1

Click here to load reader

Poster MOET 2

Embed Size (px)

Citation preview

Page 1: Poster MOET 2

Contact: Xavier Roboam ([email protected])Laboratoire Plasma et Conversion d’Energie (LAPLACE)Unité mixte de Recherche 5213 INPT / UPS / CNRSBP 7122 - 2 rue Camichel - 31071 TOULOUSE Cedex 7 - France

INPTINPT--LAPLACE Involvement in MOET projectLAPLACE Involvement in MOET project

WP 3.22: Power conversion

WP 7.24: Quality & Stability studies

3 Electrical power centers includingpower transfer equipments

MAPFC testbench

Inside a DCPFC

New concepts for power management

New power management concepts Leading towards new architectures

CôtéCôté DroitDroit

GG

HVDC DHVDC D

ChargeChargeDD

LLLL

TT 11

TT 22

TT33

TT44

GG

CôtéCôté GaucheGauche

ChargeChargeGG

HVDC GHVDC G

GG

CôtéCôté GaucheGauche

ChargeChargeGG

CôtéCôté Droi tDroit

GG

HVDC GHVDC G HVDC DHVDC D

ChargeChargeDD

DCPFCDCPFC

Temps (s)Temps (s)

2.78 2.8 2.82 2.84 2.86 2.88 2.90

5

10

15

20

25

30

35

40

45

50

Cou

rant

s fo

urni

s pa

r le

s g

éné

rate

urs

(A)

Co

uran

ts f

ourn

is pa

r le

s gé

nér

ateu

rs (

A)

DroiteDroi te

GaucheGauche

TT 11TT 11

Essai expérimentalEssai expérimentalEssai expérimentalEssai expérimental

Temps (s)Temps (s)

2.78 2.8 2.82 2.84 2.86 2.88 2.9-25

-20

-15

-10

-5

0

5

10

15

20

25

Cou

rant

s so

rtan

ts d

u DC

PFC

(A)

Co

uran

ts s

orta

nts

du D

CPFC

(A

)

DroiteDroite

GaucheGauche

TT 11TT 11

Essai expérimentalEssai expérimentalEssai expérimentalEssai expérimental

GG

CôtéCôté GaucheGauche

ChargeChargeGG

CôtéCôté Droi tDroit

GG

HVDC GHVDC G HVDC DHVDC D

ChargeChargeDD

DCPFCDCPFC

TimeTime

PP load

load

TimeTime

PP load

load

Temps (s)Temps (s)Cou

ran

t fo

urn

i par

le

DCP

FC p

enda

nt

la p

erte

(A

)C

oura

nt f

ourn

i pa

r le

DC

PFC

pe

nda

nt l

a pe

rte

(A)

0 0.05 0.1 0.15 0.20

5

10

15

20

25

30

35

40

Essai exp ér imentalEssai expér imentalEssai exp ér imentalEssai expér imental

Direct Current Power Flow ControllerDirect Current Power Flow Controller

Case 1:bidirectionalCase 1:bidirectionalcontrolled powercontrolled power

transfertransfer

Case 2: HVDCCase 2: HVDC voltagevoltageregulationregulation

CôtéCôté DroitDroit

GG

HVDC DHVDC D

ChargeChargeDD

GG

CôtéCôté GaucheGauche

ChargeChargeGG

HVDC GHVDC G

TTG1G1

TTG4G4

TTG2G2

TTG5G5

TT G3G3

TT G6G6

TT D1D1

TT D4D4

TTD2D2

TTD5D5

TTD3D3

TTD6D6

MAPFC: Mixed function for Actuation &MAPFC: Mixed function for Actuation &Power Flow ControlPower Flow Control

Two independent functions:

Actuator

Power flow controller

Temps (s)Temps (s)

Cour

ant

circ

ulan

t da

ns l

a ph

ase

1 (A

)Co

ura

nt c

ircu

lant

dan

s la

phas

e 1

(A)

0 0. 01 0 .0 2 0. 03 0 .0 4 0 .0 5-2 0

-1 5

-1 0

-5

0

5

1 0

1 5

2 0

Imoy enImoyen = 0 A= 0 A

Es sai expérimentalEssai expérimentalEs sai expérimentalEssai expérimental

Temps (s)Temps (s)

Cour

ant

circ

ulan

t da

ns l

a ph

ase

1 (A

)C

oura

nt c

ircu

lant

dan

s la

phas

e 1

(A)

0 0. 01 0 .0 2 0. 03 0 .0 4 0 .0 5-2 0

-1 5

-1 0

-5

0

5

1 0

1 5

2 0

ImoyenImoyen = 5 A= 5 A

Essai expérimentalEssai expérimentalEssai expérimentalEssai expérimentalTemps (s)Temps (s )

Cour

ant

circ

ulan

t da

ns l

a ph

ase

1 (A

)C

oura

nt c

ircu

lant

dan

s la

phas

e 1

(A)

0 0 .0 1 0. 02 0 .0 3 0. 04 0 .0 5-2 0

-1 5

-1 0

-5

0

5

1 0

1 5

2 0

ImoyenImoyen == --5 A5 A

Essai expérimentalEssai expérimentalEssai expérimentalEssai expérimental

Actuation function only

00

aimant

hiqidi

.

sL00

0sLspL230

00sLspL23

hqd

“Flux – current” relations in the Park frame

(d,q) axis : Actuation function(h) axis: Power flow control function

Left side Right side

Temps (s)Temps (s)

Ten

sion

s du

bus

en

défa

ut (

V)Te

nsio

ns d

u bu

s en

déf

aut

(V)

Essai expérimentalEssai expérimental

0 0.05 0.1 0.15 0.20

100

200

300

400

500

600

Avec la fonctionAvec la fonction«« NoNo--BreakBreak »»

Sans la fonctionSans la fonction«« NoNo--BreakBreak »»

Load : 8 kW

Test case:Test case:

This test shows what happened during areconfiguration. Without bus control through aMAPFC (red curve), the bus bar is not able tomaintain the voltage on the bus bar even with alow power load (8 kW). Contrarily, controlling theDC bus bar from a MAPFC in case ofreconfiguration allows to maintain this voltage(blue curve)

The bus capacitor in this case is 4,7mF.

HVDC 1 HVDC 2

HVDC 3

Need to control power flows

GeneratorGenerator

PORPOR

The meshed network: a whole HVDCdedicated test bench

Model building principle Multiple MCUs interaction study

Stability criterion: Routh-Hurwitz Optimization algorithms: an introduction

GeneratorGenerator

RectifierRectifier

CCbusbus

DC busDC bus

Filter 1Filter 1 Load 1Load 1

Filter 2Filter 2 Load 2Load 2

Filter 3Filter 3 Load 3Load 3

Studied systems: HVDC NetworksStudied systems: HVDC NetworksFocus on HVDC Networks with one or several loads.

Load = DriveLoad = Drive

PMSMPMSM

InverterInverter

Load = DriveLoad = DriveFilterFilterInverterInverter

PMSMPMSM

DC BusDC Bus

Automatic building of networkAutomatic building of networkmodels :models : an automated method basedon a Maple package is suggested. Itis a very fast and convenient solutionallowing the model set upin severalsteps:

Using intermediate subsystems…

… models of complex architecturescan be automatically set up.

From the transfer function denominator of the wholesystem model, stability studies are performed usingthe Routh-Hurwitz criterion. It allows to:

know the state of a sized system (stable or unstable)give conditions on system parameters leading tostate design (e.g. building stability abaci)suggest conditions on specification parameters(i.e. bandwidth, damping factor…) in order to ensurewhole system stability

Stability abaci help thedesigner in parameterssizing.They also allow to studynetwork behaviour(e.g. interaction betweenloads according to theirstates - wire lengths,equipments number andpowers effects on systemstability…)

A network associating two loads is considered.Load n°2 filter is sized separately following itsstability abacus.

1: It is sizedstable with goodsstability margins

2: It is sizedaround its stabilitylimitIn both cases, Loadn°1 filter stability isstudied when the twoloads are connected.

Case 1: Stable load additionCase 1: Stable load additionIn this case, foundstability limits areroughly unchanged,even if more thanone load areadded on the bus.Stability brought bythose stable loadsslightly increasesthe stable domain.

Case 2: Addition of a load sized around its stability limitCase 2: Addition of a load sized around its stability limitIn this case, the more load n°2 filter is sized “unstable”, the smaller the stability domain.

This result wellillustrates the possible

interactions betweenloads connected on the

same bus, and therelevance of these

methodologies.

Quality criteria: filtering and damping factorQuality criteria: filtering and damping factorStability condition remains insufficient to give acomplete parameterssizing (stable domain).

Quality criteria are thusintroduced to completethis sizing:

filtering conditiondamping factor

Optimisation algorithms:Optimisation algorithms:They are introduced in order to increasethe number of handled parameters.Moreover, they allow to minimize theenergy storage in inductive and capacitivecomponents throughthe convergencecriterion.

Stability and quality criteria aretranslated into constraints. Twokinds of algorithms are used:

An algorithm based ongradient convergence;An crowding based geneticalgorithm (RTS).

DCPFC

Other MOET* partners involved

UPNA* MOET is a European Project co-funded by the European

Commission within the Sixth Framework Programme

Automatic design of energy management equations by mean of Graphstheory : seeking maximal flow ( = power) with minimum cost (energyefficiency)

Design rules (state of contactors) based on an expert system approach

Network managementinterface

The LAPLACE laboratory test capabilities nowallows HVDC equipment connexion andvalidation.The dSpace-based supervision andmanagement platform permits an easyevolution regarding HVDC equipments.The complete generation and distributionchain includes 3 generators (one based on400-800Hz AC generator) and multipleprogrammable loads. Possibilities also exist inreconfiguration at network level.

New architecture :New architecture :

The idea to use MAPFCconcept on ECS machineshelps in finding a “HVDCpower no-Break” archit-ecture.Each machine can use thehomopolar current toregulate a HVDC bus barduring reconfiguration.Without this configuration,the important loadconsumption will lead to animportant voltage drop.

1111

2222 3333

4444

Left EPCLeft EPCLeft EPCLeft EPC Right EPCRight EPCRight EPCRight EPC

Rear EPCRear EPCRear EPCRear EPC

Whole generationWhole generationWhole generationWhole generation

DCPFC 1DCPFC 1DCPFC 1DCPFC 1

DCPFC 2

DCPFC 2

DCPFC 2

DCPFC 2 DCPFC 3

DCPFC 3

DCPFC 3

DCPFC 3

(1) = PgenG

(2) = PgenD

(3) = PgenA

(4) = PDCPFC1

(5) = PDCPFC2

(6) = PDCPFC3

(7) = Pload1

(8) = Pload2

(9) = Pload3

1 23

4

56

5555Whole consumptionWhole consumptionWhole consumptionWhole consumption

789

The generic description of thenetwork in graph theory languageallows a complete description ofpower transfer s in the network.

As a result, the use of graph theoryalgorithms also helps in managingpower references through powerflow controllers (DCPFC, MAPFC).

InitialInitialfactsfacts

DomainDomainrulesrules

FactsFacts

RulesRules

Inference engineInference engine

Inference rulesInference rules

New rulesNew rules

New factsNew facts

In order to avoid problems during contactorlogic writing, a novel approach based onexpert rules definition is implemented in thesupervision system.With only a simplified set of rules, thesupervision system is allowed to configurethe network contactors in order to optimizeelectrical distribution.

Load model: Equivalent admittanceLoad model: Equivalent admittanceDrives are expressed as equivalent admittances,which give their frequency behaviors around anoperating point.

Ydrive expression thusobtained can be introducedon the whole system model.

UPNA