38
Power Aware Wireless Power Aware Wireless Microsensor Microsensor Systems Systems Anantha Chandrakasan, Rex Min, Manish Bhardwaj, Seong-Hwan Cho, Alice Wang Massachusetts Institute of Technology

Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Power Aware Wireless Power Aware Wireless Microsensor Microsensor SystemsSystems

Anantha Chandrakasan, Rex Min, Manish Bhardwaj, Seong-Hwan Cho, Alice Wang

Massachusetts Institute of Technology

Page 2: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Emerging Emerging MicrosensorMicrosensor ApplicationsApplications

Industrial Plants and Power Line Monitoring(courtesy ABB)

Operating Room of the Future(courtesy John Guttag)

NASA/JPL sensorwebsTarget Tracking & Detection

(Courtesy of ARL)Location Awareness

(Courtesy of Mark Smith, HP)

Websign

Page 3: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Sensor System RequirementsSensor System Requirements

10 – 100mTransmission Distance

Small Size

Extended Lifetime

Spatial Density

Data Rate

Application Characteristics

5 years

1 “AA” battery

0.1-10 nodes/m2

bps to kbps

Typical Values

Predictable ConstraintsPredictable Constraints Unpredictable DiversityUnpredictable Diversity

Network roles:relay, sensor, aggregator

Environment: event and signal statistics

User/Application: required latency, quality

ApplicationApplication--specific designs specific designs provide energy efficient point provide energy efficient point

solutionssolutions

PowerPower--aware designs aware designs adapt energy adapt energy consumption to operating consumption to operating

conditionsconditions

Page 4: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Power Aware Power Aware Microsensor Microsensor ConsiderationsConsiderations

Energy Harvesting

API and Control

RF Innovations

Low-Rate Digital Computation

Energy-Scalable Algorithms

MAC and Protocols

Power Aware Power Aware MicrosensorMicrosensor

NetworksNetworks

)/(10 SVleakage

TI −∝

API

HW

OS & MIDDLEWARE

SW

Page 5: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

First Generation Wireless First Generation Wireless MicrosensorMicrosensor

Battery

Mic.

AmpLow-Pass

Filter ADC

ThresholdDetector

DC/DC Converter

Processor FIFO

FIFO

Static RAM Flash ROM

Implemented on an FPGA

Antenna

Clock Recovery

Shifter

Control

Radio IC

Power Amp.

Sensor Processor Radio

206MHz StrongARM 2.4GHz ISM band4-channel acoustic

Page 6: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

OSOS--Controlled Power Down ModesControlled Power Down Modes

Data collection: 1024 samples at 1kSPS

(Processor alternates between idle/active)

LOB Calculation

(Processor active full-time)

Data transmission

(Radio transmitter active)

Sleep

(All systems power down)

Time (s)

Pow

er (m

W)

0

100

200

300

400

500

0 0.02 0.04 0.06 0.08 0.1 0.12

Processor Idle:low = idlehigh = active

Processor Sleep:low = sleephigh = active or idle

Page 7: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Dynamic Voltage ScalingDynamic Voltage Scaling

Digitally adjustable DC-DC converter powers SA-1110 core

µOS selects appropriate clock frequency based on workload and latency constraints

SA-1110

Control

µOS

Controller

5

3.6V

Vout

Page 8: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Distributed Processing Exploiting DVSDistributed Processing Exploiting DVS

A/D

Sensor 6

FFT

A/D

Sensor 2

FFTA/D

Sensor 1

FFT

Cluster HeadFFT1, BF & LOB

Sensor 7Sensor 6

A/D

Sensor 2Sensor 1

Cluster Head

Sensor 7

A/D

A/D FFT7 BF & LOB

Ecomp(variable Vdd) = 15.16 mJ

Approach 2: Parallelism ameliorates latency constraint

FFT: Vdd = 0.9 VBF & LOB: Vdd = 1.3 VEcomp(Vdd=1.5V) = 7Efft+Ebf+ELOB

= 27.27 mJ on SA-1100

Approach 1: All latency-critical computation at aggregating node

Page 9: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Energy Scalable AlgorithmsEnergy Scalable Algorithms

x[n]x[n-1]x[n-2]

x[n-N+1]

h[0]h[1]h[2]

h[N-1]

xxx

x

x[n+1] Original∑

=

−=1

0

][][][N

k

knxkhny

Original

Transformed

Filter

Energy/sample (µJ)

Acc

urac

y (%

)y[n]

TransformedSortedCoeffs

Re-order Index

x[n+1]

x[n]x[n-1]x[n-2]

x[n-N+1]

xxx

x

h[p]h[q]h[r]

h[s]

[Sinha, ISLPED ’00]y[n]

Maximize quality for a given energy availability

Page 10: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Leakage : Low Duty Cycle ConcernLeakage : Low Duty Cycle Concern

FFT Execution Time

Tota

l Cha

rge

flow

)/(10 SVleakage

TI −∝

Duty Cycle (%)To

tal E

nerg

y/Sw

itchi

ng E

nerg

y

Leakage Dominates Switching Energy for Low Duty Leakage Dominates Switching Energy for Low Duty Cycles Cycles –– “Off” State“Off” State--centric Optimizationcentric Optimization

Page 11: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Power Aware RadioPower Aware Radio

PLLXilinx

Rx Power Control

Demod& slice

0-20dBm

Tx Power Control

VregData

Fine-grain shutdown through regulators and bias controlVariable 6-level PA allows efficient transmission for 10m to 100m

SA1110

Vreg

: Power Down Control

Page 12: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

RF StartRF Start--up Energy Overheadup Energy Overhead

Ener

gy p

er b

it (n

J)

10000

1000

100

1010 100 1000 10000 100000

Packet size (bits)

Energy Energy = = PPtxtx_electronics_electronics ((TTtranmsittranmsit + + TTstartstart)) + P+ Poutout TTtransmittransmit

Significant loss in energy efficiency for small packet sizes

Startup Costs are Fundamental Startup Costs are Fundamental ––Innovative Circuits and Protocols RequiredInnovative Circuits and Protocols Required

Page 13: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Integrated SystemIntegrated System--onon--aa--Chip VisionChip Vision

Power Conversion

EnergyScavenger

A/D

MEMORY

RFDSPSensor

Compact Form Factor (mm3 – cm3)Requires interconnection of diverse process technologiesLow computational requirement, but requires flexibility to adapt to time-varying scenariosCost, size and energy are the key design constraints

What is the best computation/communication fabric?What is the best computation/communication fabric?

Page 14: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Why Not Software?Why Not Software?

05

1015202530354045

Pow

er (%

)

Cache Control GCLK EBOX I/O,PLL

[Montanaro, JSSC ‘96]

Software Energy Dissipation is Dominated by Overhead Software Energy Dissipation is Dominated by Overhead and NOT by Useful Workand NOT by Useful Work

Page 15: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

What about What about FPGAsFPGAs??

4G C LK [3 :0 ]

4 4 4

Ch a nn elR AM

4GC LK [3 :0 ]

4 4 4

4G C LK [3 :0 ]

4 4 4

44GCLK[3:0] PLL & Clock MUX GCTL[3:0]

I/O Bank 6I/O Bank 7

I/O Bank 3I/O Bank 2

I/O B

ank

4I/O

Ban

k 5

I/O B

ank

1I/O

Ban

k 0

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

Ch a nn elR AM

Ch a nn elR AM

Ch a nn elR AM

Ch a nn elR AM

Ch a nn elR AM

C ha nn e lRA M

C ha nn e lRA M

C ha nn e lRA M

C h an ne lR AM

C h an ne lR AM

C h an ne lR AM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

C lusterR AM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

LB 4LB 3

LB 0

ClusterRAM

LB 5

LB 6

LB 7

LB 2

LB 1

PIM

ClusterRAM

ChannelMemory

Block

I/O B

lock

LB

ClusterPIM

LB

LB

LB

LB

LB

LB

LB

CMB CMB

V-to-HPIM

H-to-VPIM

I/O Block

Channels68%

Clusters13%

Clock/Control network17%

IO1%

DC1%

65%21%

9%5%

InterconnectClock

I/OCLB

CLB CLB

CLBCLB

Xilinx (Courtesy of J. Rabaey)Cypress

Page 16: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

InterconnectInterconnect--Centric ArchitecturesCentric Architectures(Flexibility with Power Efficiency)(Flexibility with Power Efficiency)

MEM

PE

MEM

PE

MEM

PE

MEM

PE

MEM

PE

MEM

PE[Simon, JSSC ’00]

Massively parallel, “slow” switching processorsExploits locality of reference, low interconnect costsImage Sensor Application: Wavelet based compression(3 Million Transistors, 0.6µm CMOS, 500µW)

Page 17: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

New Energy Metrics in DSM InterconnectNew Energy Metrics in DSM Interconnect

02468

1012141618

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Normalized Energy, Normalized Energy, EE

0

10

20

30

0 1 2 3

Standard modelStandard model

Normalized Energy, Normalized Energy, EE# of

tran

sitio

ns o

f co

st

# of

tran

sitio

ns o

f co

st EE SubSub--micron modelmicron modelBUS

d2

d1

l2

l1

VDD

CL

CL

CI

3==L

I

CCλ

# of

tran

sitio

ns o

f co

st

# of

tran

sitio

ns o

f co

st EE

Extended Busn+a lines

Recovered DataInput Data (n bits)

... DecoderEncoder

Minimizing Transition Activity is not the Minimizing Transition Activity is not the Right approach to Minimize PowerRight approach to Minimize Power

Page 18: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Optimal VOptimal VDDDD and Vand VTT ControlControl

( )DD

THDD

LCLK V

VVC

fαβ −

⋅=

2

DDLCLKSwitching VCfaP ⋅⋅⋅=S

V

DDlLeakage

TH

VIP−

⋅⋅= 100

-0.10.00.10.20.30.40.50.60.7

0.0 0.2 0.4 0.6 0.8 1.0 1.2Supply voltage VDD (V)

Thre

shol

d vo

ltage

VTH

(V)

50MHz

100MHz

200MHzPPLeakage

fCLK = constant

PTOTAL

Pow

er

Switching

Supply voltage VDD (V)

VDD and VTH can be varied to keep a fixed performance

Page 19: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Energy Efficiency of Digital ComputationEnergy Efficiency of Digital Computation

Single butterfly architecture (4 multipliers, 6 adders)

Data Memory

Twiddle ROM

Dat

a A

ddre

ss

Twiddle Address

R/W AB

XY

W

Control Logic

Butterfly structure

A

BW

X=A+BW

Y=A-BW

Optim

al (Vdd , V

th )

Supp

ly V

olta

ge (V

DD)

FFT Computation

Threshold Voltage (Vth)

Exploit Sub-threshold Operation for Sensor Circuits

Page 20: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Adaptive VAdaptive VDDDD/V/VTT ArchitectureArchitecture

TempCircuit to be biased

to optimum VDD/VT point

PhaseDetector

N/PBody BiasGeneratorMatched Delay Line

N

LookupTable

PowerConverter

VDD

ClockWorkload

P

MAC

0.17

5 V

166 kHz clockdata

[Miyazaki, ISSCC ’02]

Page 21: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Leakage Mitigation Using MTCMOSX3 X2 X1 X0

Y3

Y2

Y1

Y0

P0

P1

P2

P3

P4P5P6

P7

pc

pc

VDD

Low VTLogic Virtual

Ground

High VT DeviceSleep

0 50 100 150 200 250 8

10

12

14

16

Dela

y ,n s

Sleep Transistor Width, W/L

A: X=00000000->11111111Y=00000000->10000001

B: X=01111111->11111111Y=10000001->10000001

Vector A

Vector B

Device Sizing is a Major Concern in Multiple

Threshold CMOS

Page 22: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

“Leakage Feedback” Flip“Leakage Feedback” Flip--FlopFlop

SLEEP

SLEEP

CLK

CLK

VDD VDD

0 1

0

In the Idle Mode

1

, with inputs drifting

Use leakage to hold state in the flip-flop – very low leakage in sleep mode, with high-performance in active mode

CLK

CLKSLEEP

D Q

[Kao, ESSCIRC ’01]

SLEEP

VDD VDD

Page 23: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Computation vs. CommunicationComputation vs. Communication

1E-11

1E-101E-09

1E-081E-07

1E-06

1E-051E-04

1E-03

1 10 100 1000 10000

Energy for Electronics + Transmit

R2 Propagation LossLimit (no electronics)Assuming 10pJ/bit/m2

Ener

gy (J

)

Distance (m)

Computation: 1nJ/op (µ-Processor) and Communication (@10m): 150nJ/bit @10 m: ~150 instructions/transmitted bit on a low-power processor@10m: > 1Million instructions/transmitted bit using dedicated hardware

Compute, Don’t CommunicateCompute, Don’t Communicate

Page 24: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Fast Startup TransmitterFast Startup Transmitter

/N , /N+1

PFDfref

Σ−∆channel

data LPF

Variable loop filter

E/bit = 10nJ/bit

Variable loop bandwidthFixed loop bandwidth

Page 25: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

New Opportunities: “Digital” UWB RadioNew Opportunities: “Digital” UWB Radio

Pulse Generator

CLK Generator

T/HLNA

BUFFER

A/D

A/D

A/D

A/D

Reg

Reg

Reg

Coarse

Acquisition

&

Fine

Tracking

Data Out

Code

Generator

Data In

Minimal Front-end components: leverage low-power digital circuits

3-4 bits A/D sufficient (Newaskar, Blazquez, Chandrakasan, SIPS ‘02)

Page 26: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

MultihopMultihop and the Characteristic Distanceand the Characteristic Distance

DD

E = h α1 + α2D

h( )2

D/hD/h D/hD/h D/hD/h

number of hops

per-hop distance

DD

minh

E = 2α1D

dchar

Direct Transmission

Multihop Transmission

E = α1 + α2D2

Tx &Rx Radio Electronics

attenuation,power amp

path loss exponent

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200

1 hop

2 hops

3 hops

4 hops

dchar

E, E

nerg

y (

E, E

nerg

y ( m

Jm

J ))

α1 = 30 nJ/bitα2 = 10-11/bit1000 bits

D, Total Distance (meters)D, Total Distance (meters)

where dchar = α1α2

Characteristic Distance for Multihop Transmission

Page 27: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Analogy to Buffered InterconnectAnalogy to Buffered Interconnect

LL L/hL/h L/hL/h L/hL/h

dchar =α1

α2

E = h α1 + α2L

h( )2

E = α1 + α2L

2

T =α + RCL2 T = k α + RC Lk( )2

R∆L

αα α αR∆L R∆L

C∆L C∆L

LL

C∆L

R∆L R∆L R∆L

dchar =α

RC

Page 28: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Dithering of Characteristic DistanceDithering of Characteristic Distance

Fixed Multihop Routes Rotated Routes

= 116 days of lifetime

( )

( )Lifetime = 47 days

0.5dchar 0.5dchar dchar

Lifetime = 77 days

Lifetime = 77 days

( )511

+ 311

+ 311

Even spatial distribution of energy burdenEven spatial distribution of energy burden

Page 29: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Signal Processing in the NetworkSignal Processing in the Network

KN total samples N total samples

K senders aggregator receiverrelay(s)ddcharchar ddcharchar

Ener

gy S

avin

gs w

ith A

ggre

gatio

n

Distance in dchar-length hops (dchar =55m)

K = 2

K = 3

K = 4

K = 7

K = 5

α1 = 30 nJ/bitα2 = 10-11/bit

0

1

2

3

4

5

0 1 2 3 4 5 6

K = 10

Page 30: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Clustering ProtocolsClustering Protocols

START START START

Slot for node i

ClusteringLocalized control (through the “cluster head”)Local data aggregation

Randomized Rotation of cluster-headsClusters formed during set-upData transfers during steady-state

TDMA in steady stateNode i transmits once per frameNo collisions low energyMaximum sleep time

Time•••

Set-up Frame RoundSteady-state

[Heinzelman02]

Round n Round n+1

Opportunity: Reactive Radios [Opportunity: Reactive Radios [RabaeyRabaey, ISSCC02], ISSCC02]

Page 31: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

API and Middleware Layer

TxPower

EnergyReliability

RadioProcessor

Code Selection

Voltage/Frequency

Power-Awareness Manager

Latency Range

Application/Protocol

set_max_energy(Energy energy)set_max_latency(Time latency)set_min_reliability(Prob probReception)set_range(int nearestNodes, Node[] who,

float meters)

Power Aware API: performance of communication defined and exposed as a basis for trade-offs

API and Middleware Layer

Quality of communicationQuality of communication defined along four axes:defined along four axes:

Reliability (BER)“How reliably?”

Energy (µJ)“How much energy?”

Latency (ms)“How soon?”

“To whom?”

ConcernRange (m)

Metric

Page 32: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

APIAPI--Controlled Operational Policy Controlled Operational Policy

Radiated Power

Convolutional Code

Rel

iabi

lity

(log

BE

R)

Reliability (log BER)

Rel

iabi

lity

(log

BE

R)

Range (m)

+0 dBm+3 dBm+5 dBm+10 dBm+15 dBm+20 dBm

UncodedR=2/3, K=3R=1/2, K=3R=1/2, K=5R=1/2, K=7

Operational PoliciesRadiated Power Convolutional Code

Ener

gy (

J)

µAMPS-1 Node1000 bits

Total Communication Energy

Range (m)

Range (m)

higher quality

Energy scales gracefully with communication quality

higher quality

Page 33: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Energy ScavengingEnergy Scavenging

Generator RegulatorVDD Load

Electronics

Self-powered operation is a real option if the power dissipation can be scaled to 10’s - 100’s of µW

Mechanical vibration (e.g., machine mounted sensors)Electromagnetic fields (RF)

A major opportunity exists in developing energy scavengers(generator and associated electronics) for extracting useful energy from ambient sources

Page 34: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

VibrationVibration--toto--Electric EnergyElectric Energy

Hardwired Fabrics enable No Hardwired Fabrics enable No Power Signal ProcessingPower Signal Processing

(10(10µµW from generator)W from generator)MEMS Generator Controller

Page 35: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

Proximity Sensor: Wireless Power SupplyProximity Sensor: Wireless Power Supply

~

Simulation of rotating field over one period at 120kHz (in middle of 2D arrangement and supplied plane xy)

Courtesy of Snorre Kjesbu, ABB

Page 36: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

HeelHeel--Strike Energy HarvestingStrike Energy Harvesting

Joe Paradiso (MIT Media Lab) Hagood, Spearing, Schmidt (MIT)

ValveController

Valve OperatingFrequency ~ 30 kHz

Piezo

Electrical Power

Valve Valve

HighPressure

LowPressure

After 3-6 steps, it provides 3 mA for 0.5 sec ~10mW

Page 37: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

3D Integration3D Integration

3-D Standard Cell Placement and Routing

3-D Layout Editor3-D Integration

Compact Interconnection of Heterogeneous TechnologiesCompact Interconnection of Heterogeneous Technologies

Page 38: Power Aware Wireless Microsensor Systems · 2002. 10. 4. · CLB CL BCL CLB CLB Xilinx Cypress (Courtesy of J. Rabaey) IInterconnectnterconnect-C. Centric Architectures. entric Architectures

ConclusionsConclusions

Exciting new applications enabled by a network of low-power wireless sensing devicesPower Aware Design Methodology supersedes Energy Efficient DesignSlower is Better – exploit sub-threshold operation as fastest switching speed is not neededCommunication-centric design

Energy per operation (mW/MIPS) will scale with technologyCommunication costs (nJ/bit) will not scale at the same rate

Low Energy Sensor Design Requires a SystemLow Energy Sensor Design Requires a System--level level Approach Approach –– Tight Coupling Between Fabrics, Tight Coupling Between Fabrics,

Algorithms and ProtocolsAlgorithms and Protocols