/Organic Materials Aging Overview

63

Shift Factor Plot

0.0001 0.0001

0.001 0.001

0.01 0.01

0.1 0.1

1 1

10 10

Shift

fact

or, a

T

3.53.43.33.23.13.02.92.82.72.62.52.4

1000/T, 1/K

~23 °C

~80 °C 23 °C aT = 0.011

23 °C aT = 0.000926

23 °C aT =0.065

~50% in ~ 1000 years

~50% in ~ 100 years

~50% in ~ 20 years

Page 64: Polymers/Organic Materials Aging Overview

64

O-ringSealing force arguably most important parameter

compression setEasy to measurequick and simple

Difficult to measureslow and laborious

sealing forceCorrelation between equilibrium values

O-RING CROSS-SECTIONS

UNAGED 15 yr in field

Page 65: Polymers/Organic Materials Aging Overview

65

Force versus Compression Set Data -Fluorosilicone100

90

80

70

60

50

40

30

20

10

0

% F

orce

Rem

aini

ng a

t Tem

pera

ture

100806040200% Equilibrium Compression set -Corrected for Temperature

Page 66: Polymers/Organic Materials Aging Overview

66Field Data** not quite the whole story, but good enough for this conversation!

Compression set measurements of three fluorosilicone o-rings taken on surveillance units approximately 1 day after removal from the unit. The solid curve and the dashed curve assume a linear relationship between set and force decay.

Bernstein, R.; Gillen, K. T. Polymer Degradation and Stability, Predicting the Lifetime of Fluorosilicone O-rings 2009, 94, 2107-2133

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28Aging tim e, years

0

10

20

30

40

50

60

70

80

90

100

Com

pres

sion

set

(~1

day)

, %

W 69set2

J1

J2

J8

best pred ic tion

h i-T prediction

Aging time, years

Page 67: Polymers/Organic Materials Aging Overview

67

Other Compression Set Data

1 10 100 1000 10000Aging tim e, hrs

0

20

40

60

80

100

10,0

00-h

our C

ompr

essi

on S

et, %

S il-set2

40% initia l stra in a t

25C

66C

100C

121C

149C

XE-5601 S ILIC O N E (E . A . Salazar data)

Different SiliconeDifferent ProgramDifferent PI

Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001.

Page 68: Polymers/Organic Materials Aging Overview

68Compression Set

10 -3 10 -2 10 -1 100 101 102

Aging tim e, years at 25C

0

20

40

60

80

100

10,0

00-h

our C

ompr

essi

on S

et, %

Silsh2

T , oC, aT

25 1

66 3.1

100 21

121 55

149 320

Filled circ les show40 yr B ritish data for-"tem perate conditions" Data Analyzed by Gillen

Added in 40 year RT data from another source

Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001.

Page 69: Polymers/Organic Materials Aging Overview

69

Arrhenius Plot for Compression Set

2.2 2.4 2.6 2.8 3 .0 3.2 3 .4

1000/T , K -1

100

101

102

103

Shift

fact

or a

T

Sil-A rr2

10,000 hour recovery data

Arrhenius plot of the shift factors for silicone compression set which leads to an aging room temperature prediction for compression set

Gillen, K. T. "Silicone seal analysis," Internal Memo, SNL, 2001.

Page 70: Polymers/Organic Materials Aging Overview

70

Force versus Compression Set Data

100

90

80

70

60

50

40

30

20

10

0

% F

/Fo

0.01 0.1 1 10 100

Predicted Time at Room Temperature, Years

100

80

60

40

20

0

Com

pres

sion

set

, %

Force Compression Set

Page 71: Polymers/Organic Materials Aging Overview

71

Force versus Compression Set Data

100

90

80

70

60

50

40

30

20

10

0

% F

/Fo

0.01 0.1 1 10 100

Predicted Time at Room Temperature, Years

100

80

60

40

20

0

Com

pres

sion

set

, %

Force Compression Set

Correlation between current Silicone Force data and Compression set data obtained from three different sources (and different sizes!)

Fluorosilicone versus Silicone!!

Displays confidence in generalized predictions about silicone o-rings state of health (CS easy to measure) under oxidative environments*

Page 72: Polymers/Organic Materials Aging Overview

72

Butyl Force vs. Compression set; lab and field aged

0 20 40 60 80 100Com pression set, %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F/F 0

0

1

2

3

4

5

6

7

8

9

10

F, N

/cm

lab-aged Buty l-A

lab-aged Buty l-B

lab-aged Buty l-C

fie ld-aged Butyl-B

Equilibrium values of compression set plotted versus F/F0 for laboratory-aged o-rings for three butyl materials plus field results for Butyl-B plotted assuming that F0 = 10 N/cm.

Gillen, K. T.; Bernstein, R.; Wilson, M. H. Polymer Degradation and Stability, Predicting and Confirming the Lifetime of O-Rings 2005, 87, 257-270.

Page 73: Polymers/Organic Materials Aging Overview

73

Heavily Filled Silicone 100

90

80

70

60

50

40

30

20

10

0

% F

orce

Rem

aini

ng a

t Tem

pera

ture

100806040200% Equilibrium Compression set -Corrected for Temperature

Conducting o-rings compression set versus force remaining

Page 74: Polymers/Organic Materials Aging Overview

74

SIGYY-191 psi=133 N/cm2

-89 psi= 61 N/cm2

13 psi= 9 N/cm2

Time = 0 Time = .5sec Time =.8sec Time = 1sec

Time = 30 years Time = 56 year Time 90 years

Slide Courtesy of David Lo

Progression of Stress Relaxation due to Chemical Aging

Page 75: Polymers/Organic Materials Aging Overview

75

Take home messages…

1) Be aware of mechanism changes2) Understand chemistry/be careful with the details

–DLO, O2 vs. H2O etc3) Find something to measure4) Do things at many temp (as far apart as possible)5) Do things for very very long time6) Validate against real world

7) It would be nice to know your performance requirements

Page 76: Polymers/Organic Materials Aging Overview

76

Lots of help…

Dora Derzon, Brad Hance, Don Bradley, Roger Assink, James Hochrein, Steven Thornberg, David Lo, Kathy Alam, Laura Martin,

John Schroeder, Patti Sawyer, Mark Stavig, and Ken Gillen

Page 77: Polymers/Organic Materials Aging Overview

77

Questions…