16
PostFukushima Nuclear Power: Where do we go from here? —Nuclear Issues and Perspec8ves Presented by Glenn Sjoden, PhD, PE With Collec8ve Contribu8ons from G. Sjoden, B. Petrovic, and F. Rahnema Professor of Nuclear and Radiological Engineering and Medical Physics Program George W. Woodruff School

Post%Fukushima- NuclearPowersecleanenergy.gatech.edu/.../11/111611_Sjoden_Nuclear.pdfNRE/MP(Program(at(Georgia(Tech! Nuclear-and-Radiological-Engineering-and-Medical-Physics-Program-•

Embed Size (px)

Citation preview

Post-­‐Fukushima  Nuclear  Power:  

Where  do  we  go  from  here?  —Nuclear  Issues  and  

Perspec8ves  

Presented  by  Glenn  Sjoden,  PhD,  PE  With  

Collec8ve  Contribu8ons  from  G.  Sjoden,  B.  Petrovic,  and  F.  Rahnema  Professor  of  Nuclear  and  Radiological  Engineering  and  Medical  

Physics  Program  George  W.  Woodruff  School  

Overview  •  Introduc8on  •  NRE/MP  Program  at  Georgia  Tech  •  Fukushima  Daiichi  Accident  •  Plant  Design  and  Chain  of  Events  – Decay  Heat  Removal  

•  The  Nuclear  Op8on  •  Where  from  here?  •  The  “True  Cost  of  Energy”  and  Long  Term  Needs  

NRE/MP  Program  at  Georgia  Tech  Nuclear  and  Radiological  Engineering  and  Medical  Physics  Program  •  Close  to  300  undergraduate  and  graduate  students  •  Educa8on  and  research  in  all  areas  relevant  for  nuclear  power  and  medical  

physics  •  Sustainable  nuclear  power  ini8a8ve  

SSNFM-­‐2011  Symposium  -­‐-­‐  23  Aug  2011  •  Recently  organized  a  Symposium  on  Sustainable  Nuclear  Fuel  Management  

(SSNFM-­‐2011)  •  Speakers  and  panelists  from  government,  industry,  academia;  included  a  BRC  

member  •  Georgia  Tech  –  iden8fied  strategic  areas,  including:  

–  Sustainability,  Energy  –  Nuclear  power  and  renewable  energy  solu8ons  in  tandem  

Fukushima  Daiichi  Accident  •  Japan,  March  2011:  Earthquake,  Tsunami,  Nuclear  Disaster  •  Terrible  devasta8on,  destruc8on  and  death  occurred  in  Japan  

–  9.0-­‐magnitude  earthquake  and  resul8ng  tsunami  •  Sta8on  blackout  at  40yr-­‐old  Fukushima  Daiichi  Plant  ini8ated    

–  Ini8ally,  reactors  stable,  containments  isolated  aGer  immediate  shutdown  

•  Auxiliary  cooling  designed  for  6m  Tsunami;  actual  height  was  >8m  –  Tsunami  wipes  out  auxiliary  cooling  –  Related  failure  of  a  number  of  redundant  backup  safety  (diesel)  

generators  needed  to  power  auxiliary  cooling  systems  •  Nearby  Fukushima  Diani  nuclear  plant  10  km  away  

–  Cooling  systems  built  several  meters  higher  escape  similar  fate  

Plant  Schema8c,  Reactors  I  -­‐  IV  

Thermal  Efficiency  ~33%    Unit  1:    460  MWe    (~1300  MWt)    Units  2-­‐4:    768  MWe    (~2300  MWt)        

Chain  of  Events    •  Lack  of  “ac8ve  pumping”  led  nuclear  fuel  in  reactor  core(s)  to  be  

"uncovered"  -­‐-­‐not  covered  with  cooling  water  –  Temperatures  >  2200  F    Led  to  degrada8on/mel8ng  of  zirconium-­‐based  nuclear  

fuel  cladding  •  Cladding  is  metal  shell  making  up  fuel  rods  containing  stacked  uranium  oxide  fuel  pellets  

–  Zirconium-­‐steam  reac8on  •  Hydrogen  gas  released,  ven8ng  to  outer    building  led  to  secondary  containment  explosions  

•  Heat  and  pressure  in  building  threatened  spent  fuel  pools  –  Spent  Fuel  pools  located  in  top  of  reactor  building  –  Pools  open  to  air,  40G  depth  pools  boiled  down  –  Led  to  addi8onal  fuel  damage  

•  Fission  products  and  some  fuel  par8cles  released  –  Serious  local  damage  and  local  contamina8on  (<6  km  from  plant)  –  Released  vola8le  fission  products  and  some  ac8nides  –  Background  radia8on  elevated  outside  local  area  

hfp://en.wikipedia.org/wiki/File:Fuel_pool.jpg  

Decay  Heat  Removal  •  Nuclear  fission  reac8ons  libera8ng  heat  for  power  genera8on  were  

stopped  immediately  from  a  reactor  "SCRAM"    –  Many  fission  products  are  radioac8ve  nuclides,  nuclear  decay  chains  –  Nuclides  emit  radia8on  that  ends  up  as  heat  energy  (“Decay  Heat”)  

•  Decay  Heat  is  –  4.7%  of  reactor  power  10  s    aGer  reactor  SCRAM;    

•  2.3%  aGer  7  min;    0.5%  aGer  1  hour  –  0.3%  (3.9  MWt  Unit  1,  11.5)  aier  10  days    

•  Con8nued  heat  release  over  a  protracted  period  –  Likely  months,  depending  on  the  reactor's  opera8ng  history,  etc  –  Most  fuel  remains  in  ac8ve  cooling  as  “used”  fuel  for  a  few  years  

•  Maintaining  FD  reactors  in  current  state  not  a  short  term  effort  

•  Modern  reactor  designs  (e.g.  Wes8nghouse  AP1000)  have  natural  convec8on  cooling  established  in  the  event  of  complete  site  power  loss  –  “Passive  Safety”  feature  avoids  repeat  of  scenario  in  Japan  

Poten8al  role  of  Nuclear  Power  in    sustainable  energy  development  (i)  

•  Several  prominent  “founding  fathers”  of  the  environmental  movement  endorsing  nuclear,  based  on  evalua8ng  feasible  alterna8ves-­‐-­‐posi8on  that  nuclear  power  offers  a  valid  op8on  to  address  environmental  concerns  –  Patrick  Moore  -­‐  Greenpeace  founder  –  Stewart  Brand  -­‐  Whole  Earth  Catalog  founder  –  James  Lovelock  -­‐  Gaia  theorist  –  Recent  UN  IPCC  report  (May  2007)  acknowledges  the  potenNal  role  of  

nuclear  power  

•  Nuclear  power  has  a  role  to  play  in  sustainable  development.    Otherwise,  it  is  difficult  to  postulate  how  to  saNsfying  energy  needs  without  exhaus8ng  resources  and  significantly  impac8ng  the  environment  

•  But,  is  Nuclear  Power  itself  sustainable?    Yes,  if  we  act.  Now.  

•  Nuclear  a  Good  Solu8on  for  energy  needs:    –  Low  emissions,  low  land  area  use,  favorable  output/input  energy  factor,  high  energy  density,  compe88ve  cost  

–  Even  with  high  startup  costs,  low  external  cost,  thus  low  true  long  term  total  cost  

–  One  part  of  the  energy  “mix”  •  Clearly,  “smart”  site/loca8on  is  important  to  mi8gate  risk!  •  U/Th  resources  sizeable    

–  On  the  order  of  hundred(s)  years  for  once  through  fuel  cycle,  thousands  years  with  reuse  of  irradiated  fuel)  

•  Waste  must  be  addressed  –  Reprocessing  technologically  manageable  and  tractable,  but  a  poli8cal  football  exists  in  “closing  the  fuel  cycle”  

Poten8al  role  of  Nuclear  Power  in    sustainable  energy  development  (ii)  

Where  from  here?  (i)  •  Cleanup  for  Daiichi  plant  will  be  costly  and  require  10  years  –  Design  of  Backup  Diesel  generators  under  more  scru8ny  for  worst  case  natural  disasters  

–  Loca8on  and  integrity  of  spent  fuel  to  be  re-­‐evaluated  •  Emphasis  on  “passive  safety”  designs  used  for  new  plants  –  If  reactors  at  Daiichi  very  newest  power  reactor  designs,  no  “ac8ve  cooling”  required  

–  Decay  heat  removed  through  automa8c  “passive”  convec8on  cooling  mechanism    

Where  from  here?  (ii)  •  Reality:  energy  use  growing  by  19%  over  next  25  years  

–  Compe8ng  markets  in  China,  India,  others  will  increase  energy  demand  

•  Despite  hype,  renewables  (solar,  wind,  etc)  are  limited    –  Currently  4%  of  electricity  needs  –  Renewables  can  supply  a  pracNcal  upper  limit  20%  of  future  needs  

•  Nuclear  must  be  a  major  component  of  non-­‐fossil  fuels  –  Issues  must  be  resolved  –  Casts  light  on  nuclear  fuel  handling  and  waste  policies  (95%  of  fuel  is  recyclable)  

•  Consider  French  model??  –  Complete,  integrated  nuclear  power  and  fuel  cycle  

Permanent  geological  repository  for  UNF  •  Technically  feasible  ...  A  poli8cal  decision.  •  Closing  nuclear  fuel  cycle  is  the  sustainable  long-­‐term  solu8on  

-­‐-­‐Reduces  the  amount  of  ul8mate  high-­‐level  nuclear  waste  by  90%      •  Otherwise,  we  would  need  a  new  repository  every  N  years  ...  (see  below)  

Refs:  B.  Petrovic  et  al.,  11  IEMPT,  San  Francisco,  CA,  Nov  2010;  M.  Carelli  et  al.,  Radwaste  SoluNons,  May-­‐June  2011)  

True  cost  of  genera8ng  energy  –  including  externali8es  

Study  ExternE,  performed  in  Europe  (European  Commission),  examined  external  costs  of  electricity  produc8on…  

Source:  EU  /  EUR  20198  

Take  Away:  Nuclear  power  and  renewable  sources  have  significantly  lower  external  costs  than  fossil  plants  –  therefore  nuclear  should  be  strongly  considered.    

Long-­‐Term  Needs  and  Necessary  Ac8ons  •  Long-­‐term  na8onal  energy  policy  to  close  nuclear  fuel  cycle  

–  Reduce  backlog  of  US  waste  –  Past  experience:  change  of  direc8on  every  4  years  

•  Comprehensive  strategy  needed  to  close  fuel  cycle  -­‐-­‐don’t  con8nue  to  postpone  this  decision  

Long-­‐Term  Needs  and  Necessary  Ac8ons  •  Address  externali8es  of  energy  costs,  compare  to  other  

power  genera8ng  op8ons,  on  societal  level  

–  Not  typically  addressed;  necessary  for  adequate  assessment  of  nuclear  power  

•  Adequate  educa8on,  training  and  research  support  for  undergraduate  and  graduate  Nuclear  Engineering  programs                    

–  Basis  and  fundamentals,  in  addi8on  to  the  very  specific  (”boxed”)  research  currently  supported  

•  Current  projec8ons  es8mate  a  human  capital  shorXall  in  the  USA  as  high  as  50%  over  next  30  years  

Summary  and  Conclusions  •  New  nuclear  plants  needed  to  fill  US  non-­‐fossil  energy  needs  •  “Smart”  si8ng  of  plants  that  use  “passive  safety”  designs  for  all  

new  plants  •  A  strong  push  is  needed  for  fuel  cycle  closure  to  minimize  waste  –  Focused  path  forward  to  mi8gate  USG  regula8ons  and  policies  to  enable  recycling  of  all  fuel,  as  done  in  Europe,  Far  East  

–  A  specific  posi8on  on  Yucca  Mountain  would  be,  in  our  view,    appropriate  

•  Adequate,  broadly  scoped  educa8on,  training  and  research  support  needed    –  Undergraduate  and  graduate  Nuclear  Engineering  programs  is  essen8al  to  meet  future  energy  needs