78
Power Semiconductors Contributing in Energy Management Whole Number 255, ISSN 0429-8284 2016 Vol.62 No. 4 FUJI ELECTRIC REVIEW Power Semiconductors Contributing in Energy Management Vol.62 No.4 2016

Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

Power Semiconductors Contributing in Energy Management

Printed on recycled paper

Whole Number 255, ISSN 0429-8284

2016Vol.62 No. 4

FU

JI EL

EC

TR

IC R

EV

IEW

Po

wer S

emico

nd

ucto

rs Co

ntrib

utin

g in

En

ergy M

anag

emen

tVol.62 N

o.4 2016

Page 2: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

Cover Photo (clockwise from the upper left):3rd-generation direct liquid cooling power modules for automotive applications with RC-IGBT, High-side 2-in-1 IPS “F5114H” for automobiles, All-SiC 2-in-1 module, 2nd-generation SJ-MOSFET for automotive applications “Super J MOS S2 Series”

42016Vol.62 No. Power Semiconductors Contributing in Energy

Management

To curb the emissions of CO2, which is a cause of global warming, eff ective measures include utilizing renewable energy represented by photovoltaic and wind power generation, improving energy conversion effi ciency and introducing electrically driven vehicles, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs). One key to those measures is power electronics technology, which controls electric en-ergy. Fuji Electric has developed and commercialized power semicon-ductors, which contribute to overwhelming downsizing and effi ciency improvement of power electronics equipment.

This special issue presents the latest technologies and products re-lating to Fuji Electric’s power semiconductors.

FUJI ELECTRIC REVIEW vol.62 no.4 2016date of issue: December 30, 2016

editor-in-chief and publisher EGUCHI NaoyaCorporate R & D HeadquartersFuji Electric Co., Ltd.Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku,Tokyo 141-0032, Japanhttp://www.fujielectric.co.jp

editorial offi ce Fuji Electric Journal Editorial Offi cec/o Fuji Offi ce & Life Service Co., Ltd.1, Fujimachi, Hino-shi, Tokyo 191-8502, Japan

Fuji Electric Co., Ltd. reserves all rights concerning the republication and publication after translation into other languages of articles appearing herein.All brand names and product names in this journal might be trademarks or registered trademarks of their respective companies.

AmericaFuji Electric Corp. of America

Sales of electrical machinery and equipment, semiconductor devices, drive control equipment, and devices

Tel +1-732-560-9410URL http://www.americas.fujielectric.com/

Fuji Electric Brazil-Equipamentos de Energia Ltda *Sales of inverters, semiconductors, and power distribution

Tel +55-11-2283-5991URL http://americas.fujielectric.com/pt-br/

Reliable Turbine Services LLCRepair and maintenance of steam turbines, generators, and peripheral equipment

Tel +1-573-468-4045

Fuji SEMEC Inc.*Manufacture and sales of door opening and closing systems

Tel +1-450-641-4811

AsiaFuji Electric Asia Pacifi c Pte. Ltd.

Sales of electrical distribution and control equipment, drive control equipment, and semiconductor devices

Tel +65-6533-0014URL http://www.sg.fujielectric.com/

Fuji SMBE Pte. Ltd. *Manufacture, sales, and services relating to low-voltage power distribu-tion board(switchgear, control equipment)

Tel +65-6756-0988 URL http://smbe.fujielectric.com/

Fuji Electric (Thailand) Co., Ltd. *Sales and engineering of electric substation equipment, control panels, and other electric equipment

Tel +66-2-210-0615 http://www.th.fujielectric.com/

Fuji Electric Manufacturing (Thailand) Co., Ltd.Manufacture and sales of inverters (LV/MV), power systems (UPS, PCS, switching power supply systems), electric substation equipment (GIS) and vending machines

Tel +66-2-5292178

Fuji Tusco Co., Ltd. *Manufacture and sales of Power Transformers, Distribution Transformers and Cast Resin Transformers

Tel +66-2324-0100 URL http://www.ftu.fujielectric.com/

Fuji Electric Vietnam Co.,Ltd. *Sales of electrical distribution and control equipment and drive control equipment

Tel +84-4-3935-1593

Fuji Furukawa E&C (Vietnam) Co., Ltd. *Engineering and construction of mechanics and electrical works

Tel +84-4-3755-5067

PT. Fuji Electric Indonesia *Sales of inverters, servos, UPS, tools, and other component products

Tel +62 21 398-43211 URL http://www.id.fujielectric.com/

Fuji Electric India Pvt. Ltd. *Sales of drive control equipment and semiconductor devices

Tel +91-22-4010 4870 URL http://www.fujielectric.co.in

Fuji Electric Philippines, Inc.Manufacture of semiconductor devices

Tel +63-2-844-6183

Fuji Electric (Malaysia) Sdn. Bhd.Manufacture of magnetic disk and aluminum substrate for magnetic disk

Tel +60-4-403-1111 URL http://www.fujielectric.com.my/

Fuji Furukawa E&C (Malaysia) Sdn. Bhd. *Engineering and construction of mechanics and electrical works

Tel +60-3-4297-5322

Fuji Electric Taiwan Co., Ltd.Sales of semiconductor devices, electrical distribution and control equipment, and drive control equipment

Tel +886-2-2511-1820

Fuji Electric Korea Co., Ltd.Sales of power distribution and control equipment, drive control equip-ment, rotators, high-voltage inverters, electronic control panels, medium- and large-sized UPS, and measurement equipment

Tel +82-2-780-5011 URL http://www.fujielectric.co.kr/

Fuji Electric Co.,Ltd. (Middle East Branch Offi ce)Promotion of electrical products for the electrical utilities and the indus-trial plants

Tel +973-17 564 569

Fuji Electric Co., Ltd. (Myanmar Branch Offi ce)Providing research, feasibility studies, Liaison services

Tel +95-1-382714

Representative offi ce of Fujielectric Co., Ltd. (Cambodia)Providing research, feasibility studies, Liaison services

Tel +855-(0)23-964-070

EuropeFuji Electric Europe GmbH

Sales of electrical/electronic machinery and components Tel +49-69-6690290 URL http://www.fujielectric-europe.com/

Fuji Electric France S.A.SManufacture and sales of measurement and control devices

Tel +33-4-73-98-26-98 URL http://www.fujielectric.fr/

Fuji N2telligence GmbH *Sales and engineering of fuel cells and peripheral equipment

Tel +49 (0) 3841 758 4500

ChinaFuji Electric (China) Co., Ltd.

Sales of locally manufactured or imported products in China, and export of locally manufactured products

Tel +86-21-5496-1177 URL http://www.fujielectric.com.cn/

Shanghai Electric Fuji Electric Power Technology (Wuxi) Co., Ltd.

Research and development for, design and manufacture of , and provi-sion of consulting and services for electric drive products, equipment for industrial automation control systems, control facilities for wind power generation and photovoltaic power generation, uninterruptible power systems, and power electronics products

Tel +86-510-8815-9229

Wuxi Fuji Electric FA Co., Ltd.Manufacture and sales of low/high-voltage inverters, temperature controllers, gas analyzers, and UPS

Tel +86-510-8815-2088

Fuji Electric (Changshu) Co., Ltd.Manufacture and sales of electromagnetic contactors and thermal relays

Tel +86-512-5284-5642 URL http://www.fujielectric.com.cn/csfe/

Fuji Electric (Zhuhai) Co., Ltd.Manufacture and sales of industrial electric heating devices

Tel +86-756-7267-861 http://www.fujielectric.com.cn/fez/

Fuji Electric (Shenzhen) Co., Ltd.Manufacture and sales of photoconductors, semiconductor devices and currency handling equipment

Tel +86-755-2734-2910 URL http://www.szfujielectric.com.cn/

Fuji Electric Dalian Co., Ltd.Manufacture of low-voltage circuit breakers

Tel +86-411-8762-2000

Fuji Electric Motor (Dalian) Co., Ltd.Manufacture of industrial motors

Tel +86-411-8763-6555

Dailan Fuji Bingshan Vending Machine Co.,Ltd. Development, manufacture, sales, servicing, overhauling, and installa-tion of vending machines, and related consulting

Tel +86-411-8754-5798

Fuji Electric (Hangzhou) Software Co., Ltd.Development of vending machine-related control software and develop-ment of management software

Tel +86-571-8821-1661 URL http://www.fujielectric.com.cn/fhs/

Fuji Electric FA (Asia) Co., Ltd.Sales of electrical distribution and control equipment

Tel +852-2311-8282

Fuji Electric Hong Kong Co., Ltd.Sales of semiconductor devices and photoconductors

Tel +852-2664-8699 URL http://www.hk.fujielectric.com/en/

Hoei Hong Kong Co., Ltd.Sales of electrical/electronic components

Tel +852-2369-8186 URL http://www.hoei.com.hk/

Overseas Subsidiaries* Non-consolidated subsidiaries

Page 3: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

Contents

FUJI ELECTRIC REVIEW vol.62 no.4 2016

1.2-kV SiC Trench MOSFET 218TSUJI, Takashi IWAYA, Masanobu ONISHI, Yasuhiko

Power Semiconductors Contributing in Energy Management

All-SiC 2-in-1 Module 222CHONABAYASHI, Mikiya OTOMO, Yoshinori KARASAWA, Tatsuya

Enhanced Breakdown Voltage for All-SiC Modules 227HINATA, Yuichiro TANIGUCHI, Katsumi HORI, Motohito

Enhanced Thermal Resistance of Molding Resin Used for All-SiC 232ModulesNAKAMATA, Yuko TACHIOKA, Masaaki ICHIMURA, Yuji

7th-Generation “X Series” IGBT Module “Dual XT” 236YOSHIDA, Kenichi YOSHIWATARI, Shinichi KAWABATA, Junya

7th-Generation “X Series” RC-IGBT Module for Industrial Applications 241YAMANO, Akio TAKAHASHI, Misaki ICHIKAWA, Hiroaki

2nd-Generation Small IPM Series 246TEZUKA, Shinichi SUZUKI, Yoshihisa SHIRAKAWA, Toru

2nd-Generation SJ-MOSFET for Automotive Applications 265“Super J MOS S2A Series”TABIRA, Keisuke NIIMURA, Yasushi MINAZAWA, Hiroshi

Critical Mode PFC Control IC “FA1A60N” and LLC Current Resonant 269Control IC “FA6B20N” for High-Efficiency Power SuppliesSONOBE, Koji YAGUCHI, Yukihiro HOJO, Kota

2nd-Generation Low Loss SJ-MOSFET with Built-In Fast Diode 275“Super J MOS S2FD Series”WATANABE, Sota SAKATA, Toshiaki YAMASHITA, Chiho

Functionality Enhancement of 3rd-Generation Direct Liquid Cooling 256Power Modules for Automotive Applications Equipped with RC-IGBTSATO, Kenichiro ENOMOTO, Kazuo NAGAUNE, Fumio

Speed Enhancement for the 3rd-Generation Direct Liquid Cooling 251Power Modules for Automotive Applications with RC-IGBTKOGE, Takuma INOUE, Daisuke ADACHI, Shinichiro

High-Side 2-in-1 IPS “F5114H” for Automobiles 261MORISAWA, Yuka TOBISAKA, Hiroshi YASUDA, Yoshihiro

“MICREX-SX Series” Motion Controller “SPH3000D” 28072- to 145-kV Compact Gas-Insulated Switchgear “SDH714” 283Frozen Storage Container “WALKOOL” 286

New Products

Page 4: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

218

1. Introduction

Fuji Electric contributes to a sound material-cycle society  through  variety  of  power  electronics  systems utilized  for  railcars,  automobiles,  power  supplies  and electric power systems.   Power semiconductor devices, which  are  core  components  of  power  electronics  sys-tems,  have  been  evolving  from  those  of  silicon  (Si) to  those  of  silicon  carbide  (SiC),  which  is  one  type  of wide  band  gap  semiconductors.  In  the  voltage  rating of 1.2 kV, Si insulated gate bipolar transistors (IGBTs) have been replaced by SiC metal-oxide-semiconductor-field-effect-transistors  (MOSFETs),  which  show  lower conduction  losses    and  switching  losses  than  those  of Si-IGBTs, due to the lower drift layer resistance of ap-proximately one-three hundredth of that of Si(1) and no minority carriers swept during switching.

Fuji  Electric  has  developed  and  released  SiC  pla-nar  gate  MOSFETs  and  all-SiC  modules,  in  which SiC  planar  gate  MOSFETs  were  mounted(2),(3).  The all-SiC modules have been incorporated into our high-efficiency, compact and lightweight power conditioning sub-systems (PCSs)(4) and mega solar PCSs(5). 

This  paper  describes  our  recent  development  of 1.2-kV SiC trench gate MOSFETs.

2. Design and Features of SiC Trench Gate MOSFETs

Compared with Si, SiC has a higher interface state density at the interface between SiO2 as the gate oxide and SiC, and the capturing of electrons more likely to occur.   As a result, there is an increase in MOS chan-nel  resistance,  and  this  prevents SiC MOSFETs  from the  reduction  of  on-state  resistance  to  its  theoretical 

TSUJI, Takashi *      IWAYA, Masanobu *      ONISHI, Yasuhiko *     

1.2-kV SiC Trench MOSFET

Fuji Electric has developed and released SiC planar gate MOSFETs. Excessive shrinkage of the cell pitch of planar MOSFETs leads to a high JFET resistance, which prevents them from achieving a low on-resistance close to the theoretical limit. To the contrary, the cell pitch of trench-gate MOSFETs can be shrunk without the increase of the JFET resistance. We have therefore developed a 1.2-kV SiC trench gate MOSFET. We have optimized the struc-tures of the MOS channel and the JFET region, as well as reduced the cell pitch. Our trench-gate MOSFETs realize low switching loss, the increase of the threshold voltage 2.4 times, and the reduction of the on-state resistance by 48% compared with the conventional planar MOSFETs.

limit(6).   An effective means  of  reducing MOS channel resistance  is  increasing  cell  density  (refining),  as well as improving the SiO2/SiC interface.   However, exces-sive refinement of conventional planar gate MOSFETs results in an increase in junction field-effect transistor (JFET) resistance(1).  On the other hand, refinement of trench  gate MOSFETs, which have  the MOS  channel oriented perpendicular to the surface, do not result  in an increase in the JFET resistance, and as a result, on-state resistance can be reduced in proportion to refine-ment.

The  cross-sectional  structure  of  our  recently  de-veloped SiC  trench  gate MOSFETs  and  a  photograph of the chip are shown in Fig. 1.  The development was based on the following 3 points:

(a)  Improvement of the gate oxide reliability(b)  Simultaneous establishment of a high threshold 

voltage and a low on-state resistance(c)  Simultaneous  establishment  of  a  low  on-state 

resistance and a high breakdown voltageIn  order  to  improve  the  reliability  of  the  gate  ox-

(a) Cross-sectional structure (b) Chip photograph

Gate Source

Drain

Sourceelectrode

p base

SiO2

n+substrate

n−drift layer

n+p+

C CA

n+ p+

p basep+ n n p+

B B

Gat

e

p+

Fig.1 SiC trench gate MOSFET

Page 5: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2191.2-kV SiC Trench MOSFET

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

ide, it is necessary to relax the high electric field on the gate oxide at the bottom of the trench in the reverse bi-ased mode.  Therefore, we adopted a structure to cover the  gate  oxide  at  the  bottom  of  trenches with  p-wells (see A in Fig. 1). The device simulation shows that the electric field reaches a maximum at the bottom corner portion of  the p-well at  the bottom of  the  trench, and thus, we   confirmed the relaxation of  the electric field in the gate oxide(7).

In order to establish a high threshold voltage and low on-state resistance simultaneously, we reduced the cell pitch and optimized the MOS channel  length.   As shown  in Fig. 2,  on-state  resistance  decreased  in  pro-portion as the shrinkage of the cell pitch.   In order to maintain a high process  capability  of  the process,  the cell pitch was set  to approximately one half of  that of planar gate MOSFETs.

As for the simultaneous establishment of a low on-state resistance and high breakdown voltage, we opti-mized  the JFET regions  (see C  in Fig. 1), which were located  in  the  areas  between  the  p-wells  at  the  bot-tom of the trench (see A in fig. 1) and those below the source contact (see B in Fig. 1).  By making this optimi-zation, we were able to determine multiple parameters by utilizing a device simulation(7).  The relationship be-

tween  the  on-state  resistance  and  breakdown  voltage trade-off  is  shown  in Fig. 3.    This  optimization  of  the JFET  region  enabled  us  to  reduce  on-state  resistance by  about  3%,  while  improving  breakdown  voltage  by about 2%.

3. Characteristics

3.1 Static characteristicsThe static characteristics of the recently developed 

SiC  trench  gate MOSFETs  are  shown  in Fig. 4.    The drain  current-drain  voltage  characteristics  in  the  for-ward  biased mode  at  device  junction  temperatures  of 25 °C and 175 °C are shown in Fig. 4 (a).  It shows the on-state voltages at the rated current of 1.3 V at 25 °C and  2.3 V  at  175 °C,  respectively.    The  drain  current-drain  voltage  characteristics  in  the  reverse  biased mode are shown in Fig. 4 (b).  The breakdown voltages are  1.55 kV  at  25 °C  and  1.61 kV  at  175 °C,  respec-tively. These breakdown voltages are high enough  for the devices in the voltage rating of 1.2-kV.  Similar to the planar gate MOSFETs, the breakdown voltage  in-creases in proportion as the rise in temperature. 

The  temperature  dependencies  of  the  threshold voltage  and  on-state  resistance  are  shown  in  Fig. 5.  The  threshold voltage  reduces monotonically with  the temperature rise within a range  from 25 °C to 200 °C, and  decreases  by  approximately  26%  at  175 °C  com-

0.5 0.6 0.7 0.8 0.9 1.0Cell pitch (a.u.)

2.0

1.5

1.0

0.5

0

Ron∙A

(a.u

.)

Fig.2 Cell pitch dependence of on-state resistance

1,000 1,200 1,400 1,600 1,800Breakdown voltage (V)

1.6

1.5

1.4

1.3

Ron∙A

(a.u

.)

After optimization

Before JFET region optimization

Trade-offimprovement

Fig.3 Relationship between on-state resistance and break-down voltage trade-off

0 500 1,000 1,500 2,000Drain voltage VDSS (V)

Dra

in c

urr

ent I D

SS (

a.u

.)

(b) Drain current- Drain voltage curves in the reverse biased mode

0 1 2 3 4Drain voltage VDS (V)

Dra

in c

urr

ent I D

S (a

.u.)

(a) Drain current- drain voltage characteristics in the forward biased mode

175°C

175°C

25°C

25°C

1.0

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0

1.0

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0

Fig.4 Static characteristics of SiC trench gate MOSFET

Page 6: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

220 FUJI ELECTRIC REVIEW vol.62 no.4 2016

pared with  that  of  25 °C.    The  on-state  resistance  in-creases  monotonically  with  the  rise  of  temperature, and  increases  by  approximately  57%  at  175 °C  com-

pared with that of 25 °C.  According to the dependence of  the  on-resistance  on  the  temperature,  the  trench gate  MOSFETs  could  suppress  the  thermal  runaway in case of connecting multiple chips in parallel because temperature  rise  causes  an  increase  of  the  on-state resistance and a decrease  of  the  current  in  turn  even when a current crowding occurs in a specified chip. 

It  should  be  also  denoted  that  the  trench  gate MOSFETs  have  successfully  reduced  the  on-state  re-sistance  normalized  by  unit  area  by  approximately 50%  compared with  the  planar  gate MOSFETs.    The trench  gate  MOSFETs  are  expected  to  contribute  to further  reduction  of  the  cost  in  overall  systems  in terms of the miniaturization of cooling components and the  improvement  of  efficiency  in  modules  and  power electronics systems.

3.2 Switching characteristicsThe  switching  test  circuit  and  the  typical  turn-on 

and turn-off waveforms are shown in Fig. 6.  The turn-on time, which is defined by the duration from the time of VGS=0 V  until  the  time  that  drain  current  reaches 90% in the on state, is approximately 60 ns.  The turn-off time, which is defined by the duration from the time that  the gate voltage  is 90%  in  the on state until  the time the drain current reaches 10% in the on state, is approximately 75 ns. 

The  gate  resistance  dependence  of  the  switching 

0 50 100 150 200Temperature Tj (°C)

1.2

1.0

0.8

0.6

0.4

0.2

0

Ron∙A

(a.

u.)

Th

resh

old

volt

age V

th (

a.u

.)

2.0

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fig.5 Temperature dependencies of threshold voltage and on-state resistance

DUT

Gateresistance Rg

SBD

Vbus

Inductive load L

VGS

IDS

VDS

(a) Switching test circuit

(c) Turn-off waveforms

VGS

IDS

50 ns/div

50 ns/div

VDS

(b) Turn-on waveforms

Fig.6 Switching test circuit and typical waveforms

Trench gateMOSFET

Planar gateMOSFET

25°C

175°C

Vbus = 600 V

(b) Turn-off loss

(a) Turn-on loss

0 10 20 30 40 50 60Gate resistance Rg (Ω)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Tu

rn-o

n lo

ss E

on (

a.u

.)

Trench gateMOSFET

Planar gateMOSFET

25°C

175°C

Vbus = 600 V

0 10 20 30 40 50 60Gate resistance Rg (Ω)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Tu

rn-o

ff lo

ss E

off

(a.u

.)

Fig.7 Gate resistance dependence of switching loss

Page 7: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2211.2-kV SiC Trench MOSFET

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

circuit  capability  test  at  a  drain  voltage  of  800 V and at the temperature of 175 °C are shown in Fig. 8.   We confirmed a sufficiently high enough short-circuit capa-bility of 9.8 µs. 

The  waveforms  during  the  avalanche  withstand-ing capability  test at an  inductive  load of 100 µH and at the temperature of 175 °C are shown in Fig. 9.  The avalanche withstanding energy was 6.0 J/cm2, and this was at the same level as the planar gate MOSFETs. 

4. Postscript

This  paper  described  the  recent  development  of 1.2-kV SiC trench gate MOSFETs in Fuji Electric. 

By  the  shrink  of  the  cell  pitch  and  the  optimiza-tion of the channel length, our recently developed SiC trench gate MOSFETs have achieved higher threshold voltages  and  lower  on-state  resistances  than SiC  pla-nar  gate MOSFETs.    In  the  future, we will  endeavor for  the further improvement of the quality at the SiO2/SiC interface in order to decrease on-state resistance. 

Some  of  our  research  was  carried  out  as  part  of a  project  of  the  joint  research  body  “Tsukuba  Power Electronics Constellations  (TPEC).”   We would  like  to conclude by expressing our appreciation to all those in-volved in the project.

References(1)  B.J.Baliga,  POWER  SEMICONDUCTOR  DEVICE, 

PWS Publishing Company.(2)  Nakano, H. et al. Ultra-Compact, High-Reliability All-

SiC Module. FUJI ELECTRIC REVIEW. 2013, vol.59, no.4, p.221-225.

(3)  Nakamura, H.  et  al.  All-SiC Module  Packaging Tech-nology. FUJI ELECTRIC REVIEW. 2015, vol.61, no.4, p.224-227.

(4)  Matsumoto, Y. et al. Power Electronics Equipment Ap-plying SiC Devices. FUJI ELECTRIC REVIEW. 2015, vol.58, no.4, p.212-216.

(5)  Oshima, M.  et  al. Mega  Solar  PCS  Incorporating All-SiC  Module  “PVI1000  AJ-3/1000”.  FUJI  ELECTRIC REVIEW. 2015, vol.61, no.1, p.11-16.

(6)  T.Kimoto and J.A.Cooper, FUNDAMENTALS OF SILI-CON  CARBIDE  TECHNOLOGY,  2014  John Wiley  & Sons.

(7)  Kobayashi, Y. et al. Simulation Based Prediction of SiC Trench  MOSFET  Characteristics.  FUJI  ELECTRIC REVIEW. 2016, vol.62, no.1, p.12-16.

loss  is  shown  in Fig. 7.   Under  the  condition  of  drain voltage of 600 V, gate resistance of 22 Ω and the tem-perature  of  25 °C,  the  trench  gate MOSFET  could  re-duce turn-on loss by 47% and turn-off loss by 48% com-pared  to  the  planar  gate MOSFETs.    The  reason  for this is most likely due to the fact that feedback capaci-tance Crss  is smaller for the recently developed trench gate MOSFETs than for the planar gate MOSFETs. 

The  turn-on  loss  is  lower  at  175 °C  than at  25 °C.  The reason for this is thought to be the short charging time for the gate due to the lower threshold voltage at 175 °C than that at 25 °C.  On the other hand, the turn-off  loss  at  175 °C  is  slightly  higher.    This  is  thought to  be  due  to  the  longer  discharge  time  for  the  gate because  the difference between  the drive gate  voltage and  threshold  voltage  is  somewhat  larger  at  175 °C than that at 25 °C. 

3.3 Short-circuit and avalanche withstanding capabilitiesThe  waveforms  before  rupture  under  the  short-

VGS20 V/div

500 V/div

2 µs/div

9.8 µs

VDS

IDS

Fig.8 Waveforms during short-circuit capability test

Vg

Vd

1.9 kV

Id

4.5 µs

Fig.9 Waveforms during avalanche withstanding capability test

Page 8: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

222

1. Introduction

In  order  to  achieve  a  low-carbon  society,  it  is necessary  to  make  positive  use  of  renewable  energy and adopt energy-saving power electronics equipment.  Power semiconductors play a major role in power elec-tronics  equipment  for  power  conversion.    Currently, the  technological advances  of  silicon  (Si) devices have made them widely popular, but we are already nearing the theoretical  limit of their physical properties.    It  is against this backdrop that wide-band-gap semiconduc-tor silicon carbide (SiC) has been gaining attention as a next  generation  semiconductor material.    Since SiC devices can deliver significantly lower loss than Si de-vices, it is expected that they will contribute to further energy savings.

    Fuji  Electric  has  developed  and  started  mass producing  an  all-SiC module  consisting  of  SiC metal-oxide-semiconductor  field-effect  transistor  (SiC-MOS-FET)  and  SiC  Schottky  barrier  diode  (SiC-SBD)  for mega solar power conditioning sub-systems (PCSs).  By utilizing an all-SiC module  for the booster circuit of a PCS,  loss  can  be  reduced  by  20%,  and  conversion  ef-ficiency can achieve the world’s highest level of 98.8%.  Simultaneously  improving  conversion  efficiency  and optimizing the circuit has enabled the PCS to achieve footprint miniaturization  of  approximately  60% when compared to the installation of 2 of the previous mod-els(1).

We  have  recently  developed  an  all-SiC  2-in-1 module  that  has  been  adopted  in  the  development  of a  high-performance  compact  IP65  inverter  character-ized by its dustproof and waterproof  features (see Fig. 1).   This  inverter can be mounted directly on the wall of workshops and does not require a dedicated electric 

CHONABAYASHI, Mikiya *      OTOMO, Yoshinori *      KARASAWA, Tatsuya *     

All-SiC 2-in-1 Module

Fuji Electric has developed an All-SiC 2-in-1 module utilizing a SiC device that has been adopted in the develop-ment of a high-performance compact IP65 inverter characterized by its dustproof and waterproof features. In order to make use of the much lower switching loss of SiC devices compared with Si devices, it is necessary to create a highly reliable packaging technology that ensures high-temperature operation while also reducing wiring inductance inside the module. Fuji Electric has developed a package with a new structure to meet these requirements. As a re-sult, the IP65 inverter reduces loss in the main circuit by 44% when compared with conventional inverters that use Si devices.

panel  for  storage.    This  paper  describes  the  element technologies  and  characteristics  of  the  all-SiC  2-in-1 module.

2. Element Technologies

2.1 Application of SiC devicesSiC  has  a maximum  electric  field  strength  of  ap-

proximately  10  times  that  of  Si.    Therefore,  we  were able to significantly reduce power loss by reducing the thickness of the drift layer (i.e., the main cause of elec-tric resistance) to about 1/10 the size of that of Si.  In contrast to Si, the adoption of SiC has made it possible to  develop devices with high withstand voltage.   Fur-thermore, since the band gap of SiC is approximately 3 times wider than that of Si, stable operation is possible even  at  high  temperatures.    In  addition  to  this,  the thermal conductivity of SiC  is at  least 3 times that of Si, enabling it to have a high exothermicity.

In  order  to  implement  low  on-state  resistance  for previous  Si  devices,  bipolar  operation  was  necessary.  As  a  result,  they  suffered  from  a  high  switching  loss since  carrier  injection  and  sweeping were  required  at the  time of  the switching operation.   Contrary  to pre-vious  Si  devices,  SiC  devices  make  use  of  the  above mentioned characteristics, enabling them to be used as 

(a) All-SiC 2-in-1 module (b) IP65 inverter

Fig.1 All-SiC 2-in-1 module and IP65 inverter

Page 9: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

223All-SiC 2-in-1 Module

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

devices in the structures of SBD and MOSFET with a withstand voltage of 1,200 V or higher.  MOSFET and SBD differ  from  bipolar  transistors  such  as  insulated gate bipolar transistors (IGBTs) and pn diodes in that they are capable of extremely fast switching on account of their unipolar operation, thus making it possible for them to greatly reduce switching loss.

Fuji  Electric  commenced  operation  of  the  world’s first  SiC  6-inch  wafer  production  line  at  its  Matsu-moto Factory in 2013.  The external appearance of the 6-inch wafer is shown in Fig. 2.

2.2 Newly structured packageAs mentioned  in Section 2.1, SiC-MOSFET  is  ca-

pable  of  much  faster  switching  than  Si-IGBT.    How-ever, this increased switching speed is accompanied by a higher surge voltage, and as a result, it is necessary to  reduce  the  wiring  inductance  inside  the  module.  Furthermore, it is necessary to adopt a highly reliable packaging  technology  for  the module  that ensures op-eration at the high temperatures of SiC devices, while also  enabling multiple  small-sized  chips  such  as  SiC-MOSFETs to be connected in parallel.

In order to solve these challenges, Fuji Electric has developed  a  newly  structured  package  for  its  all-SiC 2-in-1 module (see Fig. 3(2),(3)). 

By  making  a  change  to  the  previously  adopted aluminum wire  bonding  shown  in Fig. 3  (b),  we  have been able to ensure a flow of high current for the newly structured package of Fig. 3 (a) by utilizing copper pin wiring on the surface of the SiC device.  Furthermore, the small size of the SiC chip made it possible to pack them  in  densely,  thus  enabling multiple  parallel  con-nections.    In  addition,  the  newly  structured  package has  reduced  internal  inductance  to  about  a  quarter of  that  of  structures  utilizing  aluminum  wire  bond-ing.    By making  a  change  to  the  conventionally  used insulating  substrate  that  mounts  the  power  chip,  we have  aimed  at  reducing  thermal  resistance  by  adopt-ing  a  ceramic  insulating  substrate  bonded with  thick copper  plates.    In  addition  to  these  changes, we have also made a change to  the conventionally used encap-

sulation resin based silicone gel inside the module, by adopting a highly thermal-resistant epoxy resin to sup-press deformations in the bonding portions of the chip and copper pins.   By adopting this structure, we have ensured high reliability with a ΔTj power cycle capabil-ity of 10 times that of previous products.

3. Characteristics

3.1 I -V characteristic at time of conductionThe  characteristic  that  determines  loss  generated 

at the time of module conduction (steady-state loss)  is the  I-V  characteristic.    The  I-V  characteristics  of  the all-SiC 2-in-1 module and Si-IGBT module are  shown in Fig. 4.  Unlike IGBT, MOSFET has no built-in volt-age.    Therefore,  compared  with  Si-IGBT,  the  all-SiC 

Fig.2 6-inch wafer

Highly thermal-resistant epoxy resin

Silicone gelTerminal

Metallic base Ceramic insulating substrate

Power chip

Aluminum wiringTerminal case

SiC-MOSFET SiC-SBD

Copper pin

Power substrate

Ceramic insulating substrate

(b) Conventionally structured package

(a) Newly structured package

Fig.3 Comparison of newly structured package and conven-tionally structured package

All-SiC 2-in-1 module steady-state loss < Si-IGBT module steady-state loss

Si-IGBT module IC-VCE characteristic

All-SiC 2-in-1 module ID-VDS characteristic

T j = 150 °C, VGS = +15 V

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4Voltage (a.u.)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Cu

rren

t (a

.u.)

Fig.4 I -V characteristics

Page 10: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

224 FUJI ELECTRIC REVIEW vol.62 no.4 2016

2-in-1 module  is  capable  of  reducing  steady-state  loss under a certain current.

3.2 Switching characteristicSwitching  loss  is  classified  into  3  different  types:  

turn-on  loss  generated  during  turn-on,  turn-off  loss generated  during  turn-off  and  reverse  recovery  loss 

generated  during  reverse  recovery.    Turn-on  loss  is shown in Fig. 5, turn-off loss in Fig. 6, reverse recovery loss  in Fig. 7 and total switching  loss  in Fig. 8.   Com-pared  with  the  Si-IGBT  module,  the  all-SiC  2-in-1 module  reduces  turn-on  loss  by  62%,  turn-off  loss  by 

Si-IGBT module

−62%

VCC = 600 V, I o = rating, T j =150 °C (Si), 175 °C (SiC)VGS = +15/−15 V (Si), +15/−5 V (SiC)

10 10050Gate resistance Rg (Ω)

6

5

4

3

2

1

0

Tu

rn-o

n lo

ss E

on (a

.u.)

All-SiC 2-in-1 module

Fig.5 Turn-on loss

Si-IGBT module

10 100Gate resistance Rg (Ω)

6

5

4

3

2

1

0

Tu

rn-o

ff lo

ss E

off (

a.u

.)

−74%

50

VCC = 600 V, I o = rating, T j =150 °C (Si), 175 °C (SiC)VGS = +15/−15 V (Si), +15/−5 V (SiC)

All-SiC 2-in-1 module

Fig.6 Turn-off loss

Si-IGBT module

All-SiC 2-in-1 module−100%

10 100Gate resistance Rg (Ω)

6

5

4

3

2

1

0

Rev

erse

rec

over

y lo

ss E

rr (a

.u.)

50

VCC = 600 V, I o = rating, T j =150 °C (Si), 175 °C (SiC)VGS = +15/−15 V (Si), +15/−5 V (SiC)

Fig.7 Reverse recovery loss

Si-IGBT module

−75%

10 100Gate resistance Rg (Ω)

14

10

12

8

6

4

2

0T

otal

sw

itch

ing

loss

Eto

tal (

a.u

.)50

VCC = 600 V, I o = rating, T j =150 °C (Si), 175 °C (SiC)VGS = +15/−15 V (Si), +15/−5 V (SiC)

All-SiC 2-in-1 module

Fig.8 Total switching loss

f c = 4 kHz, VCC = 600 V, I o =13.5 A (RMS value), R g = 27 Ω, cosφ= 0.9, λ=1

−46%

All-SiC 2-in-1 module

Si-IGBT module

2.0

1.8

1.6

1.4

1.0

0.6

0.2

1.2

0.8

0.4

0

Inve

rter

gen

erat

ed lo

ss (

a.u

.) Diode reverse recovery loss

Diode steady-state loss

Si-IGBT/SiC-MOS turn-off loss

Si-IGBT/SiC-MOS turn-on loss

Si-IGBT/SiC-MOS steady-state loss

Fig.9 Inverter generated loss simulation results

VCC = 600 V, Io =13.5 A (RMS value), Rg = 27 Ω, cosφ= 0.9, λ=1

All-SiC 2-in-1 module

Si-IGBT module

0 2 4 6 8 10 14 1812 16 20Carrier frequency (kHz)

5

4

3

2

1

0

Inve

rter

gen

erat

ed lo

ss (

a.u

.)

Fig.10 Carrier frequency dependence of the inverter generated loss

Page 11: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

225All-SiC 2-in-1 Module

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

and a self-cooled structure.In  order  to  achieve  this, we  have  utilized  the  all-

SiC 2-in-1 module characteristics (low loss, guaranteed high-temperature  operation,  high  reliability  and  low thermal resistance) to facilitate the development of the IP65  inverter.    By  using  the  all-SiC  2-in-1  modules, we have achieved a 44% reduction in main circuit loss compared  with  products  mounted  with  the  conven-tional Si modules.

4. Postscript

We have  described  the  all-SiC  2-in-1 module  that contributes to the development of the IP65 inverter. 

Currently,  the  mainstream  type  of  SiC-MOSFET is the planar gate type, which forms a gate on the sub-strate surface.    In order  to  respond  to  the market de-mand  for  further  energy  savings  and  cost  reductions, it is necessary to reduce on-state resistance Ron during SiC-MOSFET  conduction.    To  achieve  this,  Fuji Elec-tric  is  currently  developing  a  trench  gate MOSFET(4).  By equipping the all-SiC 2-in-1 module with the trench gate MOSFET, it will be possible to further reduce the size and increase the capacity of the module.

In  the  future,  we  intend  to  provide  the  all-SiC 2-in-1 module to be mounted to various types of power electronics equipment to contribute to the development of power electronics technology and the realization of a low-carbon society.

References(1)  Oshima, M.  et  al. Mega  Solar  PCS  Incorporating All-

SiC  Module  “PVI1000  AJ-3/1000”.  FUJI  ELECTRIC REVIEW. 2015, vol.61, no.1, p.11-16.

(2)  Nashida,  N.  et  al.  All-SiC  Module  for  Mega-Solar Power Conditioner.  FUJI ELECTRIC REVIEW.  2014, vol.60, no.4, p.214-218.

(3)  Nakamura, H.  et  al.  All-SiC Module  Packaging Tech-nology. FUJI ELECTRIC REVIEW. 2015, vol.61, no.4, p.224-227.

74% and  reverse  recovery  loss by 100%.   As a  result, compared with  the  conventional  Si-IGBT module,  the all-SiC 2-in-1 module makes it possible to reduce total switching loss by 75%.

3.3 Inverter generated loss simulationWe implemented an  inverter generated  loss simu-

lation for the all-SiC 2-in-1 module and Si-IGBT mod-ule under general use conditions for the inverter.  The results  of  the  simulation  at  a  carrier  frequency  of  4 kHz are shown in Fig. 9.  Compared with the Si-IGBT module, the all-SiC 2-in-1 module has a lower inverter generated loss of 46%. 

The  carrier  frequency  dependence  of  the  inverter generated loss is shown in Fig. 10.  Furthermore, since the all-SiC 2-in-1 module has extremely low switching loss  compared with  the Si-IGBT module,  the  increase in  inverter  generated  loss  remains  small  even  when increasing  the  carrier  frequency.    Therefore,  since the  all-SiC  2-in-1 module  is  capable  of  implementing switching at a higher carrier frequency than Si-IGBT, passive  components  such  as  filters  can  be  miniatur-ized, and this, in turn, contributes to the miniaturiza-tion of power electronics equipment.

3.4 Application to productsFuji  Electric  has  utilized  the  element  technology 

described  in  Section 2  to  produce  the  all-SiC  2-in-1 module  with  a  product  series  expansion  as  shown  in Table 1.   IP65 inverters have used Type 1 since it has the advantage of being the most compact [dimensions:  W62 ×  D20 ×  H12 (mm)].  As a result, the module has a  reduced  footprint  of  approximately  60%  compared with conventional Si-IGBT modules [dimensions:  W94 ×  D34 ×  H30 (mm)].

The  IP65  inverter  is  developed  for  applications used  in  severe  environments  such  as  food  processing lines, industrial furnaces and livestock stables.  Invert-ers used in these types of environments must not only be compact, but must have a high degree of protection 

Table 1 Product series expansion of the all-SiC 2-in-1 module

Item Type 1 Type 2 Type 3L

External appearance

Dimensions (mm) W62 ×  D20 ×  H12 W68 ×  D26 ×  H13 W126 ×  D45 ×  H13Package New structured package

Rating

Rated voltage (V) 1,200

Rated current (A) 15, 35 50, 75 150, 200, 320

Applied element

MOSFET SiC-MOSFET

SBD SiC-SBD

Page 12: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

226 FUJI ELECTRIC REVIEW vol.62 no.4 2016

(4)  Kobayashi,Y. et al. Simulation Based Prediction of SiC Trench  MOSFET  Characteristics.  FUJI  ELECTRIC REVIEW. 2016, vol.62, no.1, p.12-16.

Page 13: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

227

1. Introduction

As  interest  in  environmental  issues  including global  warming  is  increasing,  reduction  of  emissions of  greenhouse  gases  such  as  CO2  is  called  for,  and  it is  expected  that  high  efficient  power  conversion  tech-nologies  realize  energy  saving.    Power  semiconduc-tors play a major role in power conversion equipment.  Silicon  (Si)  semiconductor  devices,  which  have  been the mainstream, have  improved over many years and their performance is approaching the theoretical limits based  on  their physical properties.   Accordingly, wide band gap semiconductor devices such as silicon carbide (SiC)  and  gallium  nitride  (GaN)  are  being  developed vigorously.    In  particular,  SiC  devices  are  capable  of dramatically reducing the loss and expected to contrib-ute toe energy saving by decreasing the losses of power electronics  products.    At  present,  they  are  becoming widespread in fields that require a breakdown voltage of approximately 1 kV, such as power conditioning sub-systems (PCSs)  for photovoltaic power generation and power supplies for data servers.  In the future, it is ex-pected that SiC devices will be employed in fields that require high reliability such as hybrid electric vehicles and electric vehicles and high-voltage fields  from 3  to 10 kV such as railways.

Fuji  Electric  has  developed  a  newly  structured package consisting of copper pin connections and resin molding  for  All-SiC  modules  in  place  of  conventional structures  consisting  of wire  bonding  and  silicone  gel molding.    By  applying  these  technologies,  enhanced breakdown voltage for All-SiC modules are realized.

HINATA, Yuichiro *      TANIGUCHI, Katsumi *      HORI, Motohito *     

Enhanced Breakdown Voltage for All-SiC Modules

In recent years, SiC devices have been widespread mainly in fields that require a breakdown voltage of ap-proximately 1 kV. They are expected to be used in the high voltage fields that require a breakdown voltage from 3 to 10 kV such as railways, as well as the automotive field that require high reliability such as hybrid vehicles and electric vehicles. Fuji Electric has developed a newly structured package featuring copper pin connections and resin molding to achieve SiC modules with high breakdown voltage. Based on the results of electric field simulations and thermal analysis, the electric field strength relaxation and high heat radiation are achieved by the optimization of the position-ing and thickness of electrodes on the insulation substrate.

2. Basic Module Structure and Issues to be Resolved for Increasing Breakdown Voltage

As  shown  in  Fig. 1,  the  structure  of  an  All-SiC module  is  significantly  different  from  that  of  a  con-ventional  silicon  insulated  gate  bipolar  transistor (Si-IGBT) module(1),(2).    For  developed All-SiC module, copper  pins  formed  on  the  power  substrate  are  used as  joint  technology  instead  of  conventional  aluminum wire.  This structure enables loading high current and high-density packaging of SiC devices.  As the ceramic insulating  substrate  to  mount  semiconductor  chips, silicon  nitride  (Si3N4)  insulating  substrate  with  a 

Epoxy resin

Front copper plate

Back copper plate

Ceramic insulating substrate

Ceramic

(b) Conventional structure (Si-IGBT module)

(a) Developed structure (All-SiC module)

Copper pin Semiconductor chip

Silicone gel Aluminum wiring

Semiconductor chip Terminal

Resin case

Copper base

Solder

Ceramic insulating substrate

Power substrate

Fig.1 Module structure

Page 14: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

228 FUJI ELECTRIC REVIEW vol.62 no.4 2016

thicker  copper plate  compared with  conventional  sub-strate has been used to reduce the thermal resistance.  In  addition,  application  of  epoxy  resin  instead  of  the conventional  silicone  gel  as  a molding  resin  prevents degradation of the solder layer and deterioration of the insulation performance in high-temperature operation, achieving high reliability.

For  long-term usage of power semiconductor mod-ules, it is necessary to ensure stable insulation perfor-mance  against  thermal  stress  and  voltage  variations depending  on  the  usage  condition  and  environment.  For the insulation design of power semiconductor mod-ules,  the breakdown electric field  is  one of  the  impor-tant  factor.    Electric  field  strength  is  greatly  affected by  the voltage applied  to  the materials,  the  shapes of the  constituent materials  and  dielectric  constant.    In addition,  electric  field  strength  generally  increases  at the defects of the molding material, such as voids and peeled parts,  and  the edge of  copper  electrodes  on  ce-ramics  insulating  substrates.    For  silicone  gel  that  is used  as  the  molding  resin  in  conventional  structure, voids or cracks tend to be generated  in operation at a high temperature of 175 °C or higher, and that possibly causes breakdown.   For  that  reason, determination of an appropriate molding resin and a  ceramic  is  impor-tant  in  order  to  develop  All-SiC  packages  with  high breakdown voltage capability of operation at high tem-peratures.  Furthermore, it is necessary to develop the structure  that  enables  the  electric  field  mitigation  of the  boundary  region  of  power  substrates  and  ceramic insulating substrates.

3. Package Design Technology for high Breakdown Voltage

3.1 Package design relating to insulation performanceRegions with high electric field strength in a semi-

conductor  module  tend  to  be  located  in  the  insula-tors, such as epoxy resin and ceramics, at  the edge of a  copper plate  or  at  the  edge  of  a  semiconductor  chip surface.    Breakdown  modes  of  power  semiconductor modules are classified into ceramic penetration break-down originating from high electric field strength point and creeping breakdown along joint region between the epoxy resin and  the surface of  the  insulators,  such as copper  plate  and  ceramics.   We  focused  on  the  triple points  between  the  copper  plates,  epoxy  resin,  and ceramics  because  of  their  high  electric  field  and  per-formed electric field simulation.

Figure 2  shows the electric field strength distribu-tions  of  a  power  module  with  same  length  from  the edge  of  ceramics  to  both  copper  plate  [see Fig. 2  (a)], and  with  different  length  from  the  edge  of  ceramics to  both  copper  plates  [see  Fig. 2  (b)].    In  both  cases, the  electric  field  simulation  are  performed  under  the same  condition  for  the  thickness and  type  of  ceramic, the thickness of the copper plate, and the type of epoxy resin.   The results of  the simulation  indicate  that  the 

highest  electric  field  strength  point  is  located  at  the triple  point  between  front  copper  plate,  ceramics  and epoxy resin.

Figure 3 shows the maximum electric field strength change  in both cases of power modules:  to change the ceramic thickness from that in Fig. 2 (a) and to change the  position  of  the  surface  copper  plate  from  that  in Fig. 2 (b).  From the simulation results, increasing the thickness  of  the  ceramic  and  equalizing  the distances between the edge of  the ceramic and both side of cop-per  plates  lead  to  the  mitigation  of  the  electric  field strength.   However,  thick  ceramics degrades  the heat dissipation  performance  of  the  module.    In  addition, 

Electric fieldStrong

Triple point

Weak

(a) Equal distances from edge of ceramic to edges of front and back copper plates

(b) Different distances from edge of ceramic to edges of front and back copper plates

Front copper plate

Epoxy resin

Cross-section view of analysis model

Ceramic

Back copper plate

Ceramic insulating substrate

Fig.2 Results of electric field simulation (electric field strength distributions)

Electric field mitigation

Electric field mitigation

Position differenceEpoxy resin

Front copper plate

Ceramic

Back copper plate

(a) Effect of ceramic thickness

0 0.5 1.0Ceramic thickness (a.u.)

1.0

0.8

0.6

0.4

0.2

0Ele

ctri

c fi

eld

stre

ngt

h (

a.u

.)

(b) Effect of positions of surface and back copper plates

0 0.5 1.0Position difference (a.u.)

1.0

0.8

0.6

0.4

0.2

0Ele

ctri

c fi

eld

stre

ngt

h (

a.u

.)

Fig.3 Results of electric field simulation (changes in electric field strength)

Page 15: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

229Enhanced Breakdown Voltage for All-SiC Modules

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

the  change  of  the  thickness  or  position  of  the  copper plates may leads large thermal stress due to the differ-ence in the coefficient of thermal expansion of materi-als,  causing  the  thermal  deformation  of  the  ceramic insulating  substrate.    This  possibly  causes  cracks  in the  ceramic,  leading  to  degrade  the  insulation perfor-mance.

The  thermal  resistance  of  ceramics  generally  ac-counts  for  20%  to  30%  of  the  thermal  resistance of  power  module.    As  shown  in  Fig. 3,  electric  field strength  varies  more  greatly  in  a  region  where  the ceramic is thinner, and increasing the thickness of ce-ramic can reduce the electric field strength to less than half of the maximum value.  However, the thermal re-sistance  of  the  ceramic  increases nearly  in proportion to the thickness and the heat dissipation performance is  significantly  deteriorated.    Accordingly,  the  struc-tural  design  that  optimizes  insulation  and heat  dissi-pation performance is required.

3.2 Package structure with high heat dissipation perfor-manceWe  carried  out  thermal  analysis  for  the  conven-

tional  and  developed  structures.    Figure 4  shows  the temperature distributions.  In the developed structure, the  thickness of  the  front copper plate under  the chip decrease the thermal resistance of the module because heat diffusion in the in-plate direction within the front copper  plate  lead  to  a  reduction  in  the  thermal  resis-tance of ceramic with low heat conductivity(3)-(5).  Figure 5  shows  the  relationship  between  the  ceramic  thick-ness and thermal resistance.  The developed structure allows  thermal  resistance  to  be  significantly  reduced compared with  that of a conventional structure.   This achieves  both  high  insulation  and  high  heat  dissipa-tion  performance  even  if  the  ceramic  thickness  is  in-creased  to  improve  insulation  performance.    On  the other hands, the effect of the reduction of the thermal resistance depends on the semiconductor chip size and heat  conductivity  of  ceramics.    Accordingly, we maxi-

mize  the  reduction  of  the  thermal  by  optimizing  the module structure depending on the current and voltage ratings.

4. Evaluation of Molding Resin for Enhanced Breakdown Voltage

Initial breakdown voltage testing and high-temper-ature and voltage application testing at humidity envi-ronment for a long time were conducted to evaluate the insulation performance of modules.

In  particular,  assuming  operating  conditions  at high-temperature  and  high-voltage  environment,  the breakdown voltage of silicone gel used for conventional structures  decreases  as  the  temperature  increases.  Meanwhile,  the deterioration  of  the  insulation perfor-mance  of  epoxy  resin  at  high-temperature  condition is smaller than those of silicone gel.   Therefore, epoxy resin  is  superior  to  use  in  a  high-temperature  and high-breakdown-voltage environment.

4.1 Insulation evaluation of molding resinWe  compared  the  insulation  performance  of  sili-

cone gel used for the conventional structures and epoxy resin  molding  used  for  the  developed  structure.    We prepared test samples that have the same shape of ce-ramic  and  copper plate  and different molding materi-als  (see Fig. 6), applied a voltage across the terminals bonded  with  the  surface  electrode  and  the  back  elec-trode, and measured the breakdown voltage.   Figure 7 and  Fig. 8  show  the  relationship  between  the  break-down voltage and cumulative breakdown rate and the breakdown points  respectively.   When  the  cumulative breakdown rate is 1%, the breakdown voltage of epoxy resin  is  16.3 kV, which  is  approximately  1.9  times  as high as that of silicone gel, 8.8 kV.  The breakdown for silicone gel molding proceed in the silicone gel from the triple  points  between  the  front  copper  plate,  ceramic and silicone gel to the back copper plate.  On the other 

Semiconductor chip

Solder

Ceramic insulating substrate

Thermal greaseCooling fin

Temper-ature

High

Low(a) Developed structure (without copper base)

Semiconductor chip

SolderCeramic insulating substrate

Copper baseThermal grease

Cooling fin

(b) Conventional structure (with copper base)

Fig.4 Results of thermal analysis (temperature distributions)

0.25 1.00.25 1.0

Ceramic thickness (a.u.)

1.0

0.8

0.6

0.4

0.2

0Th

erm

al r

esis

tan

ce R

th (

j-c)

(a.

u.)

Semiconductor chipSolder under chipFront copper plateCeramic

Ceramic insulating substrateBack copper plate

Solder under insulating substrateCopper base

0.50.5Conventional structureDeveloped structure

Fig.5 Relationship between insulating substrate thickness and thermal resistance

Page 16: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

230 FUJI ELECTRIC REVIEW vol.62 no.4 2016

If partial discharge is generated, degradation of encap-sulation material  originated  from  the  discharge  point is  propagated,  and  that  is  likely  to  result  in  a  break-down  after  the  long  term  operation.    Defective  prod-ucts  can be  identified and eliminated by verifying  the generation  of  a  partial  discharge,  and  that  prevent  a breakdown of the products.

Figure 9  shows  the  results  of  partial  discharge testing of  test  samples using silicone gel molding and epoxy  resin  molding.    The  voltage  at  which  electric charges start to increase as the voltage rises is defined as the partial discharge inception voltage (PDIV), and the  voltage  at which  electric  charges decrease  to  zero as the voltage drops is defined as the partial discharge extinction  voltage  (PDEV).    For  silicone  gel  molding, the  PDIV  was  7 kV.    Meanwhile,  With  epoxy  resin molding, no partial discharge occurred even at 10 kV, indicating  it  is  less  likely  to  generate  a  partial  dis-charge compared with silicone gel molding.

Figure 10  shows  the PDIV and PDEV observed  in the repeated partial discharge testing.  For the sample with epoxy resin molding, partial discharge was gener-ated not  in the molding resin but along the outside of the case at approximately 15 kV.   The graph uses the 

hands, for the epoxy resin, the breakdown is due to ce-ramic penetration.   This  indicates  that  the  insulation performance of the epoxy resin molding is determined by  the  breakdown  capability  of  the  ceramic  insulat-ing  substrate  itself,  and  improving  the  thickness  and breakdown  voltage  of  the  ceramic  allows  the  break-down voltage to be further enhanced.

4.2 Life expectancy evaluation of molding resinAs  a method  of  evaluating  the  long-term  product 

lifetime based on an initial product evaluation, it is ef-fective to investigate the existence of partial discharge.  

Molding resin (silicone gel or epoxy resin)

Case

Front electrode

Back electrode

Ceramic insulating substrate

Fig.6 Test sample shape

Breakdown point

Ceramic

Frontcopper plate

Copper base, silicone gel (transparent) Epoxy resin

(a) Silicone gel molding (enlarged photo of top surface)

(b) Epoxy resin molding (photo after polishing surface copper plate)

Fig.8 Breakdown points

Epoxy resin

Silicone gel

1 2 5 10 20 30 50 80Breakdown voltage (kV)

99.9

0.01

50.0

0.050.1

0.51.0

5.010.0

80.095.0

Cu

mu

lati

ve b

reak

dow

n r

ate

(%)

Fig.7 Relationship between breakdown voltage and cumulative breakdown rate

Voltage riseVoltage drop

Voltage rise

No discharge up to 10 kV

Voltage drop

(a) Silicone gel molding

0 5 10

Applied voltage (RMS value) (kV)

1,000

100

10

1

Ele

ctri

c ch

arge

q(p

C)

(b) Epoxy resin molding

0 5 10

Applied voltage (RMS value) (kV)

1,000

100

10

1

Ele

ctri

c ch

arge

q(p

C)

Fig.9 Results of partial discharge testing on test samples

0 1 2 3 4 5 6Number of repetitions

1.0

0.8

0.6

0.4

0.2

0

Vol

tage

(a.

u.)

Partial discharge inception voltage

Partial discharge extinction voltage

Epoxy resin molding

Silicone gel molding

Fig.10 Partial discharge inception voltage and partial dis-charge extinction voltage

Page 17: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

231Enhanced Breakdown Voltage for All-SiC Modules

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

tion performance depending on encapsulation material.  In  the  future,  by  expanding  the  application  area  of All-SiC modules with enhanced breakdown voltage by further  improving  their  reliability,  we will  contribute to the development of power electronics technology and the realization of a low-carbon society.

References(1)  Nakamura, H.  et  al.  All-SiC Module  Packaging Tech-

nology. FUJI ELECTRIC REVIEW. 2015, vol.61, no.4, p.224-227.

(2)  Nashida,  N.  et  al.  All-SiC  Module  for  Mega-Solar Power Conditioner.  FUJI ELECTRIC REVIEW.  2014, vol.60, no.4, p.214-218.

(3)  Horio,  M.  et  al.  “New  Power  Module  Structure  with Low Thermal  Impedance and High Reliability  for SiC Devices,” Proceedings of PCIM, 2011, p.229-234.

(4)  Ikeda, Y. et al.  “Investigation on Wirebond-less Power Module  Structure  with  High-density  Packaging  and High  Reliability,”  Proceedings  of  ISPSD,  2011,  p.272-275.

(5)  Horio, M. et al. “Ultra Compact and High Reliable SiC MOSFET Power Module with  200 ºC Operating Capa-bility,” Proceedings of ISPSD, 2012, p.81-84.

values observed  in the test.   The PDIV of epoxy resin exhibits twice higher than that of silicone gel.

In  silicone  gel  molding,  once  partial  discharge  is generated,  the PDIV gradually decreases as  the num-ber  of  repetitions  increases.    It  is  assumed  that  voids resulting  from  cracks  in  the  silicone  gel  originating from  the  discharge  points  or  bubbles  due  to  the  gen-eration of cracked gas are generated, and that  lead to degradation propagating in the silicone gel or along the boundary between the silicone gel and ceramic.  Mean-while, in the epoxy resin, partial discharge at the same testing  voltage  does  not  generate.  Therefore,  we  con-clude  that degradation due  to partial discharge  is not likely to occur in long time operation, and the molding resin  is a promising technology to enhance the break-down voltage of SiC devices.

5. Postscript

This paper has described the methodologies to en-hance the breakdown voltage for All-SiC modules.  The effect of the structure of the power module on the miti-gation  of  electric  field  strength  and  heat  dissipation performance  has  been  studied  based  on  simulation.  Furthermore, we investigated the difference in insula-

Page 18: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

232

1. Introduction

Power  modules  are  used  in  wide-ranging  fields such as  the  social  infrastructure field  that  deals with renewable  energy  including  photovoltaic  and  wind power  generation,  electric  railway  field,  automotive field  including  hybrid  electric  vehicles  (HEVs)  and electric vehicles (EVs) and consumer field including air conditioners  as  key  devices  of  power  conversion  sys-tems.

Regarding power modules  intended for power con-version systems, there are increasing demands for size and  weight  reduction  and  performance  enhancement.  However,  the  performance  of  conventional  Si  devices has  come  close  to  its  limits  and  full-scale  diffusion  of power modules  equipped with  SiC  as  next-generation devices is expected.

Compared  with  conventional  Si  devices  operating at 175 °C, SiC devices are capable of operating at high temperatures  of  200 °C  or  higher with  a  current  den-sity that is 2 to 3 times higher.  As a result, the semi-conductor  encapsulation  resin  that  molds  the  power devices  requires  even  higher  thermal  resistance  and withstand voltage(1).

This paper describes an  improvement  to  the  ther-mal  resistance  of  molding  resin  allowing  continuous operation at 200 °C or higher  for  resin-molded all-SiC modules that maximize the performance of SiC devices.

2. Power Module

2.1 Package structure and featuresUnlike  the  conventional  wire  bonding  structure, 

which  is  the  mainstream  of  Si  devices,  the  structure of  a  power  module  is  composed  of  a  semiconductor 

NAKAMATA, Yuko *      TACHIOKA, Masaaki *      ICHIMURA, Yuji *     

Enhanced Thermal Resistance of Molding Resin Used for All-SiC Modules

SiC devices are capable of operating at high temperatures of 200 ºC or higher, while conventional Si devices at 175 ºC, and the molding resin that molds the power devices requires an even higher thermal resistance to spread in the market. Our All-SiC module maximizes the performance of SiC devices, and we have confirmed that the mod-ule can operate continuously at temperatures of 200 ºC or higher through the use of a high thermal-resistant molding resin that is characterized by a longer thermal-resistant service life and improved tracking resistance.

chip, copper pins, ceramic  insulating substrate, solder and molding resin as shown in Fig. 1.  Copper pins are formed instead of conventional wiring and, as the insu-lation in the power module, epoxy resin is used instead of silicone gel(2).

This structure employs a power substrate and low-thermal-resistance  insulating  substrate  and uses  cop-per  pins  for  the wiring  connection  of  the  power  chip.  This  has  made  it  possible  to  miniaturize  the  power module and made current pathways shorter to achieve lower  inductance.    In  addition,  by  strengthening  the bonding  between  the  chip  electrode  and  copper  pins, ΔTj power cycle capability has been improved.

2.2 Issues with improvement to thermal resistance of molding resinOne  important  indicator  of  thermal  resistance 

of  molding  resin  is  glass  transition  temperature  Tg.  Glass  transition  is  a  phenomenon  in  which  molding resin  is  heated  and  changes  from  a  glassy  state  to  a rubbery  state;  and  the  temperature  at  which  glass transition occurs is Tg.   At a temperature higher than Tg, the coefficient of thermal expansion (CTE) and the coefficient  of  elasticity  rapidly  change  and  character-istics  required  of molding  resin  such  as  strength,  ad-

Molding resin

Surface copper plate

Back copper plateCeramic insulating substrate

Ceramic

Copper pin Semiconductor chip Power substrate

Fig.1 Internal section structure of package

Page 19: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

233Enhanced Thermal Resistance of Molding Resin Used for All-SiC Modules

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

hesion  and  insulation  are  degraded.    Accordingly,  to improve the thermal resistance of a power module, it is necessary to increase Tg of the molding resin.

However, in order for the molding resin to achieve a  long-term  thermal  resistance  at  200 °C  or  higher, increasing  Tg  alone  is  insufficient.    It  must  endure long-term reliability tests such as a power module heat cycle  test, high-temperature application  test and  tem-perature  humidity  bias  (THB)  test.    Furthermore,  to guarantee  continuous  use  at  a  junction  temperature Tj of 200 °C, when an accelerated  life  test specified by the UL Standard is conducted the molding resin must maintain the breakdown voltage based on the product standard.    To  guarantee  Tj=200 °C,  life  of  6,663 h  at 225 °C  is required and the molding resin must have a sufficient thermal resistance to deal with temperatures higher than Tj.

3. Resin Molding Technology

3.1 Relationship between glass transition temperature Tg and thermal reductionThe  glass  transition  temperature  Tg  is  defined  as 

the temperature at which the secondary differentiation curve of  the displacement  curve peaks  in  the  thermo-mechanical analysis (TMA) chart shown in Fig. 2.

One method of increasing Tg, which is an indicator of molding resin, is to increase the number of crosslink points formed by single bonds.  However, the chemical bonding force of single bonds is weak and the crosslink points  are  susceptible  to  breakage.    This  accelerates pyrolysis  in a high-temperature environment,  causing the strength, adhesion and insulation to decrease.

Accordingly,  to  achieve  a  high-thermal-resistance resin whose characteristics do not degrade by pyrolysis while ensuring high Tg, as shown in Fig. 3, it is neces-sary to select a resin composition with a large aromatic ring/CH2 ratio in addition to increasing the number of crosslink points of the resin.

While  increasing  epoxy  crosslink points  causes Tg to increase, the 200 °C storage thermal reduction ratio increases  in  the  negative  direction.    Increasing  aro-

matic  units  brings  the  200 °C  storage  thermal  reduc-tion ratio down closer to zero but Tg decreases.  In this way, Tg and the 200 °C storage thermal reduction ratio have a trade-off relationship.  To achieve a large 200 °C storage  thermal  reduction  ratio  as well  as  high  Tg,  a structure with aromatic crosslink units such as multi-functional aromatic units and rigid crosslink points  is required.

3.2 Tracking resistanceIntroducing aromatic crosslink units into the mold-

ing resin increases the number of crosslink points and improves Tg.   However, the number of aromatic rings, which  are  the  main  skeleton  of  aromatic  crosslink units, increase and this makes the molding resin more susceptible  to  carbonization,  leading  to a  lower  track-ing resistance(3).

As  a  high  electric  field  is  applied  to  the  surface of  the  molding  resin,  dust  and  moisture  attached  to the surface of the molding resin tend to cause arc dis-charge.  As a result, the surface is carbonized and car-bonized conductive paths are formed.  This may reduce the insulation, possibly leading to a breakdown.

For molding  resin of power modules used  in a  se-vere  installation  environment  such  as  those  used  for photovoltaic and wind power generation, it is essential to improve the tracking resistance.  Molding resin with the comparative tracking index (CTI), which indicates tracking  resistance,  falling  under  Material  Group  I (600 ≤ CTI) of Table 1 is required.

Fuji Electric has figured out a good composition of Displacement

Secondary differentiation

180 190 200 210 220 230Tg

Temperature (°C)

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

7

6

5

4

3

2

1

0

Dis

plac

emen

t (%

)

Sec

onda

ry d

iffe

ren

tiat

ion

(×1

0–5)

Fig.2 TMA chart of molding resin

Aro

mat

ic r

ing/

CH

2 rat

ioS

mal

lL

arge

200°

C s

tora

ge t

her

mal

red

uct

ion

rat

io (

%)

150 225Glass transition temperature Tg (°C)

Conventionalmolding resin

Number of crosslink pointsFew Many

New moldingresin

composition

-0.2

0.0

Aromatic (multifunctional) crosslink unitRigid crosslink point

Aromatic unitEpoxy crosslink point

Many Few

Few Many

Fig.3 Relationship between Tg and 200 °C storage thermal reduction ratio

Table 1 Comparative tracking index

Molding material clas-sification *1 Comparative tracking index (CTI *2)

Material group I 600 ≤ CTI

Material group II 400 ≤ CTI < 600

Material group III a 175 ≤ CTI < 400

Material group III b 100 ≤ CTI < 175

*1 According to IEC 60664-1*2 CTI:  Comparative tracking index

Page 20: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

234 FUJI ELECTRIC REVIEW vol.62 no.4 2016

the molding resin to achieve a CTI of 600 or above for the molding resin intended for SiC power modules.

3.3 IncombustibilityThe flame retardant added to the molding resin for 

power modules has its sublimation or other decomposi-tion  temperature  around  200 °C.    The  accelerated  life test  conditions  of  the UL1557  that  are used  for  guar-anteeing  operation  at Tj=200 °C  correspond  to  6,663 h at 225 °C, which is close to the decomposition tempera-ture of the flame retardant.  To improve incombustibil-ity,  it  is  necessary  to  select  a  flame  retardant with  a high decomposition temperature and introduce a resin composition  having  crosslink  units  provided  with  in-combustibility  such  as multi-aromatic  rings  and  rigid crosslink points.

3.4 Prediction of thermal-resistant service lifeThermal  resistance  may  be  defined  in  2  ways:  

short-term  thermal  resistance  and  long-term  thermal resistance.

Short-term  thermal  resistance  is  the  resin’s  abil-ity  to  maintain  its  shape  and  properties  in  a  high-temperature  environment,  even  if  only  for  a  short time.  Short-term thermal resistance is represented by the  upper  limit  temperature  that  allows  the  physical properties  of  resin  to  be maintained,  to which Tg  cor-responds.

Long-term thermal resistance is the ability of resin to maintain  its shape and properties even  if  it  is  con-tinuously exposed to a certain temperature.  Long-term thermal resistance is represented by the pyrolysis tem-perature Td.  When resin is left in a high-temperature condition,  oxidative  degradation  due  to  heat  causes crosslink points and other bonds to be break, which de-creases Td.  Accordingly, to improve thermal resistance it is essential to increase Td.

When heated,  resin becomes rubbery at Tg and,  if it is further heated, pyrolysis occurs at Td.

We  predicted  the  thermal-resistant  service  life in  terms  of  long-term  thermal  resistance(4)  by  using thermogravimetry.   Measurements were  conducted  at different  rates  of  temperature  rise  and  the  1%  ther-mal reduction temperature Td1 at each rate was deter-mined.  From this, an Arrhenius plot was made based on chemical kinetics to calculate the activation energy of  pyrolysis.    Next,  from  the  result  of  thermogravi-metric  measurement  conducted  during  temperature rise, Formula 1 was used to find the thermal-resistant 

service life τ  where the weight is reduced by 1% when resin is exposed to a certain temperature.

…………………………………(1)

  τ   :   Thermal-resistant service life (s) at use en-vironment temperature Tc

  Ea  : Activation energy (J/mol)  R  : Gas constant [J/(mol∙K)]  T  : Temperature (K)  B  :   Rate  of  temperature  rise  in  thermogravi-

metric measurement (K/s)  T0  :   Starting  temperature of  thermogravimetric 

measurement (temperature at which pyrol-ysis has not occurred) (K)

  Td1 :   1%  thermal  reduction  temperature  (tem-perature at which thermal reduction due to pyrolysis  is  1%  in  thermogravimetric mea-surement) (K)

  Tc  : Use environment temperature (K)

Table 2  shows  the  results  of  predicting a physical property and  thermal-resistant  service  life  of molding resin.  The 3 types of molding resin have been obtained by  adjusting  the  amount  of  aromatic  crosslink  units to have Tg fixed at 215 °C, CTE at 13 ppm/K and coef-ficient of elasticity at 16 GPa and Td1 varied.  The CTI was specified to be 600 or higher under Material Group I  and  incombustibility  the  accreditation  criterion  for incombustibility*1 V-0.

The thermal-resistant service life gets longer with a  higher  Td1  and  Resin  C  with  Td1=411 °C  has  been confirmed to maintain thermal resistance of 225 °C for 6,663  h as specified by UL1557.

3.5 Results of accelerated life test on power modulesFigure 4 shows the method of conducting an insula-

tion  test  on power modules after  the accelerated heat life test.

=exp

Td1

T0

( )-RT

dT

Bexp ( )-RTc

x

E a

E a

*1:   Accreditation criterion for incombustibility:  Incombusti-bility of plastics used for industrial material applications (Superior) 5 V > V-0 > V-1 > V-2 > HB (Inferior)

Table 2 Results of predicting physical property and thermal-resistant service life of molding resin

ResinPyrolysis  

temperature Td1(°C)

Service life at 200 °C(h)

Service life at 225 °C(h)

Resin A 320 21 4

Resin B 338 712 103

Resin C 411 75,000 10,500

Copper wiring

Power module

Conductive tape

2.5 kV

Fig.4 Method of insulation test

Page 21: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

235Enhanced Thermal Resistance of Molding Resin Used for All-SiC Modules

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent4. Postscript

This  paper  has  described  a  way  to  improve  the thermal  resistance  of  molding  resin  for  all-SiC  mod-ules.  We have developed resin for power modules that allows  continuous  operation  at  200 °C  or  higher.   We have done this by improving tracking resistance, which runs  counter  to  the  improvement  of  thermal  resis-tance, while extending thermal-resistant service life.

In  the  future, we  intend  to develop ways  to apply high  thermal-resistant molding  resin  and  help  to  en-hance the reliability of power modules.

References(1)  Horio,  M.  et  al.  “New  Power  Module  Structure  with 

Low Thermal  Impedance and High Reliability  for SiC Devices”PCIM Europe 2011, 37 (2011), p.229-234.

(2)  Nashida,  N.  et  al.  All-SiC  Module  for  Mega-Solar Power Conditioner.  FUJI ELECTRIC REVIEW.  2014, vol.60, no.4, p.214-218.

(3)  Nishimura, T. et al. High-power IGBT Modules. FUJI ELECTRIC REVIEW. 2008, vol.55, no.2, p.51-55.

(4)  Ichimura, Y. Kinetics Analysis of  Insulating Material. Application Brief.1986, TA NO.25, p.1-4.

To check operation with Tj=200 °C, for power mod-ules  that  use  the  types  of  resin  listed  in Table 2,  we conducted an accelerated heat  life  test under  the con-ditions  of  225 °C  for  6,663 h according  to UL1557.    In Resin A, cracks were generated that reached the sides of the insulating substrate and the breakdown voltage could not satisfy the standard.   With Resin B, a short circuit occurred at the edge of the insulating substrate, causing a breakdown.  Meanwhile, with Resin C, peel-ing between the molding resin and components such as the insulating substrate and elements and cracking in the molding  resin were  restrained  and  the  insulation performance was satisfied (see Fig. 5).

As  shown  in  Table 3,  evaluation  of  resin  using power modules showed a better result with higher Td1.  This is assumed to be because introducing a rigid skel-eton prevented pyrolysis at 225 °C and, as a result, no peeling or cracking occurred in the accelerated heat life test and insulation was ensured.

Resin CResin B

Appearance of module after test

Observation of insulating substrate

Resin AItem

Cracks

NormalShort circuitPeeling on periphery

Fig.5 Results of heat test on power modules

Table 3 Results of evaluation of resin using power modules

Resin Breakdown test pass rate

Resin A 0%

Resin B 60%

Resin C 100%

Page 22: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

236

1. Introduction

In recent years, there has been increasing demand to improve energy efficiency and reduce CO2 emissions as measures  for mitigating  global warming,  and  as  a result,  there has been growing demand  for  renewable energies  such  as  photovoltaic  power  generation  and wind power generation.    In particular,  the continuous increase  in  capacity  of  power  conversion  equipment has  expanded  the  need  for  large  capacity  insulated gate bipolar transistor (IGBT) modules in this field.

Furthermore,  power  conversion  equipment  has been increasingly required to exhibit compactness, low power  dissipation  and  high  reliability.    Under  these background, Fuji Electric developed the 7th-generation “X Series” IGBT module “Dual XT” (X Series Dual XT).

2. Product Line-Up

The  external  and  internal  appearance  of  the  X 

YOSHIDA, Kenichi *      YOSHIWATARI, Shinichi *      KAWABATA, Junya *     

7th-Generation “X Series” IGBT Module “Dual XT”

Power conversion system has been increasingly required to exhibit compactness, low power dissipation and high reliability. Under these background, Fuji Electric developed the 7th-generation “X Series” IGBT module “Dual XT” (X Series Dual XT). The X Series Dual XT has reduced power dissipation through semiconductor chip characteristic enhancement, while also improving the package current-carrying capability through package structure enhancement. In addition, by improving the ΔTj power cycle capability and the heat resistance of the insulation-use silicone gel, the module achieves a junction temperature of Tjop=175 °C under continuous operation. It is also the industry’s first mod-ule in this package size that has a 1,200-V/800-A rating.

Series  Dual  XT  is  shown  in  Fig. 1,  and  the  product line-up is provided in Table 1.   The line-up consists of a total of 4 types of packages: solder pin types (M254, M285) and press-fit pin types (M282, M286).  In order to  expand  rated  current  and  improve  reliability,  the M285  package  and M286  package  adopt  a  thick  cop-per structure for the main terminals as well as a high  thermal-conductive  insulating  substrate,  while  also applying  a new packaging  technology  that makes use of copper wire bonding technology and a high compara-tive  tracking  index  (CTI)  resin based case.   By apply-

High CTI resin based case Thick copper

terminal

Copper wiringHigh heat-dissipating

insulating substrate

Fig.1 X Series Dual XT external and internal appearance

Table 1 X Series Dual XT product line-up

Product type Pin typeRated voltage (V)

Rated current (A)

Package type

Insulating substrate

2MBI225XNA120-50

Solder pin type

1,200

225

M254 Al2O32MBI300XNA120-50 300

2MBI450XNA120-50 450

2MBI600XNE120-50 600M285 AlN

2MBI800XNE120-50 800

2MBI225XNB120-50

Press-fit pin type

225

M282 Al2O32MBI300XNB120-50 300

2MBI450XNB120-50 450

2MBI600XNF120-50 600M286 AlN

2MBI800XNF120-50 800

2MBI225XNA170-50

Solder pin type

1,700

225

M254 Al2O32MBI300XNA170-50 300

2MBI450XNA170-50 450

2MBI600XNE170-50 600 M285 AlN

2MBI225XNB170-50

Press-fit pin type

225

M282 Al2O32MBI300XNB170-50 300

2MBI450XNB170-50 450

2MBI600XNF170-50 600 M286 AlN

Page 23: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2377th-Generation “X Series” IGBT Module “Dual XT”

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

ing this new technology, Fuji Electric has realized the industry’s  first  1,200-V/800-A  rated  module  at  this package size.

3. Characteristics

In order to improve the efficiency of energy conver-sion,  it  is  necessary  to  improve  power  dissipation  for IGBT  modules,  and  the  characteristics  of  this  power dissipation  depend  on  the  properties  of  the  semicon-ductor  chips  of  the  IGBT    and  free  wheeling  diode (FWD).

3.1 IGBT characteristic improvementImprovement  of  collector-emitter  saturation  volt-

age has been realized by reducing the thickness of the drift  layer  in  the  X  Series  Dual  XT  IGBT.    Further-more,    the  voltage  oscillation  and  withstand  voltage degradation that can occur in the case of thinned drift layers during turn-off has been suppressed by optimiz-ing the field stop (FS) layer.

Compared with the “V Series” Dual XT, the X Se-ries  Dual  XT  IGBT  has  significantly  improved  char-acteristics,  including  saturation  voltage  reduction  of approximately  0.4 V  and  turn-off  energy  reduction  of approximately 7% as shown in Fig. 2.

3.2 FWD characteristic improvementReduction  of  the  anode-cathode  forward  voltage 

has  been  realized  by  reducing  the  thickness  of  the drift layer in the X Series Dual XT FWD.  In addition,  Softer reverse recovery waveforms compared with con-ventional product has been achieved by optimized local life time control as shown in Fig. 3.  Furthermore, sig-nificantly reduced reverse recovery energy by reducing reverse  recovery  peak  current  and  tail  current(1)  has been realized.

Compared with conventional products, the X Series Dual XT FWD has significantly  improved characteris-tics,  including a  forward voltage reduction of approxi-

mately  0.1 V and a  reverse  recovery  energy  reduction of approximately 9% as shown in Fig. 4.

3.3 Power dissipation comparisonThe  result  of  calculating  power  dissipation  is 

shown in Fig. 5.  As a result of the improvements men-tioned  in Sections 3.1  and  3.2,  the  X  Series Dual  XT 

X Series

V Series

t : 200 ns/divVAK: 200 V/divI f: 200 A/div

V Series (conventional product): 2MBI450VN-120-50X Series: 2MBI450XNA120-50VCC = 600 V, R g = +/−0.56 Ω, VGE = +/−15 V, T j =150 °C, L s =35 nH

If

VAK

Fig.3 Reverse recovery waveforms

V Series (previous product): 2MBI450VN-120-50X Series: 2MBI450XNA120-50VCC = 600 V, R g = +/−0.56 Ω, VGE = +/−15 V, T j = 150 °C, L s = 35 nH

1.6 1.7 1.8 1.9 2.0Forward voltage VF (V)

80

60

40

20

0

Rev

erse

rec

over

y e

ner

gy(m

J/pu

lse)

Forward voltage: Approx. 0.1 V reductionReverse recovery energy: Approx. 9% reduction

X Series V Series

Fig.4 Trade-off characteristic (FWD)

V Series (conventional product): 2MBI450VN-120-50X Series: 2MBI450XNA120-50VCC = 600 V, I o = 288 A, F o = 50 Hz, cosφ= 0.8, modulation rate = 1.0, T a = 50 °C, R g = +/−0.56 Ω

f c = 1kHz f c = 3 kHz f c = 5 kHz

600

400

200

Approx. 12% reduction

X Series Approx. 7% reduction

Approx. 5%reduction

0

Pow

er d

issi

pati

on (

W)

P rrP fP onP offP sat

V Series

Fig.5 Power dissipation

V Series (conventional product): 2MBI450VN-120-50X Series: 2MBI450XNA120-50VCC = 600 V, R g = +/−0.56 Ω, VGE = +/−15 V, T j =150 °C, L s = 35 nH

X Series V Series

1.5 1.7 1.9 2.1 2.3 2.5Saturation voltage VCE(sat) (V)

100

80

60

40

20

0

Tu

rn-o

ff e

ner

gy (

mJ/

puls

e)

Saturation voltage: Approx. 0.4 V reductionTurn-off energy: Approx. 7% reduction

Fig.2 Trade-off characteristic (IGBT)

Page 24: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

238 FUJI ELECTRIC REVIEW vol.62 no.4 2016

has been able to reduce power dissipation by approxi-mately  12%  at  carrier  frequency  of  1 kHz when  com-pared with conventional products.

4. Packaging Technology

Table 2  shows  the  features  of  the  X  Series  Dual XT  (M285,  M286)  packaging  structure.    In  order  to contribute to the miniaturization of devices, the newly developed  packaging  structure  aimed  at  increasing output  current   without  package  size  up.    To  achieve this  target,  it was necessary  to  improve both  the exo-thermicity of package, semiconductor chip and thermal conduction for better cooling.

4.1 Reduction of thermal resistance by newly developed AlN insulating substrateIn  order  to  efficiently  cool  down  the  heat  gener-

ated by the semiconductor chip, the X Series Dual XT (M285, M286) has newly developed high  thermal con-ductive insulating AlN substrate(2).

The  junction-case  thermal  resistance  is  shown  in Fig. 6.    IGBT module which  has  the  newly  developed AlN  insulating  substrate  can  reduce  its  thermal  re-sistance  by  approximately  45%  compared  with  IGBT module  with  Al2O3  insulating  substrate  which  is widely used  in case of same chip size.

4.2 Heat generation reduction inside package by copper wiringConventional  products  adopted  aluminum  wiring 

for  the main  circuit wiring  inside  the package.   How-ever,  the  aluminum wiring  causes    high  temperature rising by large current.  For that reason, the maximum rated  current  to  be  limited  to  600 A  in  conventional products.    Therefore,  the  X  Series  Dual  XT  (M285, M286) has adopted copper wiring  for  the main circuit wiring.  As shown in Table 3, copper has a specific re-

sistance that is 40% lower than aluminum, as well as a higher thermal conductivity of 77%.  As results of the improvement,  temperature  rising  has  been  dramati-cally  improved.    Furthermore,  the  aluminum  wiring between the terminal and insulating substrate of con-ventional products is packed  in local area of package.   In order to achieve even lower package heating for the wiring, the X Series Dual XT has optimized circuit pat-tern  on  insulating  substrate which  can  be  realized  to bond larger number of copper wires.

The  evaluation  results  for  the  heating  of  the package are shown in Fig. 7.   Compared with the wir-ing  temperature  rise  of  ΔT  =58 °C  in  the  packages  of conventional  products,  the  X  Series  Dual  XT  (M285, M286) package has reduced this value to less than half with ΔT =20 °C.

4.3 Reduction of heat generation for the main terminal of package by thicker copper for terminalsThe X Series Dual XT (M285, M286) has thickened 

the main  terminals  from 1.5 mm to 2.0 mm compared with  conventional  products,  while  also  reducing  heat generation  by  optimizing  the  shape  of  the  terminals.  Compared  with  the  main  terminal  temperature  rise of ΔT =46 °C in the packages of conventional products, the  X  Series  Dual  XT  (M285, M286)  package  has  re-duced  this  value  to  half  with  ΔT  =23 °C  as  shown  in Fig. 7.

Table 2 Features of X Series Dual XT (M285, M286) packaging structure

Item X Series Dual XT V Series Dual XT (conventional product)

Mounted chip X Series V Series

Rated voltage 1,200 V 1,200 V

Max. rated current 800A 600A

Insulating sub-strate AlN Si3N4

Copper thickness of output terminal 2.0 mm 1.5 mm

Wire bond-ing

Output terminal Copper Aluminum

Between insulating substrate

Copper Aluminum

Tjop 175 °C 150 °C

Case resin mate-rial High CTI resin Conventional resin

Silicone gel High heat-resistant gel (-40 to +175 °C)

Conventional gel (-40 to +150 °C)

45% reduction

0.001 0.01 0.1 1Pulse width (s)

10

1

0.1

0.01Jun

ctio

n-c

ase

ther

mal

res

ista

nce

(a.

u.)

Al2O3Insulating substrate

Condition: Comparison with same chip size

AlN insulating substrate

Fig.6 Junction-case thermal resistance

Table 3 Properties of wiring materials

Material Specific resistance(10-8Ω∙m)

Thermal conductivity[W/(m∙K)]

Aluminum 2.5 220

Copper 1.5 390

Copper thickness of output terminal 40% reduction 77% improvement

Page 25: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2397th-Generation “X Series” IGBT Module “Dual XT”

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

ever, the application of a newly developed solder mate-rial(3) and the use of a new wire bonding technology for the semiconductor chip have enabled a capability that is  approximately  twice  that  of  conventional  products under conditions of Tjmax =175 °C, ΔTj =50 °C.

As a result, the ΔTj power cycle capability of the X Series Dual XT has a capability at Tjmax =175°C that ex-ceeds conventional products operating at Tjmax =150°C.

Silicone  gel  is  used  to  ensure  insulation  perfor-mance  for  the  inside  of  the  IGBT module.    The  rela-tionship between the temperature and life time of the silicone  gel  is  shown  in Fig. 9.    Conventional  silicone gel has a life time of 10 years or more at a temperature of 150 °C, but it degrades to approximately 2 years at a temperature of 175 °C.   The newly developed    silicone gel(3) for  X Series Dual XT has a life expectancy of ten years  or more  even  at  a  temperature  of  175 °C which can be realized same life time of the silicone gel of con-ventional products operating at 150 °C.

5. Summary

The X Series Dual XT has reduced power dissipa-tion  through enhancing characteristics of  semiconduc-tor  chip,  while  also  improving  current-carrying  ca-pability  for  package  by  improving  package  structure.  Furthermore,  it  has  achieved  continuous  operation  at Tjop  =175 °C  by  improving  ΔTj  power  cycle  capability and heat  resistance  of  insulation-use  silicone  gel.   As the  results,  it  is  capable  of  improving  output  current during  actual  operation  and  energy  conversion  effi-ciency  in products utilizing IGBT modules such as  in-verters.

As an example of the effect of these enhancements, relationship  between  inverter  output  current  and IGBT  junction  temperature  is  shown  in  Fig. 10.    By applying  the X Series Dual XT,  output  current  is  im-proved by 40% compared with conventional products(4).

4.4 Expansion of continuous operation junction tempera-ture Tjop

In order to achieve an even higher output current for  the  X  Series  Dual  XT,  the  continuous  operation junction  temperature  Tjop  has  been  expanded  from 150 °C to 175 °C compared with conventional products.  To expand Tjop, it was necessary to improve capability for large temperature changes (ΔTj power cycle capabil-ity), while also enhancing long-term reliability at high temperatures  (heat  resistance  of  insulation-use  sili-cone gel).

The ΔTj power cycle capability is shown in Fig. 8.  In conventional  products,  there would be  a dramatic  deg-radation of  the ΔTj power cycle  capability when Tjmax =150 °C rose  to 175 °C.    In  the X Series Dual XT, how-

(b) V Series Dual XT (conventional product)

T= 58 °C (aluminum wiring)

Δ

T= 46 °C (main terminal)Δ

(a) X Series Dual XT

Current direction

Condition: IDC= 400 A

Current direction

T= 20 °C (copper wiring)Δ

T= 23 °C (main terminal)Δ

Fig.7 Evaluation results for the heat generation of the package

V Series (Tjmax=175 °C)

X Series (Tjmax=175 °C)

Two-foldimprovement

V Series (Tjmax=150 °C)

40 50 60 70 80 90 100Tj (°C)

107

106

105

104

Condition: cumulative failure rate = 1%

Tj p

ower

cyc

le c

apab

ilit

y (c

ycle

s)Δ

Fig.8 ΔTj power cycle capability

18 252423222120191/environmental temperature (×10-4K-1)

Sil

icon

e ge

l lif

e ti

me

Newly developed silicone gel

Conventional silicone gel

10 years

2 years

175

°C

150

°C

Fig.9 Relationship between silicone gel temperature and life time

Page 26: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

240 FUJI ELECTRIC REVIEW vol.62 no.4 2016

with  its  package  size  by  significantly  enhancing  the characteristics of the semiconductor chip and adopting a new packaging technology.    In  the  future, Fuji elec-tric plans  to continue to offer products  that make use of  the newest  technologies  to  contribute  to  the minia-turization, efficiency improvement and higher reliabil-ity of various types of power conversion equipment.

References(1)  Onozawa,  Y.  et  al.  “Development  of  the  1200 V  FZ-

Diode  with  soft  Recovery  Characteristics  by  the  New Local  Lifetime  Control  Technique”.  Proceeding  of ISPSD 2008, p.80-83.

(2)  Momose, F. et al. “The New High Power Density Pack-age Technology for the 7th Generation IGBT Module”, PCIM Europe 2015.

(3)  Kawabata,  J.  et  al.  7th-Generation  “X  Series”  IGBT Module. FUJI ELECTRIC REVIEW. 2015, vol.61, no.4, p.237-241.

(4)  Takahashi, M.  et  al.  “Extended Power Rating  of  1200 VIGBT Module with 7 G RC- IGBT Chip Technologies”, Proceeding of PCIM Europe 2016.6. Postscript

The 7th-generation “X Series” IGBT module “Dual XT” has become the industry’s first 800 A rated module 

V Series

X Series

+40%

V Series (conventional product): 2MBI600VN-120-50X Series: 2MBI800XNE120-50VCC = 600 V, f o = 50 Hz, f c = 8 kHz, cosφ= 0.9, modulation rate = 1.0, T a = 50 °C

0 0.5 1.0 1.5 2.0Output current Io (a.u.)

225

200

175

150

125

100

75

50

IGB

T ju

nct

ion

tem

pera

ture

(°C

)

Fig.10 Inverter output current and IGBT junction temperature

Page 27: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

241

1. Introduction

In recent years, there have been increasing expec-tations  for  power  electronics  technology  that  utilizes   energy  efficiently  and  contribute  to  energy  savings  in order  to  prevent  global warming  and  realize  safe,  se-cure  and  sustainable  society.    Above  all,  the  demand for power semiconductors is expanding as a key device of power conversion system used in wide-ranging fields including the industrial, consumer, automotive and re-newable energy fields.

Fuji  Electric  has  commercialized  insulated  gate bipolar  transistor  (IGBT)  modules,  which  are  power semiconductors,  in  1988.  Ever  since  then,  Fuji  Elec-tric has contributed  to miniaturization,  cost  reduction and  performance  improvement  for  power  conversion system  through many  IGBT module  technology  inno-vations  such  as  miniaturizing  the  size,  reducing  the loss and  improving  the  reliability.   However, any  fur-ther miniaturization of IGBT modules increases power density, which may  lead to  lower reliability due to an increase in operating temperatures of IGBTs and free-wheeling  diodes  (FWDs).    Accordingly,  to miniaturize IGBT modules while maintaining high  reliability,  the chips and packages  technology  innovation  is  essential to  miniaturize  IGBT modules  and maintain  the  high reliability.

Fuji  Electric  has  carried  out  chip  and  package technology  innovation,  and  commercialized  the  7th-generation  “X  Series”  IGBT module(1),(2).    In  addition, we  have  developed  a  reverse-conducting  IGBT  (RC-IGBT), which integrates an IGBT and a FWD into one chip, and then the 7th-generation “X Series” RC-IGBT module  for  industrial  applications(3),(4).    By  applying the chip technology of the 7th-generation X Series and 

YAMANO, Akio *      TAKAHASHI, Misaki *      ICHIKAWA, Hiroaki *     

7th-Generation “X Series” RC-IGBT Module for Industrial Applications

In recent years, IGBT modules have been increasingly required to be smaller in size while exhibiting lower loss and higher reliability. To meet the requirements, Fuji Electric has developed an industrial-use reverse conducting IGBT (RC-IGBT) module by using an RC-IGBT that integrates an IGBT and a free wheeling diode (FWD) on a single chip. Furthermore, the module greatly reduces loss and thermal resistance and enhances reliability through optimiza-tion based on our 7th-generation “X Series” technology. These technology innovations have achieved enhancements such as expansion of rated current, increased power density and miniaturization, all of which were impossible through the combination of conventional IGBT and FWD.

optimizing  the  chip  structures,  we  have  successfully reduced the number of chips and the total chip area in spite of the power loss equivalent to the combination of the X Series  IGBT and X Series FWD.   Furthermore, by  combining  the  package  technology  of  the  7th-gen-eration X Series with  the RC-IGBT, we have  reduced the  thermal  resistance  and  improved  the  reliability.  Through the technology innovations, we have achieved further  high  power  density  and  miniaturization  of IGBT modules, which were impossible through conven-tional combination of IGBT and FWD.

2. Features

2.1 Features of the “X Series” RC-IGBT for industrial ap-plicationsIn  the  conventional  IGBT,  a  current  flows  only 

from the collector to the emitter when a voltage is ap-plied to the gate.

An  inductor,  which  is  used  as  a  load  of  inverters widely  used  as  power  conversion  system,  generates induced electromotive force in the direction to prevent any  current  change by  the  self-induction  effect.   As  a result, even if the IGBT is turned off, the current tend to flow in the same direction, therefore it  is necessary to  connect  the  FWD  in  antiparallel  to  the  IGBT  in order  to flow  the  current  in  reverse direction.   Mean-while, the “X Series” RC-IGBTs achieve the same pur-pose with one device by using an RC-IGBT technology (see Fig. 1). 

Figure 2 shows a cross-section view of the X Series RC-IGBT.    The  X  Series  RC-IGBTs  employ  the  7th-generation X Series IGBTs chip technology that use a trench  gate  as  the  surface  structure  and  a  field  stop (FS)  layer  as  the  backside  structure.    As  with  the  X Series IGBTs, the X Series RC-IGBTs employ even fine pattern design rules as compared with the 6th-genera-

Page 28: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

242 FUJI ELECTRIC REVIEW vol.62 no.4 2016

tion “V Series” IGBTs and optimized the surface struc-ture.    In  this  way,  they  have  achieved  a  significant reduction  of  the  collector-emitter  saturation  voltage VCE(sat)  that  contributes  to  conduction  loss.    The  lat-est thin wafer processing technology has also been ap-plied to improve the trade-off relationship between the saturation voltage and turn-off  switching  loss.   The X Series RC-IGBTs integrate FWD regions and have p-n junctions  on  the  collector  side.    Accordingly,  we  have added  the  processes  of  patterning  and  impurity  layer formation on the backside to  form the p-type  layer on the collector side of the IGBT and the n-type  layer on the  cathode  side  of  the  FWD  on  the  backside  of  the same chip.    In addition,  the  trade-off  relationship has been improved by lifetime control.

2.2 Electrical characteristicsFigure 3  shows  the  output  characteristic  of  the 

1,200-V X Series RC-IGBTs.   The X Series RC-IGBTs are capable of outputting a current in both the forward direction (IGBT) and reverse direction (FWD) with one chip.    A  saturation  voltage  lower  than  that  of  the  V Series  IGBTs  has  been  realized  by  applying  the  chip technology  of  the  7th-generation  X  Series.   With RC-IGBTs,  electrons  are  injected  into  the  cathode  layer of  the  FWD  region.    This  suppresses  hole  injection from the collector  layer of  the IGBT and thus hinders 

conductivity  modulation.    For  that  reason,  snapback phenomenon has been reported to occur(5),(6)  in the low saturation voltage region.   Meanwhile, with the X Se-ries RC-IGBTs, snapback phenomenon has been solved by optimizing the each structures of the chip.

Turn-off  waveforms  of  the  X  Series  RC-IGBTs are  shown  in Fig. 4,  turn-on waveforms  in Fig. 5  and reverse  recovery  waveforms  in  Fig. 6.    Figure 4  indi-cates that the surge voltage of the X Series RC-IGBTs is  equivalent  to  that  of  combinations  of  the  V  Series 

RC-IGBTIGBT

Emitter

Gate

Collector

Anode Emitter

(FWD)

IGBT region

FWD region

(IGBT)

Gate

CathodeCollector

FWD

Fig.1 Schematic view and equivalent circuit of “X Series” RC-IGBT

IGBT region FWD region

n+p+

n+ n+ n+ n+

Field stop layer

Fig.2 Cross-section view of “X Series” RC-IGBT

V Series IGBT

X Series IGBT

X Series FWD

V Series FWD

X Series RC-IGBT

IGBT (IC> 0)FWD (IC< 0)

Condition: Comparison based on the same active area

-4 -3 -2 -1 0 1 2 3 4On-state voltage VCE(sat) (V), Forward voltage Vf (V)

200

150

100

50

0

-50

-150

-100

-200

Col

lect

or c

urr

ent I C

(A)

Fig.3 Output characteristic of “X Series” RC-IGBT

400 600 800 1,000 1,200 1,400 1,600Time (ns)

1,200

1,000

800

600

400

200

0

-200

300

250

200

150

100

50

0

-50

Col

lect

or-e

mit

ter

volt

age V

CE

(V)

Col

lect

or c

urr

ent I C

(A)

VCE

IC

X Series IGBT + FWDV Series IGBT + FWD

X Series RC-IGBT

Fig.5 Turn-on waveforms of “X Series” RC-IGBT

400 600 800 1,000 1,200 1,400 1,600Time (ns)

1,200

1,000

800

600

400

200

0

-200

300

250

200

150

100

50

0

-50

Col

lect

or-e

mit

ter

volt

age V

CE

(V)

Col

lect

or c

urr

ent I C

(A)

X Series IGBT + FWDV Series IGBT + FWD

VCE

IC

X Series RC-IGBT

Fig.4 Turn-off waveforms of “X Series” RC-IGBT

Page 29: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2437th-Generation “X Series” RC-IGBT Module for Industrial Applications

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

IGBT and FWD and  of  the X Series  IGBT and FWD.  The  tail  current  during  turn-off  switching  is  smaller than that of the combination of the V Series IGBT and FWD and the turn-off loss Eoff is lower by 23% with no abnormal  waveforms  observed.    The  X  Series  RC-IG-BTs use a thinner wafer than that of the combination of the V Series IGBT and FWD in order to improve the characteristics.  Use of a thinner wafer concerns oscil-lation at  turn-off and breakdown voltage degradation.  However,  with  the  X  Series  RC-IGBTs,  the wafer  re-sistivity and  the each  structures have been optimized to  successfully  suppress  oscillation  and  breakdown voltage degradation.  As shown in Fig. 5 and Fig. 6, the current waveforms for the combination of the V Series IGBT  and  V  Series  FWD  have  steep  slopes,  but  the X  Series  RC-IGBT  realizes  soft  recovery  waveforms by  optimizing  lifetime  control.    Lowering  the  reverse recovery current peak Irrm and the tail current has re-duced the reverse recovery loss Err by 20%.  No abnor-mal  waveforms  are  observed  in  either  the  turn-on  or the reverse recovery waveforms.

Figure 7  shows  the  trade-off  characteristic  of  the IGBT as a comparison based on the same active area.  Each point for the X Series RC-IGBT in the figure is a result of carrying out trade-off adjustment by changing 

lifetime control.  Based on the same switching loss, the X Series RC-IGBT has improved the saturation voltage by 0.5 V as compared with the V Series IGBT.  In addi-tion, IGBT characteristics equivalent to those of the X Series IGBTs can be expected.

Figure 8  shows  the  trade-off  characteristic  of  the FWD as a comparison based on the same active area.  Each  point  for  the X Series RC-IGBT  in  the  figure  is a  result  of  trade-off  adjustment  in  the  same  way  as Fig. 7.  Based on the same switching loss, the X Series RC-IGBT  has  improved  the  forward  voltage  by  0.3 V  as  compared with  the V  Series  FWD.    In  addition, FWD characteristics equivalent to those of the X Series FWDs can be expected.

2.3 Thermal characteristicsWith  the  X  Series  RC-IGBTs,  an  IGBT  and  an 

FWD has  been  integrated  into  one  chip  and  the  heat generated due  to  power  loss  in  the  IGBT  or FWD  re-gions  is  radiated  from  the  entire  chip.    Accordingly, reduction  of  thermal  resistance  can  be  expected.    To further  reduce  thermal  resistance,  a  new  aluminum nitride (AlN) insulating substrate has been applied as the package technology of the 7th-generation X Series.

General  AlN  substrates  have  high  thermal  con-ductivity,  which  decreases  thermal  resistance  and,  to deal with their low bending strength, ceramics thicker than alumina (Al2O3) insulating substrates, which are widely  in use, are used  to put  them  into practical ap-plications.   However,  thicker  substrates  affects  to  the thermal  resistance  and  reliability.    To  improve  these issues,  it was  necessary  to make  the  thinner AlN  in-sulating  substrates.    Conventionally,  thinning  of  AlN insulating  substrates  posed  issues  such  as  substrate cracking  in  the  mounting  process  and  reduction  of isolation  capability,  which  hindered  them  from  being put to practical use.  To address these issues, we have increased the strength by revising the sintering condi-tions  of  AlN  and  optimized  the  insulation  design  by revising the creepage distance to realize a new thinner AlN insulating substrate.

400 600 800 1,000 1,200 1,400 1,600Time (ns)

1,400

1,200

1,000

800

600

400

200

0

-200

150

100

50

0

-50

-100

-150

-200

-250

An

ode-

cath

ode

volt

age V

AK (

V)

For

war

d cu

rren

t I f

(A

)

I f

VAK

X Series IGBT + FWDV Series IGBT + FWD

X Series RC-IGBT

Fig.6 Reverse recovery waveforms of “X Series” RC-IGBT

Improved by 0.5 V

V Series IGBT

X Series IGBT

X Series RC-IGBT

Measuring conditions: VCE(sat) : IC =100 A, VGE = +15 V, Eoff : VCC = 600 V, IC =100 A, VGE = +15 V/−15 V, Reverse recovery dv /dt =10 kV/µsCondition: Comparison based on the same active area

1.0 1.5 2.0 2.5 3.0On-state voltage VCE(sat) (V)

20

15

10

5

0

IGB

T t

urn

-off

loss

Eof

f (m

J)

Fig.7 Trade-off characteristic of “X Series” RC-IGBT (IGBT)

Measuring conditions:Vf : I f =100 A, VGE = −15 V (X Series RC-IGBT), Err: Vcc = 600 V, I f =100 A, VGE =+15 V/−15 V, Reverse recovery dv /dt = 10 kV/µsCondition: Comparison based on the same active area

0.5 1.0 1.5 2.0 2.5FWD forward voltage Vf (V)

15

10

5

0

FW

D r

ever

se r

ecov

ery

loss

Err

(mJ)

X Series RC-IGBT

Improved by 0.3 V

V Series FWDX Series FWD

Fig.8 Trade-off characteristic of “X Series” RC-IGBT (FWD)

Page 30: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

244 FUJI ELECTRIC REVIEW vol.62 no.4 2016

current  than  that  of  a  conventional  combination  of IGBT and FWD with the same package.

Table 2 shows Dual XT and PrimePACK2*1 as line-up of products with a rated voltage of 1,200 V and fea-tures  in Table 3.   Conventional Dual XT with a  rated voltage  of  1,200 V  has  the  upper  limit  the  rated  cur-rent  of  600 A  for  a  combination  of  the V Series  IGBT and FWD.  Through the use of the chip technology and package technology of the 7th-generation X Series, the rated current has been increased to 800 A by combin-ing the X Series IGBT and FWD.  Furthermore, adopt-ing  the  X  Series  RC-IGBT  provides  a  module  with  a rated  current  of  1,000 A using  the  same  package.    In comparison  to  PrimePACK2  that  uses  the  V  Series IGBT and FWD, Dual XT offers a 40% reduction in the module  footprint.    In  addition,  by  using  the  X  Series RC-IGBT, thermal resistance Rth(jc)  can be reduced by 27%.  In this way, it covers the range of PrimePACK2, which uses the conventional V Series IGBT and FWD.

Figure 11  shows  the  calculation  results  of  output current  Io  in  inverter  operation  and  the  maximum IGBT junction temperature Tjmax for the Dual XT prod-ucts  respectively  with  a  combination  of  the  V  Series IGBT and FWD, combination of the X Series IGBT and FWD  and  the  X  Series  RC-IGBT.    In  addition,  using the X Series RC-IGBT  can  reduce power  loss and  the junction-case thermal resistance.  Furthermore, by ap-

The  junction-case  thermal  resistance  is  shown in Fig. 9.   The new AlN  insulating  substrate  features approximately  45%  lower  thermal  resistance  as  com-pared  with  Al2O3  insulating  substrates  based  on  the same  chip  size,  which  is  a  significant  improvement.  This  has  resolved  the  issue  of  a  temperature  rise caused by miniaturization of IGBT modules.  Further-more,  by  optimizing wire  bonding  and  applying  high-strength new  solder  and high heat  resistance  silicone gel, high reliability has been ensured and while guar-anteeing continuous operation at 175 °C.

3. Power Density Increase and Miniaturization

Table 1  shows  a  comparison  with  the  V  Series IGBT module of 1,200 V/100 A, and Fig. 10 shows cal-culation  results  of  the  power  loss,  junction  tempera-ture, Tj and temperature rise from the case to junction, ΔTjc  for the respective modules.   By applying the chip technology and package  technology  of  the 7th-genera-tion X Series, we have significantly reduced the power loss and thermal resistance as compared with the con-ventional combination of the V Series IGBT and FWD.  We have thus ensured high reliability and guaranteed continuous  operation  at  175 °C.    In  addition,  use  of the X Series RC- IGBT makes it possible to reduce the number of chips and the total chip area, and miniatur-ization of IGBT modules can be expected.

Based on these merits, applying the RC-IGBT chip technology and the chip technology and package tech-nology of the 7th-generation X Series can expand rated 

0.001 0.01 0.1 1Pulse width (s)

10

1

0.1

0.01Jun

ctio

n-c

ase

ther

mal

res

ista

nce

(a.

u.)

Al2O3 Insulating substrate

Condition: Comparison based on the same chip size

New AlN insulating substrate

Fig.9 Junction-case thermal resistance

V SeriesIGBT module

X Series RCRC-IGBT module

107.0 W

T jmax =124°C

101.7 W

150

100

125

75

50

25

0

Pow

er lo

ss (

W)

Calculation conditions: V cc = 600 V, I o = 50 A (RMS value), F o = 50 Hz, F c = 8 kHz, Power factor = 0.9, Modulation rate = 1.0, Ambient temperature T air = 50°C, R th (heatsink) = 0.085 K/W, Thermal paste = 50 µm, 2 W/(m∙K)

P sat

P off

P on

P f

P rr

=16.8°CT jc∆T jmax =134°C

=24.3°CT jc∆

Fig.10 Power loss and junction temperature of 1,200 V/100 A IGBT modules

Table 1 Comparison between 1,200-V/100-A IGBT modules

Item X SeriesRC-IGBT module

V SeriesIGBT module

Chip X Series RC-IGBT V Series IGBT +  FWD

Insulating substrate New AlN insulat-ing substrate

Al2O3 insulating substrate

Continuous operating temperature Tj (°C)

175 150

Table 2 Product lineup of “Dual XT” and PrimePACK2 with a rated voltage of 1,200 V

Product nameRated current (A)

225 300 450 600 800 900 1,000

Dual XT

V Series IGBT + FWD

X Series IGBT + FWD

PrimePACK* V Series IGBT + FWD

*   PrimePACK:  Trademark or registered trademark of Infineon Tech-nologies AG

X SeriesRC-IGBT

Page 31: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2457th-Generation “X Series” RC-IGBT Module for Industrial Applications

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

4. Postscript

This  paper  has  described  the  7th-generation  “X Series”  RC-IGBT modules  for  industrial  applications.  They  have  achieved  even  higher  power  density  and miniaturization by applying an RC-IGBT, which  inte-grates an IGBT and an FWD into one chip.  We believe that using this module will lead to further miniaturiza-tion and cost reduction of power conversion equipment and  widely  contribute  to  society.    In  the  future,  we intend  to  continue  working  on  technology  innovation of IGBT modules and contribute to the realization of a safe, secure and sustainable society.

References(1)  Kawabata, J. et al. “The New High Power Density 7th 

Generation  IGBT Module  for Compact Power Conver-sion Systems”, Proceeding of PCIM Europe 2015.

(2)  Kawabata,  J.  et  al.  7th-Generation  “X  Series”  IGBT Module. FUJI ELECTRIC REVIEW. 2015, vol.61, no.4, p.237-241.

(3)  Takahashi, M. et al. “Extended Power Rating of 1200 V IGBT Module with 7 G RC- IGBT Chip Technologies”, Proceeding of PCIM Europe 2016.

(4)  Takahashi, K. et al. “1200 V Class Reverse Conducting IGBT  Optimized  for  Hard  Switching  Inverter”,  Pro-ceeding of PCIM Europe 2014.

(5)  Takahashi,  H.  et  al.  “1200 V  Reverse  Conducting IGBT”, Proceeding of ISPSD 2004. p.133-136.

(6)  M, Rahimo. et al. “The Bi- mode Insulated Gate Tran-sistor (BIGT) A Potential Technology for Higher power Applications”, Proceeding of ISPSD 2009. p.283-286.

plying  the  package  technology  of  the  7th-generation X  Series,  the  guaranteed  continuous  operating  tem-perature  has  been  increased  from  the  conventional 150 °C to 175 °C.  As a result, a higher current density than before has been achieved with the same package and even higher power density and miniaturization of IGBT modules  realized.    In  this way,  it  is  possible  to meet the requirements expected of IGBT modules such as miniaturization,  loss  reduction and higher  reliabil-ity.

V Series IGBT + FWD1,200 V/600 A

X Series RC-IGBT1,200 V/1,000 A

X Series IGBT + FWD1,200 V/800 A

Conditions: F o= 50 Hz, F c= 4 kHz

0 200 400 600 800Output current I o (A)

200

150

175

125

100

75

50

25Max

imu

m I

GB

T ju

nct

ion

tem

pera

ture

Tjm

ax (

°C)

Fig.11 Maximum IGBT junction temperature of “Dual XT”

*1:   PrimePACK:  Trademark or registered trademark of Infi-neon Technologies AG

Table 3 Features of “Dual XT” and PrimePACK2 with a rated voltage of 1,200 V

Item Dual XT PrimePACK*

External appearance

Module footprint (cm2) 93 93 93 153

Chip V Series IGBT + FWD X Series IGBT + FWD X Series RC-IGBT V Series IGBT + FWD

Module rated current (A) 600 800 1,000 900

Insulating substrate SiN insulating substrate New AlN insulating sub-strate

New AlN insulating sub-strate Al2O3 insulating substrate

Thermal resistance Rth(jc) (K/W)

IGBT : 0.04FWD : 0.06

IGBT : 0.037FWD : 0.044

IGBT : 0.022FWD : 0.022

IGBT : 0.03FWD : 0.054

*   PrimePACK:  Trademark or registered trademark of Infineon Technologies AG

17289

15062

Page 32: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

246

1. Introduction

In recent years, there has been increasing demand for  energy-saving  in  motor  drive  devices  to  prevent global warming  caused by  the  increase  in  greenhouse gases.  Among these devices, packaged air conditioners (for commercial use), which consume a relatively large amount of energy, were designated as being subject to the “Top Runner Program” in FY2015, thus requiring a significant  improvement  in  their  annual  performance factor  (APF,  indicates  year-round  efficiency  in  energy consumption)  and  higher  efficiency  in  the  intermedi-ate load region.   Furthermore, compactness and space savings  are  also  being  required,  as  well  as  improve-ment  of  loss  under  high  loads  in  order  to  expand  the range of operating temperatures in outdoor units.

In addition, there has also been increased demand for high efficiency in industrial-use general-purpose in-verters and servo systems, whose housings and frames have  been  increasingly  downsized,  in  order  to  corre-spond to the expansion in output capacity.

Fuji Electric has met  these demands with  the de-velopment of its compact, low-loss and low-noise small-intelligent  power  module  (IPM(1)),  which  integrates  a 3-phase inverter bridge circuit, control circuit and pro-tective  circuit,  for  application  in  inverter  type  small-motor drives.

Recently,  in  order  to  further  improve  the  energy-saving performance of motor drive devices in packaged air  conditioners,  general-purpose  inverters  and  servo systems, we have introduced a 20 and 30 A rated cur-rent  2nd-generation  small  IPM(2)  equipped  with  7th-generation  insulated  gate  bipolar  transistor  (IGBT) chip technology(3) into our product line-up.

TEZUKA, Shinichi *      SUZUKI, Yoshihisa *      SHIRAKAWA, Toru *     

2nd-Generation Small IPM Series

Fuji Electric has recently added products with current ratings of 20 and 30 A to our 2nd-generation small IPM series to meet the needs of motor drive devices. Applying the 7th-generation IGBT chip technology as a base and optimizing the lifetime control and drift layer thickness of the FWD, we have significantly reduces the temperature rise while lowering noise and loss. We ran a temperature rise simulation of a package air conditioner that has a standard cooling capacity of 14 kW at the maximum load, which are expected to be actual conditions. It showed 11ºC lower temperatures than the 1st-generation small IPM. It can therefore expand the allowable output current of the devices.

2. Product Overview

Figure 1  shows  the  external appearance  of  the  re-cently developed 2nd-generation small IPM, and Table 1 shows the product line-up and the main characteris-tics.

The  products  employ  the  same  compact  package as the currently mass produced 10- and 15-A products, the external dimensions of which is 43 × 26 × 3.7 (mm), and  the modules  contribute  to  the miniaturization  of inverter circuit.

Similar  to  the  10-  and  15-A  products,  2  different types  of  temperature  protection  functions  are  avail-able:    one  type with  only  analog  temperature  output, and  the  other  type  with  analog  temperature  output and overheat protection.

The recently developed 20- and 30-A products can be  used  for  a  variety  of  devices  such  as  compressor driving units of packaged air conditioners with capac-ity  of  8  to  14 kW,  general-purpose  inverters  with  an output of 1.0  to 2.2 kW, and servo amplifiers with 0.4 

Fig.1 2nd-generation small IPM

Page 33: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2472nd-Generation Small IPM Series

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

to 1.0-kW output.Figure 2  shows  the  internal  equivalent  circuit.  

Similar  to  the  10-  and  15-A  products,  the  modules mount  a  3-phase  inverter  bridge  circuit  composed  of low-loss  IGBTs  utilizing  7th-generation  IGBT  chip technology and high-speed freewheeling diodes  (FWD) mounted  on  an  aluminum  insulating  substrate.    A single low voltage integrated circuit (LVIC) for operat-ing  the  low-side  IGBTs of  the 3-phase  inverter bridge circuit  and  3  high  voltage  integrated  circuits  (HVIC) for operating the high-side IGBTs are directly mounted on the lead frame.

In  addition,  by  including  the  boot-strap-diodes (BSD) with built-in current limiting resistor, the power supply of  the high-side drive circuit can be configured with only a small number of components.

Compared with  the 1st-generation small  IPM,  the 2nd-generation small IPM has expanded the permissi-ble output current of the inverter circuit and improved design  flexibility  by  utilizing  low-loss  devices  and  ex-panding  the  operation-guaranteed  temperature Tj  (ope) from 125 °C to 150 °C.

3. Design

3.1 Device designThe  expansion  of  the  current  capacity  brought 

concern about an increase in the noise generated dur-ing  switching  operation.    Thus,  as  a  countermeasure, a low-noise design for improving the trade-off between switching loss and noise has been adopted.(1)   Reduction of conduction loss

We have optimized the gate threshold voltage and 

the  cell  pitch  layout  of  the  trench  gate  of  the  IGBT based  on  the  7th-generation  IGBT  chip  technology  to reduce conduction loss.

Figure 3 shows the IGBT on-state voltage and col-lector current characteristics.  Compared with the 1st-generation small IPM, the on-state voltage of the 30-A rated products is reduced by approximately 8% at the rated  current,  and  approximately  7%  at  the  low-cur-rent  region, which greatly  influences APF,  that  is,  an important factor for air conditioning applications.(2)   Reduction of turn-off loss

Though  increasing  the  switching  speed  is  one  of the measures  to  reduce  turn-off  loss,  it may  increase generated noise due to the sharp rise in dv/dt.

For  the  2nd-generation  small  IPM,  we  have  sup-pressed  dv/dt  to  the  same  level  as  that  of  the  1st-generation small IPM to the same level as that of the 1st-generation small IPM while successfully suppress-ing  the  tail  current  generated  during  IGBT  turn-off, and improved the trade-off between noise and turn-off loss.  In order to suppress the tail current, we have op-timized  the  thickness  of  the  IGBT drift  layer and  the amount  of  carriers  injected  from  the  rear-surface  pn junction and field stop layer.

Figure 4  shows  the  trade-off  characteristics  be-tween turn-off loss and the voltage noise level based on the frequency analysis of the turn-off waveforms of the IGBT.  The module has the same voltage noise level as the  1st-generation  small  IPM  at  the  rated  current  of 30 A while also significantly reducing the turn-off  loss by approximately 50%.(3)   Reduction of turn-on loss

Figure 5 shows the switching waveforms during re-

Table 1 Product lineup and main characteristics

Type name VCE ICVCE (sat)(typ.)

VF(typ.) Temperature protection function

6MBP20XSA060-50

600 V

20  A 1.45 V 1.50 VAnalog temperature output

6MBP20XSC060-50 Analog temperature output + overheat protection

6MBP30XSA060-5030  A 1.45 V 1.55 V

Analog temperature output

6MBP30XSC060-50 Analog temperature output + overheat protection

3 × BSD

HVIC

HVIC

HVIC

LVIC6 × IGBT

6 × FWD

Fig.2 Internal equivalent circuit

VCC =VB (U) =VB (V) =VB (W) =15 V, Tj =125 °C

0.5 1.0 1.5On-state voltage VCE (V)

40

30

20

10

0

Col

lect

or c

urr

ent I C

(A

)

1st-generation small IPM

2nd-generation small IPM

Fig.3 IGBT on-state voltage and collector current characteristics

Page 34: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

248 FUJI ELECTRIC REVIEW vol.62 no.4 2016

covery.  If we use the FWD of the 1st-generation small IPM  and  increase  the  switching  speed  to  reduce  the switching loss, there would be a large increase in gen-erated noise  due  to  the  increase  in  surge  voltage.    In order to simultaneously suppress generated noise and reduce turn-on loss, it is necessary to reduce the recov-ery current and suppress the surge voltage.

Figure 6 shows the trade-off characteristic between the  turn-on  loss  and  voltage  noise  level  during  FWD recovery.    We  have  optimized  the  recently  developed product  in  terms of  the  lifetime control and  thickness 

of the FWD drift layer and reduced the turn-on loss by approximately  20%  compared with  the  1st-generation small  IPM at a  rated current of 30 A while maintain-ing the same voltage noise level.

3.2 Control circuit designThe  LVIC  overheat  protection  function  needs  to 

ensure  that  the  LVIC  junction  temperature  Tj  (LVIC) does not  exceed  the  operation-guaranteed value while also  making  sure  that  the  protection  function  is  not engaged due to temperature rise during continuous op-eration of the IGBT.

The  upper  limit  of  the  operating  temperature range of the LVIC junction temperature Tj (LVIC) in the 2nd-generation small IPM is 150 °C as shown in Fig. 7.  Furthermore, when  the  temperature  of  IGBT  reaches the  upper  limit  of  the  IGBT  operation-guaranteed temperature  Tj  (ope)  of  150 °C,  the  temperature  of  the adjacent  LVIC will  rise  to  136 °C,  and  as  a  result,  it is  necessary  to  ensure  that  overheat  protection  is not engaged at  this  temperature  or  below.   Therefore, we have  suppressed  the  variation  in  detection  of  LVIC junction  temperature  and  established  an  overheat protection  range  of  143 °C  ±7 °C.   On  the  other  hand, 135 °C is specified for the upper limit of the LVIC junc-tion  operating  temperature  range  Tj  (LVIC)  in  the  1st-generation  small  IPM.    Furthermore,  when  the  junc-tion operating  temperature reaches  the upper  limit of the  IGBT  operation-guaranteed  temperature  Tj  (ope) of  125 °C,  the  temperature  of  the  adjacent  LVIC  will rise  to  115 °C.    As  a  result,  the  overheat  protection range  was  set  at  125 °C  ±10 °C.    Therefore,  the  2nd-generation  small  IPM not  only  expands  the operating temperature range of the LVIC, but by  increasing the precision  of  the  reference  power  circuit  inside  the  IC to  ensure  that  the  detection  range  is  ±7 °C  or  lower. Consequently, we have expanded the IGBT operation-guaranteed  temperature Tj  (ope)  to  25 °C  above  that  of the 1st-generation small IPM, or 150 °C, which allows the expansion of permissible output current.    In addi-tion, by maintaining compatibility with the 1st-gener-

0 0.25 0.50 0.75 1.00 1.25 1.50Turn-off loss Eoff (a.u.)

1st-generation small IPM

2nd-generation small IPM

1.50

1.25

1.00

0.75

0.50

Vol

tage

noi

se le

vel (

a.u

.)

Condition: Analysis at the frequency of 45 MHz

Fig.4 Trade-off characteristics between IGBT voltage noise level and turn-off loss

VDC = 300 V, VCC =15 V, Tj =125 °C

IF: 15 A/div

VR: 100 V/divt : 100 ns/div

IF: 15 A/div

VR: 100 V/divt : 100 ns/div

(a) 2nd-generation FWD applied, during high-speed switching

(b) 1st-generation FWD applied, during high-speed switching

Fig.5 Switching waveforms during recovery

0.50 0.75 1.00 1.25 1.50Turn-on loss Eon (a.u.)

1.75

1.25

1.50

1.00

0.75

0.50

Vol

tage

noi

se le

vel (

a.u

.)

Condition: Analysis at the frequency of 45 MHz

1st-generation small IPM2nd-generation

small IPM

Fig.6 Trade-off characteristics between FWD voltage noise level and turn-on loss

100 110 120 130 140 150 160

150

140

130

120

110

100

90

IGBT junction temperature (°C)

1st-generationTj (ope) max: 125°C

2nd-generation overheat protection range: 143 ±7 °C

2nd-generation: Tj (LVIC) max=150 °C

1st-generation: Tj (LVIC) max=135°C

1st-generation overheat protection range: 125 ±10 °C

2nd-generationTj (ope) max: 150 °CL

VIC

ove

rhea

t pr

otec

tion

dete

ctio

n t

empe

ratu

re (

°C)

Fig.7 LVIC overheat protection detection temperature and IGBT junction temperature

Page 35: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2492nd-Generation Small IPM Series

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

below.  As a result, it can be used for the air condition-ers, the output current capacity of which require larger rating IPM than the 1st-generation small IPM.

Figure 10  shows  the  results  of  the  temperature rise  simulation  during  acceleration/deceleration  in  a servo amplifier with an output of 1.0 kW, and Figure 11 shows  the  results  of  the  temperature  rise  simulation during the motor lock operation.

The  temperature  rise  during  acceleration  and  de-celeration  and  the  motor  lock  operation  for  the  2nd-generation small IPM is nearly identical to that of the 1st-generation small IPM.  On the other hand, the 2nd-generation small IPM has an extended operation-guar-anteed  temperature  Tj  (ope)  of  150 °C,  which  is  higher than that of the 1st-generation small IPM, 125 °C, thus enabling  operation  at  the  operation-guaranteed  tem-perature Tj  (ope)  or  below.   As  a  result,  it  can  be used for the servo amplifiers, the output current capacity of which  require  larger  rating  IPM  than  the 1st-genera-tion small IPM.

Figure 12  shows  the measured  results  of  the  tem-perature  at  the  soldered  parts  of  the  printed  circuit board  for a package air  conditioner mounted with  the 600-V/30-A  product  operating  in  an  ordinary  state 

ation  small  IPM  in  regard  to  the  characteristic  value of  the  analog  temperature  output  function  built  into the LVIC, we can support our customers to standardize protection circuit designs.

3.3 Package designThe  2nd-generation  small  IPM  has  the  package 

structure  that  the  package  is  directly  soldered  to  the printed  circuit  board  of  equipment,  such  as  packaged air conditioners and general-purpose inverters.  As the output  current  of  the  printed  circuit  board  increases, the  temperature  of  the  external  lead  terminal  rises, and as a result, the temperature at the soldered parts also  rises.   On  the other hand,  in order  to ensure  the reliability of the soldered parts, the temperature at the soldered  parts  during  operation  must  be  kept  within 90 °C  to  100 °C  or  below.   To  achieve  this,  the  output current had to be restricted.

Figure 8  shows  the  cross  section  structure  of  the package.    Similar  to  previous  10-  and  15-A  products, the  recently  developed  modules  have  the  structure that conducts Joule heat generated by the wire to the aluminum insulating substrate.  In addition, according to the expansion of the current capacity, they use 50% lower  impedance  wires  than  that  of  the  conventional products  to suppress  temperature rise at  the external lead terminal, thus reducing the Joule heat.

4. Application Effect

This  section  provides  the  application  effect  of  the 600-V/30-A  products  used  for  packaged  air  condition-ers and servo amplifiers.

Figure 9  shows  the  simulation  results  of  tempera-ture rise at maximum load for a standard 14 kW pack-aged air conditioner.

A  temperature  rise  at maximum  load  is  lower  for the 2nd-generation small IPM than the 1st-generation small IPM by 11 °C because of the loss-reduction effect previously mentioned.  In addition, compared with the 1st-generation  small  IPM,  the  2nd-generation  small IPM has expanded the operation-guaranteed tempera-ture Tj (ope) from 125 °C to 150 °C, thus enabling opera-tion at the operation-guaranteed temperature Tj (ope) or 

BSD IGBT FWD

Molding resin

Heat dissipation path of heat generated from wire

Copper foil

LVIC, HVICAluminum wire

(50% reduction in impedance)

External lead terminal

Externallead terminal

Case resin Aluminum insulating substrate

Fig.8 Package’s cross section structure

150 °C

125 °C

Tj IGBT Tj FWD

VDC = 373 V, fo = 70 Hz, fc = 5.9 kHz, Io = 25 A (RMS value), 3-phase modulation, Tc = 55 °C

2nd-generation small IPM 1st-generation small IPM

175

150

125

100

Tem

pera

ture

Tj (

°C)

11 °C lower Tj (ope) limit

Fig.9 Results of temperature rise simulation during maximum load in package air conditioner

Tj IGBT (acceleration)Tj FWD (acceleration)

Tj IGBT (deceleration)Tj FWD (deceleration)

Tj (ope) limit

150 °C

125 °C

VDC = 300 V, fo =17 Hz, fc = 5 kHz, Io =17 A (RMS value), 3-phase modulation, Tc =100 °C

2nd-generation small IPM 1st-generation small IPM

175

150

125

100

Tem

pera

ture

Tj (

°C)

Fig.10 Results of temperature rise simulation during accelera-tion/deceleration in servo amplifier

Page 36: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

250 FUJI ELECTRIC REVIEW vol.62 no.4 2016

nal  lead  terminals of  the package.   Consequently,  the ability to suppress the temperature rise in the soldered parts has enabled the expansion of permissible output current by approximately 19%.

Figure 13  shows  the  evaluation  results  regarding conduction  noise  when  applying  in  a  servo  amplifier with an output  of 0.75 kW.   The module  is  compliant with the limit value (QP) prescribed in Category C2 of EN61800-3 and achieved the desired low-noise charac-teristic  in  combination  with  the  previously  described temperature-rise suppression effect.

5. Postscript

In this paper, we described the 20- and 30-A prod-ucts which  expanded  the  current  capacity  of  the 2nd-generation small IPM series.   Similar to the currently being  mass  produced  10-  and  15-A  products,  these products  employ  optimized  low-noise,  low-loss  devices based on the 7th-generation IGBT chip technology, and they can achieve energy savings in inverter controlled motor drive devices.

In the future, we plan to continue developing prod-ucts  that  contribute  to  improving  the  energy-saving performance of motor drive devices.

References(1)  Yamada, T. et al.“ Novel Small Intelligent Power Mod-

ule For RAC”, proc. 2012 PCIM Asia.(2)  T.  Heinzel.  et  al.  “The  New  High  Power  Density  7th 

Generation  IGBT  Module  for  Compact  Power  Con-version  Systems”,  Proceeding  of  PCIM  Europe  2015, p.359-367.

(3)  Araki,  R.  et  al.  2nd-Generation  Small  IPM.  FUJI ELECTRIC REVIEW. 2015, vol.61, no.4, p.242-246.

under  pulse  width modulation  (PWM).    The  soldered parts  of  the  2nd-generation  small  IPM  is  lower  than that of  the 1st generation small IPM by approximately 14 °C  because  of  the  lower  loss  of  the  device  and  the suppression effect in the temperature rise of the exter-

150 °C

125 °C

Tj IGBT Tj FWD

VDC = 300 V, ONduty = 50%, fc = 5 kHz, Io = 22 A, Tc =100 °C

2nd-generation small IPM 1st-generation small IPM

175

150

125

100

Tem

pera

ture

Tj (

°C)

Tj (ope) limit

Fig.11 Results of temperature rise simulation during motor lock operation in servo amplifier

VDC = 300 V, fo = 70 Hz, fc =10 kHz, Io = 21 A (RMS value), 3-phase modulation, θf ≒0.25 °C/W

T(land) = 82.3 °C

(a) 2nd-generation small IPM

(b) 1st-generation small IPM

T(land) = 96.7 °C

Fig.12 Results of measuring temperature of soldered compo-nents during PWM operation in package air conditioner

1 M 10 MFrequency (Hz)

100

80

60

40

20

0

Vol

tage

leve

l (dB

µV)

EN61800-3, Category C2

QP value

AV value

S-phase

R-phase

T-phase

Fig.13 Results of conduction noise evaluation in servo amplifier

Page 37: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

251

1. Introduction

As  the  control  of  CO2  emissions  becomes  tighter in order to prevent global warming, hybrid electric ve-hicles (HEVs), which use both engines and motors, and electric vehicles (EVs), which are propelled only by mo-tors, have been commercialized.  Their development is still vigorously in progress and their further prolifera-tion  is  anticipated.    Inverters  are  used  for  the  power control  of HEVs  and EVs,  and  they  need  to  be made smaller  so  that  they  can  be  installed  in  the  limited on-board space while also being given a greater power density so that they can accommodate the high output of batteries and motors.

Figure 1  shows  the  power  density  trends  of  Fuji Electric’s insulated gate bipolar transistor (IGBT) mod-ules.    The  power  density  of  the  7th-generation  mod-ules,  or  the  latest generation of  IGBT modules  for  in-dustrial use, is around 300 kVA/L.  In comparison, the 

KOGE, Takuma *      INOUE, Daisuke *      ADACHI, Shinichiro *

Speed Enhancement for the 3rd-Generation Direct Liquid Cooling Power Modules for Automotive Applications with RC-IGBT

Fuji Electric has employed a thin reverse-conducting IGBT (RC-IGBT) in the development of a 3rd-generation di-rect liquid cooling module for automotive applications that is characterized by its high-speed packaging structure. By utilizing an RC-IGBT that integrates an IGBT and FWD on a single chip, the module achieves faster switching at turn-on and turn-off. In addition, parasitic inductance has been decreased by 50% compared with conventional packages through use of the RC-IGBT and internal layout optimization. Furthermore, superimposed surge voltage has been re-duced by adopting a packaging structure that equips all 3 phases with a PN terminal pair. These technologies have enabled the 3rd-generation module to reduce switching loss by 30% compared with 2nd-generation modules.

power density of the 3rd-generation modules, which is the  latest  generation  of  automotive  IGBT modules,  is 800 kVA/L, or approximately 2.5 times higher.

In order to meet the need for a greater power den-sity,  Fuji  Electric  has  developed  the  7th-generation reverse-conducting IGBT (RC-IGBT), which integrates an IGBT thinned by applying the latest wafer thinning technology  and  free  wheeling  diode  (FWD)  into  one chip(1)(2).  When operating an inverter, switching loss as well as steady-state  loss must be reduced so as  to de-crease the generated loss.

This  paper  describes  the  thinned  RC-IGBT  tech-nology and a packaging structure in which the switch-ing  loss  has  been  reduced  by  enhancing  the  speed.  They are intended to be used to reduce the loss of the 3rd-generation  direct  liquid  cooling  power module  for automotive  applications  (3rd-generation  automotive module).

2. Low-Inductance Package Design

2.1 Features of RC-IGBT in inductance reductionFigure 2  shows  a  schematic  structure  of  an  RC-

IGBT.    The  RC-IGBT  for  HEVs  is  based  on  a  field stop  (FS) RC-IGBT, which  is mass-produced,  and has 

2nd gen.

1st gen.7th gen.

4th gen.

3rd gen.

Copper fin direct liquid cooling type for automotive applications

Aluminum fin direct liquid cooling type for automotive applications

Indirect liquid cooling type for industrial applications

Copper-based indirect liquid cooling type for automotive applications

1995 2000 2005 2010 2015 2020(Year)

800

600

400

200

0

Pow

er d

ensi

ty (

kVA

/L)

Fig.1 Power density trends of IGBT modules

IGBT regionFWD region

Gate pad

Chip thick-ness

IGBT region FWD region

Field stop layer

n+p+

n+ n+ n+ n+

Fig.2 Schematic structure of RC-IGBT

Page 38: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

252 FUJI ELECTRIC REVIEW vol.62 no.4 2016

the  IGBT  and  FWD  regions  formed  in  stripes.    The latest  wafer  thinning  technology  has  been  used  to reduce  power  loss,  and  the  surface  structure  includ-ing  the  trench  intervals,  channel  density  and  contact has been optimized to improve the performance of the RC-IGBT.  Figure 3 shows  the  output  characteristics of  the  7th-generation  RC-IGBT  and  the  conventional 6th-generation IGBT and FWD based on the same cur-rent density.   By using the wafer  thinning technology and  optimizing  the  surface  structure,  VCE(sat)  and  VF have been dramatically reduced as compared with the conventional  combination  of  the  6th-generation  IGBT and FWD. 

With  the  RC-IGBT,  the  IGBT  and  FWD  are  in-tegrated  into  one  chip,  and  this  makes  it  possible  to reduce  the  size  of  the  package.    The  7th-generation RC-IGBT can achieve the same output power as that of the conventional chip but with a size that is equivalent to  70%  of  the  conventional  product.  Figure 4 shows the  board  layout  of  the RC-IGBT and  a  common  con-ventional  half-bridge  circuit.   With  the RC-IGBT,  the board area can be decreased to 75% of that of a conven-tional  IGBT module  composed  of  an  IGBT  and  FWD and  the  length of  the  current pathway  from the P-  to the N-terminal can be reduced to 78%.

The  parasitic  inductance  of  an  IGBT  module  de-pends on the width of the current pathway from the P- to the N-terminal and the distance between the P- and N-terminals.    Constituting  an  IGBT  module  with  an 

IGBT and FWD sets a limit to the length of the current pathway.  For that reason, in order to reduce the para-sitic  inductance, parallel  connections, which allow the current  pathway width  to  be  larger,  and  a  laminated bus bar, which allows the distance between the P- and N-terminals to be shorter, are often applied.  However, these measures  tend  to  cause  the  package  size  to  in-crease(3)-(6).    The  RC-IGBT  features  a  shorter  current pathway and the parasitic inductance can be dramati-cally reduced while the package can be miniaturized as well.

2.2 Package design for reduction of superimposed surge voltageAs is well known, reducing the inductance of a pack-

age  causes  the  surge  voltage  at  turn-off  and  reverse recovery  to  decrease.    The  parasitic  inductance  of  the 3rd-generation  automotive module  (6MBI800XV-075V)  has been decreased by applying the 7th-generation RC-IGBT  and  optimizing  the  internal  layout  to  around  a half  of  that  of  the  2nd-generation  automotive module (6MBI600VW-065V(7)), which employs a 6th-generation IGBT and FWD.  However, it is important to not only reduce  the parasitic  inductance but also  the  superim-posed  surge  voltage  in  inverter  operation.    The  surge voltage  of  a  3-phase  inverter  is  generated  across  the P-  and  N-terminals  of  the  module  at  turn-off  with the  smoothing  capacitor  connected  with  the  module.  If  turn-off  occurs  between  the  U-phase  and  another phase (V-phase), for example, the surge voltage gener-ated across the P- and N-terminals is superimposed.

Figure 5 shows the surge voltage across the P- and N-terminals  for  the  respective  generations.    In  au-tomotive  inverters,  a  smoothing  capacitor  is  used  by connecting  it  in  series.   With  the  package  of  the  3rd-generation  automotive  module,  while  the  switching speed  (-di/dt)  is  1.5  times  higher,  the  surge  voltage across  the  P-  and N-terminals  has  been  dramatically reduced.  The surge voltage can be easily superimposed when the P- and N-terminals are common to the indi-vidual phases as in the package of the 2nd-generation 

6th-generation IGBT

7th-generation RC-IGBT

6th-generation FWD

7th-generation RC-IGBT

0 1 2 3Collector-emitter voltage VCE (V)

(a) IGBT

800

600

400

200

0

Col

lect

or c

urr

ent I C

(A)

0 1 2 3Forward voltage VF (V)

(b) FWD

800

600

400

200

0

For

war

d cu

rren

t I F

(A)

Fig.3 Output characteristics of RC-IGBT and conventional IGBT + FWD

7th-generationRC-IGBT

6th-generationIGBT + FWDItem

0.78 1Ratio of current pathway betweenP and N

0.75 1Board size ratio

Board layout

U U

P NIGBT

P NRC-IGBT

FWD

Fig.4 Comparison between RC-IGBT and conventional board layouts

Page 39: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

253Speed Enhancement for the 3rd-Generation Direct Liquid Cooling Power Modules for Automotive Applications with RC-IGBT

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

automotive module.   Meanwhile,  with  the  package  of the  3rd-generation  automotive module,  the P-  and N-terminals  of  the  individual  phases  are  independent, which  significantly  reduces  the  surge  voltage  across the P- and N-terminals.

To  evaluate  the  superimposed  surge  voltage,  we measured  the  surge  voltage  in  2-phase  switching. Figure 6  shows  an  equivalent  circuit  of  superimposed surge voltage measurement in 2-phase switching.

With  the  2nd-generation  automotive  module,  the limitations of the packaging structure made it difficult to measure the current for the individual phases.   Ac-cordingly,  the  current was measured  for  the 2 phases together.  Figure 7  shows turn-off waveforms for mod-

t : 200 ns/div

IC U-phase: 100 A/div

VCE U-phase: 100 V/div

VPVNV: 100 V/div

Smoothing capacitor

IGBT module

W V U

PW NW PV NV PU NU

(a) 3rd-generation automotive module (structure with 3 P-N terminal pairs)

t : 200 ns/div

IC U-phase: 100 A/div

VCE U-phase: 100 V/div

VPN: 100 V/div

Smoothing capacitor

IGBT module

W V U

P N

(b) 2nd-generation automotive module (structure with one P-N terminal pair)

VPN∆

VPN∆

−di /dt =7 kA/µsVPVNV =20 V∆

−di /dt =4.6 kA/µsVPN =100 V∆

Fig.5 Surge voltage across P- and N-terminals for respective generations

(a) Single-phase switching

(b) 2-phase switching

Smoothingcapacitor

Current sensorU-phaselower arm

V-phaselower arm

Smoothingcapacitor

Current sensorU-phaselower arm

V-phaselower arm

U V W

P

N

U V W

PVPW

PU

NV

NW

NU

VDC

VDC

0 V

0 V

VGE =15 V

VGE =15 V

Fig.6 Equivalent circuit of superimposed surge voltage mea-surement

Single-phase switching U-phase: 500 A

IC U-phase: 100 A/div

VPVNV: 100 V/div

VCE U-phase: 100 V/div

t : 200 ns/div

(a) 3rd-generation automotive module (structure with 3 P-N terminal pairs)

(b) 2nd-generation automotive module (structure with one P-N terminal pair)

 VCE∆ −di /dt = 7 kA/µs VCE = 223 V∆

2-phase switching U-phase: 500 AV-phase: 500 A

IC U-phase: 100 A/divIC V-phase: 100 A/div

VPVNV: 100 V/div

VCE U-phase: 100 V/div

t : 200 ns/div

 VCE∆ −di /dt = 7 kA/µs VCE = 223.6 V∆

Single-phase switching U-phase: 500 A

IC U-phase: 100 A/div

VPN: 100 V/div

VCE U-phase: 100 V/div

t : 200 ns/div

 VCE∆ −di /dt = 4.6 kA/µs VCE = 194 V∆

2-phase switching U-phase: 500 AV-phase: 500 A

IC U-phase + V-phase: 150 A/div

VPN: 100 V/div

VCE U-phase: 100 V/div

t : 200 ns/div

 VCE∆ −di /dt = 4.6 kA/µs VCE = 248 V∆

Fig.7 Turn-off waveforms for modules of respective genera-tions

Page 40: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

254 FUJI ELECTRIC REVIEW vol.62 no.4 2016

2nd-generation automotive module and that of the 3rd-generation  automotive  module  combining  RC-IGBT with  a  package  having  a  structure with  3  pairs  of  P- and  N-terminals.    The  comparison  assumes  inverter operation  under  the  conditions  of  Vcc=400 V,  output current  (RMS  value)=400 A  and  switching  frequency fc=10 kHz.  Turn-on di/dt and turn-off -di/dt were set so  that  the  surge  voltage  including  the  superimposed surge voltage would be the same.  The size of the RC-IGBT  is  equivalent  to  70%  of  the  entire  size  of  the product  including the IGBT and FWD.   A 30% reduc-tion in the switching loss has been achieved by increas-ing the switching speed.

4. Postscript

This  paper  has  described  speed  enhancement  for the 3rd-generation direct  liquid  cooling power module for automotive applications that uses RC-IGBT.

To  make  the  reverse  recovery  characteristic  gen-tler,  the  7th-generation  RC-IGBT  has  optimized  the surface  structure  and  the  field  stop  (FS)  layer.    By utilizing  the  RC-IGBT,  faster  switching  at  turn-on and turn-off has been achieved.   In addition, parasitic inductance  of  the  3rd-generation  direct  liquid  cooling power module for automotive applications has been de-creased by 50% compared with conventional packages.  This  has  been  achieved  by  using  the  RC-IGBT  and optimizing  the  internal  layout.    Furthermore,  super-imposed  surge  voltage  has  been  reduced  by  adopting a packaging structure that equips all 3 phases with a P-N terminal pair.

These  technologies  have  allowed  the  3rd-genera-tion direct liquid cooling power module for automotive applications  to  achieve  a  30%  reduction  in  switching loss  as  compared  with  the  2nd-generation  direct  liq-uid cooling power module  for automotive applications.  These  technologies  can  be  expected  to  make  tremen-dous  contributions  to  creating  HEV  and  EV  inverter systems with higher power density.

In the future, we intend to further improve design technology  and  work  on  the  development  of  products that  can  achieve  miniaturization  and  higher  power density.

References(1)  Noguchi,  S.  et  al.  RC-IGBT  for  Mild  Hybrid  Electric 

Vehicles.  FUJI  ELECTRIC  REVIEW.  2014,  vol.60, no.4, p.224-227.

(2)  Higuchi,  K.  et  al.  “New  standard  800 A/750 V  IGBT module technology for Automotive applications”, PCIM Europe 2015, p.1137-1144.

(3)  C. Muller, S. Buschhom. “Power-module optimizations for  fast  switching  a  comprehensive  study”,  PCIM Eu-rope 2015, p.434-441.

(4)  Kawase,  D.  et  al.  “High  voltage  module  with  low  in-ternal  inductance  for  next  chip  generation-next  High Power Density Dual”, PCIM Europe 2015, p.217-223.

ules of  the  respective generations.   The  top waveform corresponds  to  single-phase  switching  of  the  U-phase alone and the bottom waveform corresponds to 2-phase switching  with  the  U-  and  V-phases.    With  the  2nd-generation  automotive  module,  the  surge  voltage  in 2-phase switching showed an increase of 54V as com-pared with single-phase switching.  The 3rd-generation automotive  module,  on  the  other  hand,  showed  little difference  between  single-phase  and  2-phase  switch-ing.    In  addition,  while  the  switching  speed  (-di/dt) was 1.5  times higher,  the  surge voltage with  the 3rd-generation automotive module was  lower  than that of the  2nd-generation  automotive  module.    This  result indicates that the 3rd-generation module allows an in-crease in switching speed of more than 1.5 times from the 2nd-generation automotive module with  the  same battery  voltage  and  device  withstand  voltage  condi-tions.  Superimposed surge voltage is also generated at reverse recovery.  Accordingly, with the 3rd-generation automotive module, the switching speed at turn-on can be increased as well.

3. Loss Characteristics of Module Applying RC-IGBT

Figure 8 shows the results of calculating the power loss  for  modules  of  the  respective  generations.    It shows  a  comparison  between  the  power  loss  of  the 

−30%

Switching loss

Steady-state loss−36%

(a) Power loss in powering mode

(b) Power loss in regenerative mode

Automotive3rd gen.

Automotive2nd gen.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Pow

er lo

ss (

a.u

.)

−30% Switching loss

Steady-state loss

−20%

Automotive3rd gen.

Automotive2nd gen.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Pow

er lo

ss (

a.u

.)

PrrPoffPonPfPsat

PrrPoffPonPfPsat

Fig.8 Results of calculation of power loss for modules of re-spective generations

Page 41: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

255Speed Enhancement for the 3rd-Generation Direct Liquid Cooling Power Modules for Automotive Applications with RC-IGBT

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

switching”, CIPS2010.(7)  Adachi, S. et al. “High thermal conductivity technology 

to realize high power density IGBT modules for electric and hybrid vehicles”, PCIM Europe 2012, p.1378-1384.

(5)  G.  Borghoff.  “Implementation  of  low  inductive  strip line  concept  for  symmetric  switching  in  a  new  high power module”, PCIM Europe 2013, p.185-191.

(6)  R.Bayerer,  D.Domes.  “Power  circuit  design  for  clean 

Page 42: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

256

1. Introduction

To reduce CO2 emissions and conserve the earth’s resources, countries of the world are accelerating their efforts and automakers are actively working on the de-velopment of hybrid electric vehicles (HEVs) and elec-tric  vehicles  (EVs).    HEVs  and EVs  use  inverters  for driving electric motors, and one of the key components that play an important role is an insulated gate bipolar transistor (IGBT) module.  IGBT modules are required to  be  compact  and  exhibit  low  power  loss  so  that  the electric power of batteries can be efficiently used.

In  order  to  meet  these  requirements,  Fuji  Elec-tric  has  offered  IGBT  modules  that  employ  a  direct liquid cooling system as products, and continued with their  development(1).    We  have  recently  developed  a 3rd-generation  direct  liquid  cooling  power module  for automotive  applications  (3rd-generation  module  for automotive applications).    It has had the performance and  functionality  further enhanced  from those of  con-ventional direct liquid cooling power modules for auto-motive applications.

This  paper  describes  the  functionality  enhance-ment for the 3rd-generation direct liquid cooling power module  for  automotive  applications  integrating  a  re-verse-conducting IGBT (RC-IGBT(2)).

2. Features

Figure 1  shows the external appearance of  the de-veloped 3rd-generation module for automotive applica-tions.   This product has achieved higher heat dissipa-tion  performance  than  that  of  conventional  products by optimizing the refrigerant flow channel design.  An aluminum  water  jacket  combined  with  a  cover  and 

SATO, Kenichiro *      ENOMOTO, Kazuo *      NAGAUNE, Fumio *     

Functionality Enhancement of 3rd-Generation Direct Liquid Cooling Power Modules for Automotive Applications Equipped with RC-IGBT

Fuji Electric has developed a 3rd-generation direct liquid cooling power module for automotive applications such as hybrid and electric vehicles. Power modules for automotive applications are required to be compact and exhibit low power loss. We have improved heat dissipation performance of the module by using an aluminum water jacket that combines the liquid cooling fins with cover as well as refrigerant inlet and outlet ports with a flange structure. In addition, employing a reverse conducting IGBT (RC-IGBT) that integrates an insulated gate bipolar transistor (IGBT) with free wheeling diode (FWD) enables the power module with the same active area to reduce power loss by 20%. As a result, the power module has achieved a lower loss and a smaller size.

flanged  refrigerant  inlet  and  outlet  ports  have  been employed  and  all  the  user  needs  to  do  is  ensure  that the  refrigerant  is  run  through  the  flanged  inlet  and outlet ports at the specified flow rate.

Table 1  shows  the major  product  specifications  of the 3rd-generation module for automotive applications, and Fig. 2  shows an equivalent circuit diagram of  the 

Flange

Flanged refrigerant inlet/outlet port

(a) Front side (b) Back side

Fig.1 3rd-generation module for automotive applications

Table 1 Major specifications of 3rd-generation module for automotive applications

Item Rating/Characteristic

Collector-emitter voltage 750 V

Rated current 800A

Maximum operating tempera-ture 175 °C

Dimensions W162 ×  D116 ×  H24 (mm)Withstand voltage 2,500 V (AC RMS value)

IGBT saturation voltage 1.45 V (25 °C, 800A)

FWD forward voltage 1.50 V (25 °C, 800A)

IGBT/FWD thermal resistance 0.14 °C/W (10 L/min, LLC)

Mass 560 g

Page 43: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

257Functionality Enhancement of 3rd-Generation Direct Liquid Cooling Power Modules for Automotive Applications Equipped with RC-IGBT

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

module.   The main  features  of  the product are as  fol-lows:(1)   Miniaturization of power module

The  7th-generation  chip  technology  has  been  ap-plied to the IGBT in order to reduce power loss.   Fur-thermore, an RC-IGBT integrating an IGBT and free-wheeling diode  (FWD)  in one chip has been employed to reduce the power module size by 15%.  In addition, the  RC-IGBT  has  been  equipped  with  a  function  of detecting  the  current  running  through  the  IGBT  and junction temperature.   This allows a good chip perfor-mance  to  be  realized  with  the  small  size  maintained and  the  protection  operation  can  be  ensured  against short-circuiting and overheating.

With  the  3rd-generation  module  for  automotive applications, as shown in Fig. 2, the IGBT of each arm is  provided  with  anode  and  cathode  terminals  of  the diode for temperature detection and a terminal for cur-rent  detection.    Each  arm  also  has  gate  and  emitter terminals required for driving.  The diode for tempera-ture detection is integrated in the RC-IGBT.(2)   Cooler structure with high heat dissipation perfor-

manceImproved  heat  dissipation  performance  and  a 

lower  profile  have  been  realized  by  using  a  cooler structure combining liquid cooling fins and a cover.  A flanged structure  is employed  for  the refrigerant  inlet and outlet ports and watertightness with the  inverter housing is ensured by using an O-ring.(3)   Reduction of inductance of main terminal wiring

We have  reduced  the  Inductance  by  providing  in-dependent  input  terminals  for  the  respective  phases connected  to  the  smoothing  capacitor  and minimizing the  length of  the wiring so as to reduce the switching 

loss caused by high-speed switching and to reduce the surge voltage in current interruption(3).

3. Elemental Technologies for Functionality Enhancement

3.1 RC-IGBT design technologyFigure 3  shows  a  schematic  structure  of  the  RC-

IGBT.    The  structure  employs  a  field  stop  (FS)  IGBT and  has  the  IGBT  and  FWD  regions  alternately  laid out  in  stripes  in  one  chip.    Integration  in  one  chip makes  it  possible  to  reduce  the  region  called  a  guard ring  for  ensuring  withstand  voltage  around  the  chip.  This makes the chip area smaller than a conventional product composed of 2 chips.  The heat generated dur-ing  IGBT  operation  is  dissipated  from  the  FWD  re-gions as well and vice versa.   This provides  the effect of  reducing  thermal  resistance  during  the  respective IGBT  and  FWD  operations.    Furthermore,  the  latest wafer thinning technology, trench structure and chan-nel  density  optimization  have  achieved  lower  power loss  and  chip  miniaturization,  contributing  to  minia-turization  of  power  modules.    The  ratio  between  the IGBT and FWD regions has been optimized by taking into  account  inverter  power  running*1  operation  and regenerative*2  operation.    In  addition,  by  integrating the IGBT and FWD, turn-off  loss can be reduced with the  RC-IGBT  by  also  using  the  FWD  regions  as  the carrier  emission path during  turn-off  operation  of  the IGBT.

With this development, we have employed an RC-IGBT, optimized the allocation of  the IGBT and FWD regions and utilized the latest-generation chip technol-ogy.    In  this  way,  the  electrical  characteristics  as  an IGBT module can also be improved, and this has led to a reduction of power loss.  With the same active area, a power loss reduction of 20% has been achieved(4).

3.2 RC-IGBT protective technologyAs one generation of  IGBT technology makes way 

for another and saturation voltage and switching  loss 

G: IGBT gate terminalE: IGBT emitter terminalA: Temperature detection diode anode terminalK: Temperature detection diode cathode terminalS: Current detection terminalP: Terminal for collector voltage detection

U

P1 P2 P3

N1 N2 N3

VW

31 (P)

7 (A1)

8 (K1)

6 (S1)

10 (G1)

9 (E1)

17 (A3)

18 (K3)

16 (S3)

20 (G3)

19 (E3)

27 (A5)

28 (K5)

26 (S5)

30 (G5)

29 (E5)

4 (A2)

5 (K2)

3 (S2)

1 (G2)

2 (E2)

14 (A4)

15 (K4)

13 (S4)

11 (G4)

12 (E4)

24 (A6)

25 (K6)

23 (S6)

21 (G6)

22 (E6)

Fig.2 Equivalent circuit of 3rd-generation module for automo-tive applications

IGBT regionFWD region

Gate pad

Ch

ip t

hic

knes

s

IGBT region FWD region

Field stop layer

n+p+

n+ n+ n+ n+

Fig.3 Schematic structure of RC-IGBT

*1:   Power  running:  Transmission  of  the motive  power  of  a motor for acceleration

*2:   Regeneration: Returning of the electric power generated by a motor in deceleration to the battery

Page 44: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

258 FUJI ELECTRIC REVIEW vol.62 no.4 2016

are  reduced,  short-circuit  protection  takes  on  impor-tance.  That is, a short-circuit current increases as sat-uration voltage decreases.   This makes it necessary to interrupt the current in a short time without exceeding the  maximum  short-circuit  energy  capability  and  to suppress any increase of the surge voltage.   If a short circuit  occurs  in  the  RC-IGBT,  for  quick  and  reliable interruption,  the  3rd-generation  module  for  automo-tive  applications  uses  short-circuit  protection  with  a current detection  system  (see Fig. 4).    In  this  system, part of  the short-circuit current  is split  to the current detection  terminal  and  the  voltage  for  current  detec-tion VSC generated on the resistor connected is used for starting  short-circuit  protection  operation.    The  value of  the  current  for  starting  short-circuit  protection  is determined  by  setting  the  resistance  values  for  resis-tors RSE1  and RSE2  connected  in  series.    Fuji  Electric provides  drive  boards  for module  evaluation  that  are equipped  with  a  short-circuit  protection  circuit  based on  a  current  detection  system.    Here  we  present  the functions  of  drive  boards  for  evaluation  use  and  de-scribe the concept of short-circuit protection.(1)   Drive board for evaluation use

Figure 5  shows  the  external  appearance  of  the drive board for evaluation use mounted on the 3rd-gen-eration module for automotive applications.  The drive 

board  for evaluation use  is equipped with  IGBT drive circuits for 6 arms and the gate drive voltage is +15/-0 V (on-state voltage/off-state voltage).  To suppress the short-circuit current just as a short circuit is detected, a function is provided to clamp the gate drive voltage.  In addition to the short-circuit protection function, the drive board is provided with a function to monitor the direct current voltage input to the power module.  This is done by using the terminals for collector voltage de-tection of the power module shown in Fig. 2.

Figure 6  shows an example of  short-circuit protec-tion waveforms of the 3rd-generation module for auto-motive applications obtained by using the drive board for  evaluation  use.    The  following  describes  the  flow of operation of short-circuit protection  for  these wave-forms.

(a)  A short  circuit occurs and VSC  (see Fig. 4)  rises (see Fig. 6 ①).

(b)  When  VSC  has  exceeded  the  threshold  voltage judged as a short-circuit current, the gate-emit-ter voltage is gate-clamped to 12 V so as to sup-press the short-circuit current (see Fig. 6 ②).

(c)   As  the  short-circuit  state  continues,  the  gate-clamped state also continues (see Fig. 6 ③).

(d)  When  the gate-clamped state has  continued  for a certain period, the state is judged as an abnor-mality with a short circuit.  Then, soft interrup-tion  operation  is  performed  in  which  the  gate-emitter  voltage  is  gradually  reduced  (see Fig. 6 ④).

(e)  The  soft  interruption  operation  is  finished  at  a gate-emitter  voltage  sufficiently  lower  than  the gate threshold voltage of the IGBT and the gate-emitter voltage is turned off in the normal inter-ruption state (see Fig. 6 ⑤).

(2)   Points in short-circuit protection designWhat is required is to provide short-circuit protec-

tion by reliably detecting short circuit operation with-out element breakdown.  The following lists the points in short-circuit protection design.

VSC

RSE1

RSE2

VSE

Collector

Emitter

Gate

Sense

Fig.4 Short-circuit protection based on current detection sys-tem

Fig.5 Drive board for evaluation use mounted on 3rd-genera-tion module for automotive applications

Collector− emitter voltage: VCE

Gate− emitter voltage: VGE

Voltage for current detection: VSC

Collector current: IC

VCE: 100 V/div, IC: 1,000 A/div, VGE: 5 V/divVSC: 2 V/div, t : 2 µs/div

Fig.6 Short-circuit protection operation waveforms

Page 45: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

259Functionality Enhancement of 3rd-Generation Direct Liquid Cooling Power Modules for Automotive Applications Equipped with RC-IGBT

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

should be detected in this period.   However, to pre-vent any misdetection, VSC must be  set  lower  than the short circuit detection voltage in normal switch-ing.(c)   Period iii

In  this  period,  the  turn-on  current  and  gate-emitter voltage shift to the specified set values and VSC is low.

Figure 8 shows VSC at turn-on, indicating values in period  ii,  which must  be  lower  than  the  short  circuit detection  voltage  in  the  entire  current  and  tempera-ture ranges applied.  In addition, the gate clamp period in short-circuit protection operation must be set in con-sideration of period i in normal switching as described above.

3.3 Technologies applied to high heat-dissipating coolerThe  3rd-generation  module  for  automotive  appli-

cations  adopts  an  aluminum  water  jacket  combined with  a  cover  and  flanged  refrigerant  inlet  and  outlet ports.   By  integrating  the heat  sink and water  jacket and  devising  an  effective  fin  shape,  heat  dissipation performance has been  improved by 30%  from conven-tional products(4),(5).  The 3rd-generation module for au-tomotive applications  is characterized by the adoption of a flange structure for the refrigerant inlet and outlet ports.  This section describes how sealing performance of the flange structure is ensured by using an O-ring.

The direct liquid cooling power module is mounted on  the  equipment  housing  by  a  flange  via  a  sealing material.   A seal  for preventing refrigerant  leakage  is required  even when  the  operating  temperature  or  re-frigerant pressure changes.  Figure 9 shows an example of  use  of  an O-ring  for  the  3rd-generation module  for automotive  applications.    In  reality,  deformation  and vibration  may  be  generated  in  the  entire  equipment depending on the use environment and current apply-ing conditions.  Therefore, it is necessary to maintain a state in which the O-ring is always in contact with the flange and housing in use environment with an appro-priate crush width.

(a)  Short circuit detection voltageDetermine  the  voltage  value  at  which  a  short-

circuit current is detected.(b)  VSC maximum voltage

The maximum voltage shall be at or lower than the withstand voltage of the drive IC.(c)   Gate clamp voltage

Determine the limit value for a short-circuit cur-rent.(d)  Gate  clamp hold  time and  soft  interruption  op-

eration timeDetermine  the  respective  periods  for  ensuring 

that the short circuit energy is kept at or below the breakdown level.In  normal  IGBT  switching  operation,  VSC  must 

be  lower  than  the  short  circuit  detection  voltage  and within  the  range  of  the maximum applicable  current.  In the unlikely event of misdetection of a short circuit in  normal  operation,  IGBT  switching  loss may  be  in-creased  or  malfunction  of  the  equipment  may  occur.  In setting the short circuit detection voltage for short-circuit  protection  described  above,  behavior  of  VSC  in normal operation must also be considered.(3)   Example of evaluation results

Figure 7  shows operation waveforms  including be-havior of VSC at turn-on, and Fig. 8  the chip tempera-ture dependence of VSC  in a short-circuit state and at turn-on.

The following describes the behavior of VSC in peri-ods i to iii in Fig. 7.

(a)  Period iThe collector current increases, and the inclina-

tion  of  the  current  causes  a  transient  rise  of  VSC.  This period is within the range of normal operation and must be specified not to detect short circuits.(b)  Period ii

In this period, the collector current has reached a certain level but the gate-emitter voltage is held at the  IGBT threshold voltage  level  for a  certain  time and  high  VSC  occurs  in  this  period.    Short  circuits 

Collector− emitter voltage: VCE

Gate−emitter voltage: VGE

Voltage for current detection: VSC

Collector current: IC

i ii iii

VCE: 100 V/div, IC: 200 A/div, VGE: 5 V/divVSC: 2 V/div, t : 400 ns/div

Fig.7 Turn-on operation waveforms

Short circuit operation

Short circuit detection voltage

-50 0 50 100 150 200Chip temperature Tj (°C)

Vol

tage

for

cu

rren

t de

tect

ion

VSC

(a.u

.)

Turn-on operation

Fig.8 Chip temperature dependence of voltage for current detection

Page 46: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

260 FUJI ELECTRIC REVIEW vol.62 no.4 2016

ment for the 3rd-generation direct liquid cooling power module for automotive applications integrating an RC-IGBT.    RC-IGBT  is  an  elemental  technology  for  real-izing  functionality  enhancement  of  power  modules, and  it  has  protection  technology  and  the  technologies applied  to  coolers  for  realizing  direct  cooling.    They support users with inverter equipment design.   In the future, we  intend  to move  forward with  further  tech-nology  innovations  and  provide  a  wider  selection  of easier-to-use high-functionality products.

References(1)  Higuchi,  K.  et  al.  “An  intelligent  power  module  with 

high  accuracy  control  system”.  Proceedings  of  PCIM Europe 2014, May 20-22, Nuremberg, P.39-46.

(2)  Yoshida,  S.  et  al.  RC-IGBT  for  Automotive  Applica-tions.  FUJI  ELECTRIC  REVIEW.  2015,  vol.61,  no.4, p.263-266.

(3)  Adachi,  S.  et  al.  “Automotive  power module  technolo-gies  for  high  speed  switching”.  Proceedings  of  PCIM Europe 2016, May 10-12, Nuremberg, P.1956-1962.

(4)  Arai,  H.  et  al.  3rd-Generation  Direct  Liquid  Cool-ing  Power Module  for  Automotive  Applications.  FUJI ELECTRIC REVIEW. 2015, vol.61, no.4, p.252-257.

(5)  Gohara, H. et al. Packaging Technology of 3rd-Genera-tion Power Module  for Automotive Applications. FUJI ELECTRIC REVIEW. 2015, vol.61, no.4, p.258-262.

Fuji  Electric  offers  an  adapter  to  connect  with  a flange to run a refrigerant for user evaluation use.  Fig-ure 10  shows  the  external  appearance  of  the  adapter for flange connection.

4. Postscript

This  paper  has  described  functionality  enhance-

O-ring diameter: > 2.4 mmP15 (JIS standard shape)Material: NBR (nitrile rubber)Hardness: 70

Groove depth: O-ring diameter × 0.7 to 0.8

Cooler

Refrigerant jacket

Fig.9 Example of seal using O-ring

(a) Main unit (b) Mounted

O-ring

Fig.10 Adapter for flange connection

Page 47: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

261

1. Introduction

In recent years, electronic control has been increas-ingly  used  in  automotive  electrical  systems  based  on the  keywords  of  safety,  the  environment  and  energy saving.    In  addition  to  these  keywords,  semiconduc-tor products used in these electrical systems have also been required to be compact and highly reliable.

Fuji Electric has been developing intelligent power switches  (IPSs)  suitable  for  electrical  systems  such as  engines,  transmissions  and  brakes.    We  designed these IPSs by integrating a vertical power metal-oxide-semiconductor field-effect  transistor  (power MOSFET) used  as  an  output  stage  and  a  lateral MOSFET  that composes a control/protection circuit on a single chip.  We established a product line featuring high-side IPSs in  which  a  semiconductor  device  is  mounted  on  the 

MORISAWA, Yuka *      TOBISAKA, Hiroshi *      YASUDA, Yoshihiro *     

High-Side 2-in-1 IPS “F5114H” for Automobiles

In recent years, electronic control has been advancing in automotive electrical systems based on the keywords of safety, environment, and energy savings. In addition to these keywords, semiconductor products are also required to be compact and highly reliable. Fuji Electric has developed the high-side 2-in-1 intelligent power switch (IPS) “F5114H” for automotive applications to achieve even greater device miniaturization. Fuji Electric has equipped the SSOP-12 package, which has the same external dimensions as the SOP-8 package, with 2 chips that have the same functionality as previous products, allowing for 2 channels on the same mounting area as the previous one channel products. It also utilizes a highly reliable wire that can be used in high temperature environments. These enhance-ments have made it possible to greatly reduce ECU size.

power supply side and a  load on the ground side, and low-side  IPSs  with  the  opposite  arrangement.    Using IPSs makes it possible to reduce the number of circuit components  of  an  electronic  control  unit  (ECU) while giving  a  smaller  footprint, which  leads  to  a  reduction in the size of the ECU itself.   In recent years, the ap-plication of the 4th-generation IPS device technologies and process technologies(1)-(2) has promoted further min-iaturization  of  chips.    This  paper  describes  the  high-side  2-in-1  IPS  “F5114H”  for  automotive  applications developed with the aim of achieving greater miniatur-ization.

2. Product Overview

The main features of the F5114H are as follows:(a)  Chips of 2 channels mounted on a small SSOP-

F5114H (Developed

product)

Type Outline

SSOP-12

Package

2

F5044H(Conventional

product)SOP-8 1

No. of channels Device configuration

p+

Source

Change of output-stage power MOSFETPlanar Trench

Smaller design rules for working the circuit section

Drain Drain

Drain (VCC)

Drain (VCC)

Gate Source SourceGate Gate Gate Gate

p+

p+ p+ n+ n+

n+

n+ n+ n+ n+n+Source Drain

GateGateSource

SourceDrain Gate Gate GateGate

p+ p+ p+p

p p

pp

n+ n+ n+

n+n-

n+ n+ n+ n+ n+ n+

p+ p+

Fig.1 Outline and device configuration of “F5114H”

Page 48: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

262 FUJI ELECTRIC REVIEW vol.62 no.4 2016

12 package(b)  Use of highly reliable wire

Figure 1 shows the outline and device configuration of the F5114H.  By utilizing the 4th-generation IPS de-vice technologies and process technologies, we changed the output-stage power MOSFET  from a  conventional planar gate MOSFET into a trench gate MOSFET.  As for the circuit section, we applied smaller design rules for the element devices themselves, reduced the wiring area connecting between element devices, and applied multi-metal-layer  technology  to  miniaturize  chips.  Along with  the miniaturization  of  chips,  we mounted 2  chips  that  have  an  equivalent  functionality  as  the conventional  products  on  the  SSOP-12  package  that has  the  same  footprint  as  the  SOP-8  package.    This contributes to further miniaturization of electrical sys-tems as well as total cost savings as a result of the re-duction in the number of components.  For the bonding wire, we adopted materials that can ensure reliability against the temperature rise in the devices themselves due to ECU miniaturization as well as in the operating environment.

3. Characteristics

Figure 2  shows  the  circuit  block  diagram, Table 1 

VCC

GND

OUT

Internalpower supply

Over-temperature

detection

IN

STOvercurrent

detection

Undervoltage

detection

Logiccircuit

Level shiftdriver

Open loaddetection

Fig.2 Circuit block diagram of “F5114H” (one channel)

Table 1 Absolute maximum ratings

Item Symbol Condition Rating

Supply voltage (V)Vcc1 250 ms — 50

Vcc2 DC -0.3 35

Output current (A) IDPer chan-

nel* — 1.65

Output voltage (V) VOA — Vcc-50 —

Power dissipation (W) PD * — 1.5

Input voltage (V) VIN DC -0.5 7

Input current (mA) IIN DC -10 10

Status voltage (V) VST DC -0.3 7

Status current (mA) IST — — 5

Junction temperature (°C) Tj — -40 175

Storage temperature (°C) TSTG — -55 175

*   When mounted on a glass-epoxy 4-layer printed circuit board [10 ×  5 × 1.2 (mm)], 2 channels turned on simultaneously

Table 2 Logic table

Mode IN ST OUT

Normal operation LH

LH

LH

Over-temperature detection

LH

LL

LL

Overcurrent detec-tion

LH

LL

LL

Open load detec-tion L H H

Low-voltage detec-tion

LH

LL

LL

IN input terminal open

LOpen

LL

LL

Table 3 Electrical characteristics

Item Symbol ConditionStandard value

Min. Max.

Operating voltage (V) VccTj = -40 to 175 °C 4.5 16

Low-voltage detection (V) UV1 VIN = 5 V 2 4.3

Low-voltage recovery (V) UV2 VIN = 5 V 2.2 4.5

Standby current (mA)

Icc (L) 1RL = 10ΩVIN = 0 V

— 0.6

Icc (L) 2OUT openVIN = 0 V

— 0.6

Operating current (mA) Icc (H)VIN = 5 VRL = 1 kΩ

— 5

Input threshold voltage (V)VIN (H) Vcc = 4.5 to 16 V

RL = 10Ω

2.8  —

VIN (L) — 1.5

Input current (µA)IIN (H) VIN = 5 V 5 70

IIN (L) VIN = 0 V -10 10

On-state resistance (Ω) RDS (on)

IL = 1.5 ATj = 25 °C

— 0.12

IL = 1.5 ATj = 175 °C

— 0.27

Output leakage current (mA)

IOHVOUT = VccVIN = 0 V

— 2

IOLVOUT = 0 VVIN = 0 V

-0.24 —

Overcurrent detection (A) IOCVcc = 13 VVIN = 5 V

2 7

Peak current in overcurrent mode (A) PeakI

Vcc = 13 VVIN = 5 V

— 16

Periodic cycle in overcurrent mode (ms) Per — 3

Duty cycle in overcurrent mode (%) Duty — 40

Over-tempera-ture detection

Detection (°C) Ttrip1VIN = 5 V

— 207

Recovery (°C) Ttrip2 175 —

Turn ON delay time (µs) tACCON

Vcc = 13 VRL = 10Ω

VIN = 5 V − 0 V

— 140

Turn OFF delay time (µs) tACCOFF — 140

Turn-on time (µs) ton — 120

Turn-off time (µs) toff — 70

Status voltage L level (V) VST (L)

VIN = 0 VRL = 10ΩIst = 0.6 mA

— 0.5

Status leak current (µA) ISTleakVIN = 5 VRL = 10ΩVst = 7 V

— 10

Status delay (µs)

tST (on) Vcc = 13 VRL = 10Ω

VIN = 5 V − 0 VVst = 5 V

— 200

tST (off) — 200

Open load detection voltage (V) VOIHVIN = 0 V

VST = L -> H4 —

Open load recovery voltage (V) VOILVIN = 0 V

VST = H -> L— 1.6

Page 49: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

263High-Side 2-in-1 IPS “F5114H” for Automobiles

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

shows  the  absolute maximum  ratings,  Table 2  shows the  logic  table  and Table 3  shows  the  electrical  char-acteristics  of  the  F5114H.    In  addition  to  electrical characteristics  equivalent  to  the  conventional  IPS “F5044H,” the F5114H offers the following functions:

(a)  Load short-circuit protection function(b)  Low power supply voltage detection function(c)   Current-carrying capability sufficient to support 

2 channels

3.1 Load short-circuit protection functionThe  load  short-circuit  protection  function  protects 

not only the device itself but also the system and load when  an  overcurrent  flows  in  the  output-stage  power MOSFET.   This function is used to detect overcurrent and  reduce  the  electric  power  during  a  load  short-circuit, and  limit  the peak current  to a  constant  level at which the output current is oscillated.  This reduces the noises generated from elements even in an abnor-mal state.  The F5114H offers improved product safety through  the  double-protective  functions  against  over-current and over-temperature. 

3.2 Low power supply voltage detection functionThe product operates under  the  low power supply 

voltage  conditions  including  any  instantaneous  drop in the power supply voltage such as when the engine is started.  Even if the power supply voltage drops to 4.5 V,  it maintains  an  on-state  resistance  almost  equiva-lent to that of the normal voltage of 13 V.  Moreover, in the range where the power supply voltage drops below 4.5 V, it is designed to turn off the output immediately when  it  detects  the  low  voltage,  in  order  to  prevent unstable circuit operation.  By taking these measures, we ensure an element performance equivalent  to  that under normal  conditions even when  the power supply voltage drops.

3.3 Current-carrying capability sufficient to support 2 channelsCompared with the conventional one-channel prod-

ucts,  the  2-channel  product  has  2  chips  on  a  single 

package.   Consequently, there are worries about a de-cline in the allowable current and allowable watt loss.  As  a  countermeasure, we  set  the  guaranteed  junction temperature to 175 °C to prevent the decline of the al-lowable current and watt loss.

Figure 3  shows  the allowable  current  range of  the F5114H.  Even when the 2 channels are turned on si-multaneously, which is the toughest thermal operating condition, the product ensures the current-carrying ca-pability of ID=1.65 A (at Ta=25 °C) per channel.  It also ensures  the  allowable watt  loss  of  PD=1.5 W which  is equivalent to that of the conventional products.

4. Package Features

4.1 Redundant package designAs  shown  in  Fig. 4,  the  F5114H  has  a  structure 

with separate lead frames for respective chips in order to allow the functions of each channel to work indepen-dently.  Components such as the internal power supply and GND circuit are not shared but are allocated indi-vidually for the respective channels.  This has achieved a  redundant  design  to  prevent  the  operation  of  one channel  from  being  interfered  with  even  when  the other  channel  abnormally  heats  up  or  breaks.   More-over,  from a  fail-safe standpoint, we designed the ter-minal arrangement to provide a non connect (NC) ter-minal  between  the  power  supply  terminal  (VCC)  and output terminal (OUT) to reduce the risk of breakdown due to a short-circuit between adjacent terminals.  The terminal width and pitch have  followed a package de-sign  conforming  to JEITA EIAJ EDR-7314A*1.   Lead-free solder (Sn-Ag) is used for the terminal plating.

4.2 Use of highly reliable wireWe  have  worked  to  address  the  temperature  rise 

in the devices themselves due to ECU miniaturization as well as a temperature rise in the operating environ-

F5114H Only one channel turned on

F5114H 2 channels turned on simultaneously (Current value per channel)

RDS(on)= 0.27 Ω max.

-50 -25 0 25 50 75 100 150125 175Ambient temperature Ta (°C)

3.0

2.5

2.0

1.5

1.0

0.5

0

All

owab

le c

urr

ent

(A)

Fig.3 Allowable current range of “F5114H”

Mold resin

Wire

Chip

Lead frame

Channel 1 Channel 2

Terminal No.①②③④⑤⑥⑦⑧⑨⑩⑪⑫

Terminal nameIN1ST1

GND1IN2ST2

GND2OUT2

NCVCC2VCC1

NCOUT1

① ⑥

⑫ ⑦

Fig.4 Schematic of internal structure of “F5114H”

*1:   JEITA EIAJ EDR-7314A:  Integrated circuit package de-sign  guideline  regarding  shrink  small  outline  packages (SSOPs) established by the Japan Electronics and Infor-mation Technology Industries Association (JEITA)

Page 50: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

264 FUJI ELECTRIC REVIEW vol.62 no.4 2016

in  the  higher  temperature  environments  expected  in the future.

5. Postscript

This  paper  described  the  high-side  2-in-1  IPS “F5114H”  for  automotive  applications.    It  can help  to reduce  the  footprint  and  total  cost  by mounting  chips of  2  channels  on  a  package  of  the  same  size  as  the conventional  one-channel  products  with  equivalent current-carrying  capability  ensured.    In  addition,  we adopted  highly  reliable  wire  to  ensure  operation  in increasingly  severe  high-temperature  environments.  Fuji Electric is committed to contributing to the minia-turization, price reduction and reliability improvement of electrical systems by expanding its IPS product line.

References(1)  Nakagawa,  S.  et  al.  One-Chip  Linear  Control  IPS, 

“F5106H”.  FUJI  ELECTRIC  REVIEW.  2013,  vol.59, no.4, p.251-254.

(2)  Toyoda, Y. et al.  “60 V-Class Power IC Technology for an Intelligent Power Switch with an Integrated Trench MOSFET”. ISPSD 2013, p.147-150.

ment.    Hence,  the  guaranteed  temperature  range  of the F5114H  is  set  to Tj=-40 °C  to +175 °C

(1)  so  that  it 

can  be  used  in  environments  at  higher  temperatures than before.  Since the period of operation in high-tem-perature environments  is expected to be  longer  in the future, we need to adopt wire materials that can offer improved reliability at high temperatures.

Figure 5  shows  the  conditions  of  the  interface  be-tween the wire and aluminum electrode pad after they are  left  in a high-temperature environment  for a  long period of time.  The conventional wire shows a change in  the  condition  of  the  interface,  whereas  the  highly reliable wire adopted for this product shows almost no change.  Thus, we could improve the reliability for use 

Condition

Initial

Aftertest

Conventional wireHighly reliable wire

Fig.5 Observation result of cross-section of interface between wire and electrode after high-temperature shelf test

Page 51: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

265

1. Introduction

Recently,  in  the  automotive  market,  eco-friendly vehicles  represented  by  hybrid  electric  vehicles (HEVs), plug-in hybrid electric vehicles  (P-HEVs) and electric  vehicles  (EVs)  have  been  attracting  atten-tion as environmental regulations become increasingly stringent  and  users’  environmental  awareness  rises.  Efficient  use  of  the  electric  power  of  the  batteries mounted on these types of vehicles directly leads to an improvement  in  fuel  efficiency,  and  power  conversion technology  (power  electronics)  is  gaining  importance. In  addition,  to  improve  the  comfort  of  passengers  by making  the  vehicle  cabin  more  spacious,  there  is  a strong  demand  to make  automotive  power  converters smaller.    Accordingly,  power  conversion  equipment, such  as  automotive  DC-DC  converters  and  chargers, has  to  be  compact,  highly  efficient  and  low-noise products.    Semiconductor  switching  elements  such  as power  metal-oxide-semiconductor  field-effect  transis-tors  (MOSFETs) used  in  these  types of power  conver-sion  equipment  are  also  required  to  be  compact,  low loss and low noise.

In order to meet these requirements, Fuji Electric developed  the  1st-Generation  “Super  J  MOS  S1  Se-ries(1)-(3)” in 2011, which adopted a superjunction struc-ture to achieve low on-state resistance and low switch-ing  loss;  in  2014,  we  developed  and  commercialized the “Super J MOS S1A Series” (S1A Series), a discrete product for automotive applications.

This  paper  presents  the  2nd-Generation SJ-MOS-FET  for  automotive  applications  “Super  J  MOS  S2A Series”  (S2A  Series)    that  features  lower  conduction loss  than  that  of  the  S1A  Series  and  suppresses  the jump  in  the  drain-source  voltage  VDS  (VDS  surge)  in 

TABIRA, Keisuke *      NIIMURA, Yasushi *      MINAZAWA, Hiroshi *     

2nd-Generation SJ-MOSFET for Automotive Applications “Super J MOS S2A Series”

There has been increasing demand for smaller power conversion equipment and better fuel efficiency in eco-friendly vehicles such as hybrid electric vehicles. Accordingly, power MOSFET products are being required to be compact, low loss and low noise. Fuji Electric has developed and launched the “Super J MOS S1A Series,” a product for automotive applications that adopt a superjunction structure characterized by their low on-state resistance and low switching loss. More recently, Fuji Electric has developed the 2nd-Generation SJ-MOSFET for automotive applica-tions “Super J MOS S1A Series,” which reduces conduction loss while improving the trade-off between switching loss and jumping voltage during turn-off switching. The use of this product contributes to size reduction and enhanced ef-ficiency of the power conversion equipment for automotive applications.

turn-off switching.

2. Design Concept

Figure 1  shows a breakdown of  the  loss generated in a power MOSFET in a power factor correction (PFC) circuit  of  a  charger  for  automotive  applications.    The generated  loss  of  a  power  MOSFET  can  be  roughly classified  into  conduction  loss  Pon  and  switching  loss consisting of turn-on loss Pton and turn-off loss Ptoff.  To improve the efficiency of power conversion equipment, both  the  conduction  loss  and  switching  loss  should be  reduced.   The  conduction  loss  is  reduced by  lower-ing  the  on-state  resistance,  and  the  switching  loss  is reduced by  increasing  the  switching speed.   However, increasing  the  switching  speed on  the  turn-off  side  in order to reduce the switching loss causes VDS surge to increase  during  turn-off  switching,  and  false  turn-on may occur due to gate oscillation, which poses an issue.

Accordingly, the S2A Series aims to reduce conduc-tion  loss  by  reducing  the  on-state  resistance  per  unit area,  Ron∙A,  to  less  than  that  of  the  S1A  Series,  and 

100PFC

90

80

70

60

Ptoff

Pton

Pon

50

40

30

20

10

0

Gen

erat

ed lo

ss (

%)

(a) PFC circuit (b) Generated loss of MOSFET

MOSFET

Fig.1 Generated loss of MOSFET in PFC circuit of charger

Page 52: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

266 FUJI ELECTRIC REVIEW vol.62 no.4 2016

improve  the  trade-off  by  reducing  VDS  surge  without increasing switching loss.

3. Features

3.1 Reduction of conduction lossSince  lowering  the  on-state  resistance  is  effective 

in reducing the conduction loss, we have worked on de-creasing Ron∙A of the S2A Series.

The  superjunction  structure  applied  to  the  S1A and  S2A  Series  ensures  withstand  voltage  with  the entire drift layer by providing the n-type and p-type re-gions, which constitute the drift layer, alternately laid out.   This allows  the  impurity  concentration of  the n-type regions in the drift layer to be increased even with the same withstand voltage as that of the conventional planar type.   Thus, Ron∙A can be significantly reduced (see Fig. 2(4)-(8)).

  We have improved the technology of the impurity diffusion  process  to  increase  the  impurity  concentra-tion in the n-type regions.  This reduces the resistance value  of  the  drift  layer,  and we have  further  reduced Ron∙A of the S2A Series to  lower than that of the S1A Series(9),(10).   Figure 3  shows a  comparison  of Ron∙A be-tween  the    S1A  and  S2A  Serieses  that  have  a  with-stand  voltage  of  600 V.    Ron∙A  of  the  S2A  Series  is 

15 mΩ∙cm2, which  is  25%  lower  than  that  of  the  S1A Series, 20 mΩ∙cm2.

3.2 Reduction of VDS surgeAs  described  in  Section 2,  reduction  of  switching 

loss and reduction of VDS surge are in a trade-off rela-tionship,  and  improving  the  relationship  is  an  issue.  The S2A Series  reduces VDS  surge without  increasing switching loss to improve the trade-off.

 We often cannot design an ideal circuit pattern for a power board due to  the restrictions  that we have to use  existing  power  circuit  patterns,  part  layouts,  and other conditions.    In that case,  if  the circuit has  large inductance  and  inappropriate  drive  conditions  and circuit  constants,  simply  replacing  the  MOSFETs  in-creases VDS surge, so that false turn-on may occur due to gate oscillation during switching.

As an example, we used a  chopper  circuit  to  com-pare the S1A Series and S2A Series.  For ease of com-parison, this circuit was not optimized in terms of the drive conditions and circuit constants according to the MOSFETs to use.   Figure 4 shows the turn-off switch-ing waveforms for the respective series.  With the S1A Series,  VDS  surge  increases,  causing  a  false  turn-on [see Fig. 4 (a)].

Power  converters  for  automotive  applications  are mounted in the engine room and often used in a high-temperature  environment,  and  the  threshold  voltage VGS(th)  has  negative  temperature  characteristics.  This leads to the assumption that  FETs to be used are sus-

pnpp n

Drain

nn

Gate Source

Drift layer

n+

pn+P+

Fig.2 Superjunction structure

25% reduction

S2A Series S1A Series

25

20

15

10

5

0

Ron∙A

(mΩ∙c

m2 )

(600-V withstand voltage model)

Fig.3 On-state resistance per unit area Ron∙A

t : 50 ns/div

VDS: 100 V/div

False on

VDS: 100 V/div

ID: 10 A/div

ID: 10 A/div

(a) S1A Series

(b) S2A Series

t : 50 ns/div

Fig.4 Turn-off switching waveforms (external gate resistance Rg: 2Ω)

Page 53: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2672nd-Generation SJ-MOSFET for Automotive Applications “Super J MOS S2A Series”

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

ceptible  to  gate  oscillation    and  hence  prone  to  false turn-on.    It  is  considered  effective  to  raise  VGS(th)  to suppress  false  turn-on.  However,  increasing  VGS(th) alone causes VDS surge to increase at the time of turn-off switching, leading to the possibility of a false turn-on due to gate oscillation.

The  S2A  Series  have  taken  the  countermeasures, including  the  optimization  of VGS(th)  and  the  integra-tion of  the gate  resistance Rg  into  the  chip, which  in-crease VGS(th) while reducing VDS surge to prevent false turn-on [see Fig. 4 (b)].

Figure 5  shows  the  characteristics  of  the  external gate  resistance Rg  and  VDS  surge  evaluated  by  using the  chopper  circuit.   When Rg  is  low,  the  S2A  Series shows  a  VDS  surge-reducing  effect  as  compared  with the  S1A  Series.    As  shown  in  Fig. 6,  the  S2A  Series shows a lower turn-off switching loss Etoff than that of the S1A Series at the same VDS surge.   This indicates that the trade-off between Etoff and VDS surge has im-proved.

As  explained  up  to  now, when  the MOSFET  that has  conventionally  been  used  is  replaced  with  a  new one, reduction of VDS surge eliminates the need for the user  to change  the circuit pattern or make significant changes  to  component  constants.    This  facilitates  the 

design of a high-efficiency power supply.It also expands the selection of element withstand 

voltages  available,  which  has  the  effect  of  allowing the  use  of  an  element  with  a  lower  withstand  volt-age,  or  lower on-state  resistance,  than what has been used.  Accordingly, we have commercialized the 500-V and  400-V  withstand  voltage models  for  the  S2A  Se-ries, which had consisted of the 600-V and 650-V ones, equal voltages of the S1A Series models.

3.3 Reduction of loss under light load conditionsTo extend the lifespan of batteries, DC-DC convert-

ers  for automotive applications are driven under  light load conditions  in most of  the  lifetime operation.   For that  reason,  reducing  the  loss  under  light  load  condi-tions  significantly  contributes  to  an  improvement  in fuel  efficiency.    When  the  DC-DC  converter  is  oper-ated  under  light  load  conditions,  the  current  running through the MOSFET is small.  Thus, the ratio of loss Eoss generated during charge and discharge to the out-put  capacity Coss accounts  for a  large proportion.   Ac-cordingly, with  the S2A Series,  the  total  gate  electric charge QG has been reduced by optimizing the surface structure to successfully reduce Eoss by approximately 30% from that of the S1A Series (see Fig. 7).

The switching  loss of  the S2A Series has been re-duced by improving the trade-off between Etoff and VDS surge and reducing Eoss.  This allows the power conver-sion circuit  to be  run at a higher  frequency  than con-ventionally done, which permits use of a smaller trans-former, leading to miniaturization of power conversion equipment.

3.4 Quality for automotive applicationsProducts  for  automotive  applications  are  required 

to  have  withstand  capability  against  temperature changes.   For  the S1A and S2A Series, we worked on optimizing the chip thickness, the conditions of solder-ing under the chip during assembly, and the adhesion between  the  molding  resin  and  lead  frame.    These measures significantly improved the temperature cycle capability  as  compared  with  consumer  products  with 

S1A Series

S2A Series

0 5 10 15Rg (Ω)

650

600

550

500

450

400

VD

S su

rge

(V)

Fig.5 External gate resistance Rg and VDS surge characteristics

450 500 550 600 650VDS surge (V)

1,000

900

800

700

600

500

400

Eto

ff(µ

J)

S1A Series

S2A Series

Fig.6 Turn-off switching loss Etoff and VDS surge trade-off char-acteristics

Approx. 30% reduction

S2A Series S1A Series

25

20

15

10

5

0

Eos

s (µJ

)

Fig.7 Loss generated in charge and discharge Eoss

Page 54: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

268 FUJI ELECTRIC REVIEW vol.62 no.4 2016

mΩ, contributes to miniaturization of power conversion equipment in terms of the package size.

Products with an on-state resistance of 25.4 to 160 mΩ with  the TO-247 package and 81  to 160 mΩ with T-Pack are included in the product line.  We have also launched the fast recovery diode (FRED) type “Super J MOS  S2FDA  Series,”  which  integrates  faster  built-in diodes than those incorporated in the S2A Series.

5. Postscript

The  2nd-Generation  SJ-MOSFETs  for  automo-tive  applications  “Super  J MOS S2A Series”  is  a  line of  products  achieving  both  low  loss  and  reduced VDS 

surge.    They  make  significant  contributions  to  effi-ciency improvement and miniaturization of power con-version equipment.

In  the  future,  in  order  to  meet  increasingly  ad-vanced market needs, we intend to work on chip min-iaturization  and  on-state  resistance  reduction.    We will do so by expanding the product  line with a wider selection of withstand voltages and further refining the superjunction  structure  to  develop  high-performance, high-quality  discrete  products  for  automotive  applica-tions.

References(1)  Tamura, T. et al. “Super J-MOS” Low Power Loss Su-

perjunction  MOSFETs.  FUJI  ELECTRIC  REVIEW. 2012, vol.58, no.2, p.79-82.

(2)  Tamura,  T.  et  al.  “Reduction  of  Turn-off  Loss  in  600 V-class  Superjunction  MOSFET  by  Surface  Design”, PCIM Asia 2011, p.102-107.

(3)  Watanabe, S. et al. “A Low Switching Loss Superjunc-tion  MOSFET  (Super  J-MOS)  by  Optimizing  Surface Design”, PCIM Asia 2012, p.160-165.

(4)  Fujihira,  T.  “Theory  of  Semiconductor  Superjunction Devices”,  Jpn.  J.  Appl.  Phys.,  1997,  vol.36,  p.6254-6262.

(5)  Deboy,  G.  et  al.  “A  New  Generation  of  High  Voltage MOSFETs  Breaks  the  Limit  Line  of  Silicon”,  Proc. IEDM, 1998, p.683-685.

(6)  Onishi, Y. et al. 24 m· cm2 680 V Silicon Superjunction MOSFET”, Proc. ISPSD’02, 2002, p.241-244.

(7)  Saito,  W.  et  al.  “A  15.5 m· cm2-  680 V  Superjunction MOSFET  Reduced  On-Resistance  by  Lateral  Pitch Narrowing”, Proc. ISPSD ’06, 2006, p.293-296.

(8)  Oonishi, Y. et al. Superjunction MOSFET. FUJI ELEC-TRIC REVIEW. 2010, vol.56, no.2, p.65-68.

(9)  Watanabe, S. et al. 2nd-Generation Low-Loss SJ-MOS-FET  “Super J MOS S2 Series”. FUJI ELECTRIC RE-VIEW. 2015, vol.61, no.4, p.276-279.

(10)  Sakata,  T.  et  al.  “A  Low-Switching  Noise  and  High-Efficiency Superjunction MOSFET”, Super J MOS® S2, PCIM Asia 2015, p.419-426.

the same package and the same chip size (see Fig. 8).

4. Product Line-Up and Characteristics

Table 1 shows the product line-up of the S2A Series and  major  characteristics.    In  addition  to  improving the  on-state  resistance  and  switching  characteristics described  up  to  now,  compliance  with  the  AEC Q101 standard, which is a standard for reliability assurance of automotive discrete products,  is guaranteed  for  the entire product line.

While  the  S1A  Series  using  the  TO-247  package has  a  minimum  value  of    the  on-state  resistance  of 40 mΩ  for  600-V  withstand  voltage  models,  the  S2A Series  achieves  25.4 mΩ.    The  small  surface-mount device  (SMD) T-Pack  (D2-Pack) of  the S1A Series has an on-state resistance of 145 mΩ with 600-V withstand voltage models.  The S2A Series, which can achieve 79 

S1A Series, S2A SeriesD2-Pack

Conventional product (consumer product)

0.001 0.01 0.1

10,000

1,000

100

10Tem

pera

ture

cyc

le c

apab

ilit

y (c

ycle

s)

T (K−1)1/ ∆

Fig.8 Temperature cycle capability

Table 1 “Super J MOS S2A Series” product line-up and major characteristics

VDSRDS (on)

max. ID FRED

TO-247 T-Pack(D2-Pack)

400 V 60 mΩ 42A Available — FMC40N060S2FDA

500 V 71 mΩ 39A Available FMY50N071S2FDA FMC50N071S2FDA

600 V

25.4 mΩ 95A FMY60N025S2A —

40 mΩ 66A FMY60N040S2A —

70 mΩ 39A FMY60N070S2A —

79 mΩ 37A FMY60N079S2A FMC60N079S2A

81 mΩ 36A Available FMY60N081S2FDA FMC60N081S2FDA

88 mΩ 33A FMY60N088S2A FMC60N088S2A

99 mΩ 29A FMY60N099S2A FMC60N099S2A

105 mΩ 28A Available FMY60N105S2FDA FMC60N105S2FDA

125 mΩ 23A FMY60N125S2A FMC60N125S2A

133 mΩ 22A Available FMY60N133S2FDA FMC60N133S2FDA

160 mΩ 18A FMY60N160S2A FMC60N160S2A

Page 55: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

269

1. Introduction

In  recent  years,  there  have  been  demands  for switching  power  supplies  to  have  improved  efficiency and  save  on  system  costs.    According  to  the  interna-tional  standard  IEC  61000-3-2,  for  power  systems with an output power of 75 W or higher, a power  fac-tor  correction  (PFC)  circuit  is  required  to  suppress  a harmonic  current  that  may  cause  problems  such  as disturbed  equipment  operation  or  increased  reactive power  due  to  a  decreased  power  factor.    For  power conversion sections, LLC current resonant circuits are widely used because they provide soft switching control that is effective in low-noise applications.

Fuji Electric has commercialized the critical mode PFC  control  IC  “FA1A00N  Series”  designed  for  PFC circuits to save on power supply costs and improve effi-ciency during light loads.  As for LLC current resonant circuits, we commercialized 2 types of LLC current res-onant  control  ICs  sequentially:    “FA5760N”  that  sup-ports a wide range of  input voltages  from 85 to 264 V AC  and  allows  configuration  of  small  power  systems, and “FA6A00N” that offers low standby power and en-hanced protective functions.

While  using  its  conventional  technologies,  Fuji Electric has now developed a critical mode PFC control IC “FA1A60N” and an LLC current resonant control IC “FA6B20N.”  These are modules that allow power sys-tems  to  further  improve  efficiency  during  light  loads, exhibit  low  standby  power  and  reduce  the  number  of power supply components (see Fig. 1).

The power  supplies using  these  ICs will  have  the following features:

(a)  Significantly  reduced  number  of  power  supply components

SONOBE, Koji *      YAGUCHI, Yukihiro *      HOJO, Kota *     

Critical Mode PFC Control IC “FA1A60N” and LLC Current Resonant Control IC “FA6B20N” for High-Efficiency Power Supplies

For the relatively large capacity switching power supplies for electronic equipment, a power factor correction (PFC) circuit is required to suppress harmonic current, and a LLC current resonant circuit is also widely used due to the effectiveness in low noise applications. Fuji Electric has developed the critical mode PFC control IC “FA1A60N” and LLC current resonant control IC “FA6B20N” adding new functionality while using our conventional technology. Using these ICs in combination allows power supply systems to improve the efficiency during light loads, achieve low standby power, and reduce the system cost by reducing the number of power supply components. Furthermore, as an enhancement over previous products, these ICs can be used in power supply adapters.

(b)  Improved efficiency during light loads (efficiency of 75% at output power Po=5 W)

(c)   Reduced power consumption in standby state(d)  Heavy load start-up during low input voltage(e)  Automatic  switching between normal  state  and 

standby stateThe  achievements  of  (d)  and  (e)  also  allow  these 

ICs to be used in power supply adapters.This paper describes the features of the FA1A60N 

and FA6B20N  and  the  effects when  they  are  used  in power supplies.

2. Features of Critical Mode PFC Control IC “FA1A60N”

2.1 OverviewFigure 2 shows  a  block  diagram  of  the  FA1A60N 

and  Table 1  shows  a  functional  comparison  between the  FA1A60N  and  a  previous  product.    In  general,  a critical mode PFC control IC turns on at the minimum drain voltage  (bottom)  of  a metal-oxide-semiconductor field-effect  transistor  (MOSFET).    The  previous  prod-ucts  are  provided  with  a  bottom  skip  function  that skips turn-on signals during light loads to suppress the 

(a) “FA1A60N” (b) “FA6B20N”

Fig.1 External appearance

Page 56: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

270 FUJI ELECTRIC REVIEW vol.62 no.4 2016

rise in the switching frequency.  On the other hand, to ensure  further  improvement  in  the  efficiency  during light loads, the FA1A60N is provided with a function to reduce current consumption by carrying out a burst op-eration, which deliberately has a switching stop period, as described in Section 2.2.

An electronic device can be  in either normal state to operate its major functions or standby state to stop functions.  Normal state activates a continuous switch-ing operation without setting a  switching stop period, and standby state activates a burst operation.    In the case of the FA1A60N, a signal that switches the state from normal  to  standby  is  sent  from the LLC current resonant  control  IC  FA6B20N  to  the  RT  terminal  of the FA1A60N.    In addition  to  the  standby  signal,  the FA6B20N  sends  input  voltage  information  and  PFC stop  signals.    This  allows  the  FA1A60N  to  provide highly  efficient  control.    As  for  the  package  of  the FA1A60N, we adopted a JEDEC-compliant 8-pin small outline package (SOP).

2.2 Highly efficient burst controlIn order  to achieve  low standby power  in  standby 

state,  it  is  effective  to  stop  the  switching  of  the  PFC circuit.  This method, however, has the following prob-lems:

(a)  A  switch  circuit  is  required  to  interrupt  the power supplied to the PFC control IC.

(b)  The  reduced  output  voltage  of  the  PFC  circuit causes  low  output  voltage  in  a  transient  re-

RT

FB

COMP

CS

VCC

Error amplifier

Internal power supply

OUT

GND

Zero-current detection comparator

SP

SOVP

SP

PWMcomparator

Dynamic overvoltage protection

Short-circuit protection comparator

Low-voltage malfunction prevention comparator

Driver

UVLO

Filter

Overvoltage protection comparator

SO

VP

OV

P

Overcurrent protection comparator

Restart detection comparatorLevel shift

Reset-priorityQB

TimerRR

Bottom skip

Delay circuit

Frequencydetection

circuitC

QD

QBDFF

One shot

S

Tonmax

Ramp

Ramp oscillator

DOVP

UVLO

Q

QS

RF.F.SP

UVLO

Low-voltage protection comparator

Overshoot reduction protection comparator

LLD LLDZCD

Mask

QB

Burstcontrolcircuit

LLCcommunication

circuit

Timer Burst operation comparator

BurstStop

Vin

STOPSP

UVLOBurst

Bu

r_on

off

Burst_onoffBurst

Vin

Vin

Burst

BurstREF low-voltage malfunction prevention comparator

Staticovervoltage protection

Reset-priority

OVP

Timer

Q

QS

RF.F.

Reset-priority

Q

QS

RF.F.

+−

−+

+−

+ −

+ −

− +

− +

−+

+−

-+

+−

+−

+−

−+

−+

Fig.2 Block diagram of “FA1A60N”

Table 1 Functional comparison between “FA1A60N” and previous product

Item FA1A60N Previous product

Bottom skip function dur-ing light loads Yes Yes

Burst operation in standby state Yes No

Current consumption in standby state 250  µA 500  µA

Interconnection with LLC Yes No

Input voltageVin

Activated ActivatedSwitching stop

t

PFC outputvoltageVbulk

OUT terminal

Input voltageVin

Switching stop

t

PFC outputvoltageVbulk

OUT terminal

(a) PFC burst operation (FA1A60N)

(b) PFC operation stopped (previous product)

Fig.3 Operation of PFC during standby

Page 57: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

271Critical Mode PFC Control IC “FA1A60N” and LLC Current Resonant Control IC “FA6B20N” for High-Efficiency Power Supplies

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

sponse to a heavy load.(c)   The LLC current resonant circuit needs to sup-

port a wide range of input voltages, resulting in less flexible transformer design.

In  order  to  solve  these  problems,  we  introduced a  burst  operation  that  works  in  standby  state  to the  FA1A60N  (see  Fig. 3).    The  burst  operation  of the  FA1A60N  stops  switching  when  the  PFC  out-put  voltage  Vbulk  reaches  the  upper  limit  or  higher, and  restarts  switching  when  the  voltage  drops  be-low  the  lower  limit.    By  reducing  the  switching  loss while maintaining  the  output  voltage  of  the  PFC, we achieved  high  efficiency  and  low  standby  power  in standby state.

3. Features of LLC Current Resonant Control IC “FA6B20N”

3.1 OverviewFigure 4  shows  a  block  diagram  of  the  FA6B20N 

and  Table 2  shows  a  functional  comparison  between the FA6B20N and a previous product.

The FA6B20N  consists  of  a  control  circuit  to  con-trol  the  LLC  current  resonant  circuit,  a  630-V  with-stand  voltage  driver  circuit  that  can  directly  drive the switching devices on the high side and low side of a  half-bridge  circuit,  and  a  600-V  withstand  voltage start-up  device  that  can  start  the  IC with  low  power 

consumption.The  built-in  automatic  standby  function,  which 

will be described in detail in Section 3.2, eliminates the need  for external  standby signals,  so  that  this  IC can be  used  in  power  supply  adapters,  which was  impos-sible with  previous  products.    Even  in  standby  state, it  achieves  high  efficiency  and  low  standby  power  by operating the PFC circuit.  Furthermore, the intercon-nected operation that activates  the PFC circuit before the  LLC  current  resonant  circuit  has  enabled  heavy load start-up during low input voltage.  A JEDEC-com-pliant 16-pin SOP has been adopted for the package. 

3.2 Automatic standby functionPrevious products used a burst operation to reduce 

the standby power in standby state.  During the opera-

Start-updevice

X capacitordischarge circuit

VH

VCC

STB

FB

FB voltagedetection circuit

HO

VB

VS

LO

IS IS voltagedetection circuit

Resonantcurrent

conversioncircuit

CA

CA voltagedetection circuit

VW MODE

Oscillator

Protectioncircuit

STB terminalstatus setting

circuit

Low-voltagemalfunctionprevention

GND

CS

VH voltagedetection circuit

CS voltagedetection circuit

STB terminalI/O selection

circuit

VCCvoltage

detectioncircuit

High-sidedriver

VB voltagedetection

circuit

VBS low-voltagemalfunctionprevention

Controlcircuit

Low-sidedriver

Overheatprotection circuit

Externalfault stop

circuit

Overcurrentprotection

control circuit

Overloadprotection

controlcircuit

Overcurrentprotection

timer circuit

MODE terminalstatus setting

circuitAutomaticdead time

adjustment

VW voltagedetection circuit

Automaticstandby

control circuit

Forcedturn-offcircuit

Soft startcontrol circuit

Burst controlcircuit

Brownout

Start-up circuit Internalpower supply

Unbalancecorrection circuit

bo

VCC

ocpdet

isdet

vwdet

vwdet

ocpdet

ocp

extin

extindt

dtocpdet

ftoff

prot

prot

stbin stbout

vhmo

stbin

caolpmo

bo

uvlo

uvlo

uvlo

uvlo

ssend

ssend

vbmo

vbmo

vbmo

vwdetcaolpmo

castbmo

stbouttsd

selvw

vbmostbmo

low_cs vhmo

prot

xc_det

vh_chg

vdd 5 Vvdd 3.3 Vuvlo_reg

uvlo_reg

low_vccovp_vcc

uvlo_vcc

on_trig

off_trig

low_fb

low_cs

olp_fbolp_ca

stb_llcpfc_ctrl

stb_fbstb_llc

olp_castb_llcstb_pfc

off_trig

on_trig

bodet_vbbodet_vh

stb_out

pfc_ctrl

olp_fbburst_fblow_fbstb_fb

ovp_vcclow_vcc

burst_fb

olp

selvw

castbmo

stbmo

Fig.4 Block diagram of “FA6B20N”

Table 2 Functional comparison between “FA6B20N” and previous product

Item FA6B20N Previousproduct

Automatic standby function Yes No

PFC operation in standby state Activated Stopped

Efficiency during light loads (Po=5W) 75% 60%

Standby power  (Vin=230 V, Po=125 mW) 260 mW 270 mW

Interconnection with PFC Yes No

Page 58: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

272 FUJI ELECTRIC REVIEW vol.62 no.4 2016

turn-off voltage level of the VW terminal from normal state (a-b) to standby state (a’-b’) to suppress the peaks of  the  resonant  current  (A’-B’).   Moreover,  shortening the period between the soft start  (C) and soft end (C’) improves  efficiency  by  reducing  an  invalid  switching range.

3.4 Improved ESD withstand voltageThe  human  body  model  (HBM)  ESD  withstand 

voltage  on  the  VH  terminal  of  previous  LLC  current resonant  control  ICs  was  +1 kV.    The  FA6B20N  has achieved +2 kV by  improving  the built-in  start-up de-vice of the VH terminal to supply an electric current to the VCC terminal.

4. Effects of Application to Power Supplies

4.1 Reduced number of circuit componentsAn example of the application circuit mounted with 

the FA1A60N and FA6B20N  is  shown  in Fig. 7.    The interconnection between  the PFC  control  IC and LLC current resonant control IC is established between the RT terminal of the FA1A60N and the STB terminal of the FA6B20N (see Section A in Fig. 7).  Table 3 shows the  effect  of  a  reduced  number  of  power  supply  com-ponents  compared  with  a  function-equivalent  power supply mounted with previous products.  A power sup-ply  mounted  with  the  FA1A60N  and  FA6B20N  can eliminate  the  need  for  a  circuit  that  transmits  exter-nal  standby  signals  and  a  switch  circuit  for  supply-ing power to the VCC terminal of the PFC control IC.  However,  such  a  power  supply  requires  an  additional circuit  for  the  interconnection  between  the  RT  and STB terminals.  As a result, the total number of power supply  components  can  be  reduced  to  95  from  102  of the previous product, a reduction of 7 components.   It should  be  noted  that  we  are  now  able  to  reduce  the number of photocouplers, which are susceptible to mal-function.

tion, they needed to receive a standby signal from the secondary  side  of  the  power  supply,  which  caused  a problem of an increased number of components.

The FA6B20N is provided with a built-in  function to detect the load information on the secondary side by detecting  the  resonant  current  from  the  LLC  current resonant circuit on the primary side with the IS termi-nal and smoothing the voltage on the CA terminal with a  capacitor.  Figure 5  shows  the  relationship  between Load Po and the CA terminal voltage of the FA6B20N.  The FA6B20N can be in either normal state that con-tinues switching of IC operation or standby state that activates  a  burst  operation  by  intentionally  setting  a switching  stop  period.    Furthermore,  it  has  an  auto-matic standby function to switch between these states automatically.    This  function  switches  the  state  from normal to standby when the CA terminal voltage drops below 0.3 V, and from standby to normal when the CA terminal voltage rises to 0.35 V or higher.

The  FA6B20N  allows  users  to  set  the  voltage  to switch  the  state  between  standby  and  normal  by  se-lecting the resistance connected to the MODE terminal from 3 levels.  To prevent an unstable condition where both  standby  state  and  normal  state  exist,  hysteresis has been set to the switching voltage.

3.3 Highly efficient burst controlIn standby state, Fuji Electric’s LLC current reso-

nant  control  IC  reduces  switching  loss  and  improves efficiency by using the burst control to reduce the num-ber of switching operations.   When the output voltage decreases  and  the  FB  terminal  voltage  increases,  the burst  control  starts  switching  by  using  a  soft  start that  charges  the CS  terminal  capacitor, which makes the output voltage increase.   When the output voltage increases  and  the  FB  terminal  voltage  decreases,  the switching  is  stopped  with  a  soft  end  that  discharges the  CS  terminal  capacitor.  Figure 6  shows  the  se-quence diagram of  the burst  control  of  the FA6B20N.  It controls power loss caused by output voltage ripples, noises  and  resonant  currents  by  switching  the  forced 

Normal stateStandby state

0 0.2 0.4 0.6 0.8 1.0CA terminal voltage (V)

60

50

40

30

20

10

0

Loa

d P

o (W

)

Fig.5 Relationship between Load Po and CA terminal voltage of “FA6B20N”

CS terminal*

FB terminal*

LO terminal*

Output voltage Vo*

Resonant current Icr*

VW terminal*

A’

C C’

B’

a’b

ab’

* See Fig. 7 for the terminals and symbols.

Fig.6 Sequence diagram of burst control of “FA6B20N”

Page 59: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

273Critical Mode PFC Control IC “FA1A60N” and LLC Current Resonant Control IC “FA6B20N” for High-Efficiency Power Supplies

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

4.2 Improved efficiency during light loadsFigure 8  shows  the  efficiency  during  light  loads 

for the input voltage of 240 V AC.  Compared with the power supply mounted with the previous products that stop  the  PFC  control  IC  in  standby  state,  the  power supply mounted with the FA1A60N and FA6B20N pro-vided high efficiency at 15 W or lower and achieved an efficiency of 75% when Load Po was 5 W.

Figure 9 shows the standby power when Load Po is 125 mW.    Compared  with  the  power  supply mounted with the previous products, the power supply mounted with  the  FA1A60N  and  FA6B20N  is  less  dependent on  the  standby  power  for  AC  input  voltage  and  has achieved a standby power of 260 mW or less for an in-put of 230 V AC.

A

Vbulk

Icr

VH

STB

FB MODE

CA

IS

FB COMP

RT

OVP

IS

GND

OUT

VCC

VS

HO

VB

VW

GND

LO

CS

VCC

LO terminal

CS terminal

FA6B20N

(NC)

(NC)

FA1A60N

VW terminalFB terminalSTB terminal

RT terminal

Vin90 to 264 V AC

Vo

Fig.7 Example of application circuit mounted with “FA1A60N” and “FA6B20N”

Table 3 Example of reduced number of power supply compo-nents

Function Component Quantity

External standby signal

Photocoupler -1MOSFET -2Resistor -3

Switch for supplying power to VCC termi-nal of PFC

Transistor -1Diode -2

Zener diode -1Resistor -2

Interconnection be-tween PFC and LLC

Transistor 1

Resistor 2

Capacitor 2

Total -7

0 5 10 15 20 25 30 35 40Output power (W)

90

80

85

75

70

65

60

55

50

Eff

icie

ncy

(%

)

Normal state

Previous products (FA1A00N + FA6A00N)

FA1A60N + FA6B20N

Standby state

Fig.8 Light load efficiency (Input voltage: 240 V AC)

Previous products(FA1A00N + FA6A00N)

FA1A60N + FA6B20N

50 100 150 200 250 300AC input voltage Vin (V)

350

330

310

290

270

250

230

210

Sta

ndb

y po

wer

Pin

(m

W)

Fig.9 Standby power

Page 60: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

274 FUJI ELECTRIC REVIEW vol.62 no.4 2016

heavy  load  start-up  during  low  input  voltage.    This start-up sequence allows these ICs to be used in power supply adapters.

5. Postscript

This  paper  described  the  features  of  the  critical mode  PFC  control  IC  “FA1A60N”  and  LLC  current resonant  control  IC  “FA6B20N”  intended  for  high-efficiency power supplies and the effects when they are used in power supplies.   Mounting these ICs makes it possible  to  configure  power  supplies  that  can  reduce the  number  of  power  supply  components  and  achieve high efficiency and low standby power in standby state, and these ICs can be applied to power supply adapters.

Fuji  Electric  is  committed  to  establishing  new technologies  that  further  promote  high  efficiency,  low standby  power  and  component  reduction  also  in  the future.  We will continue development efforts to satisfy the  requirements  of  standards/markets  that  become severer year by year.

References(1)  Chen, J. et al. 2nd Generation LLC Current Resonant 

Control  IC,  “FA6A00N  Series”.  FUJI  ELECTRIC RE-VIEW. 2013, vol.59, no.4, p.245-250.

(2)  Sugawara, T.  et  al.  3rd-Gen. Critical Mode PFC Con-trol  IC  “FA1A00  Series”.  FUJI  ELECTRIC  REVIEW. 2014, vol.60, no.4, p.233-237.

(3)  Kawamura,  K.  et  al.  Circuit  Technology  of  LLC  Cur-rent  Resonant  Power  Supply.  FUJI  ELECTRIC  RE-VIEW. 2014, vol.60, no.4, p.238-242.

4.3 Start-up sequence supporting heavy load start-upFigure 10  shows  the  heavy  load  start-up  wave-

form of the power supply mounted with the FA1A60N and FA6B20N during  low  input voltage.   The evalua-tion  conditions are:    Input voltage of 90 V AC, output voltage Vo  of  13 V  and  output  current  Io  of  4.2 A.    In the  power  supply  mounted  with  the  FA1A60N  and FA6B20N, the PFC circuit starts operation first when the power is turned on.  After the output voltage of the PFC circuit Vbulk  rises,  the LLC current  resonant  cir-cuit  starts  operation  and  the  output  voltage Vo  rises.  When  the  LLC  current  resonant  circuit  starts  opera-tion,  Vbulk  has  already  risen  so  that  Vo  rises  without being  stopped  by  overload  protection,  which  enables 

Output voltage Vo

LLC current resonant circuit operation started

PFC circuit operation started

PFC output Vbulk

Input voltage 90 V AC, output voltage Vo=13 V, output current Io=4.2 A

Fig.10 Heavy load start-up waveform during low input voltage

Page 61: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

A B S T R A C T

 *   Electronic Devices Business Group, Fuji Electric Co., Ltd.

275

1. Introduction

In recent years, renewable energies such as photo-voltaic  power  generation  and  wind  power  generation have  been  spreading.    This  has  taken  place  against the background of global warming prevention and the Long-Term Energy Supply and Demand Outlook insti-tuted by the Ministry of Economy, Trade and Industry of Japan. On the other hand, energy consumption has been  increasing  in  the  fields  of  social  infrastructure, automotive,  industrial  machinery,  IT  equipment  and home appliances.  The importance of power conversion technology  is  increasing  in  order  to  use  energy  more efficiently.  Power  conversion  equipment  is  required to provide high efficiency, high power density and low noise.  In addition, the power metal-oxide-semiconduc-tor  field-effect  transistor  (power MOSFET)  and  other semiconductor  switching  elements  used  in  its  power conversion  sections  need  to  be  compact  and  reduce watt loss and noise.

In  order  to meet  such  requirements,  Fuji Electric has  adopted  a  superjunction  structure(1)-(5)  since  2011.  With  this,  it  has  established  product  lines  of  the  1st-generation  low  loss SJ-MOSFET:   The  “Super J MOS S1 Series”  (S1 Series)  that achieved both  low on-state resistance and low switching loss with rated voltage of 600 V, and the “Super J MOS S1FD Series” (S1FD Se-ries) with a built-in diode being faster than that of the S1 Series(6)-(8).

Moreover,  we  have  developed  “Super  J  MOS  S2 Series”  (S2 Series) based on  the S1 Series by  improv-ing  the  trade-off  relationship  between  the  withstand voltage  of  the  element  BVDSS  and  the  on-state  resis-tance per unit area Ron∙A.  We have also achieved this by suppressing the jumping in the voltage between the 

WATANABE, Sota *      SAKATA, Toshiaki *      YAMASHITA, Chiho *     

2nd-Generation Low Loss SJ-MOSFET with Built-In Fast Diode “Super J MOS S2FD Series”

In order to make efficient use of energy, there has been increasing demand for enhanced efficiency in power conversion equipment, and as such, the power MOSFET mounted on this equipment are required to be compact, low loss and low noise. Fuji Electric has been developing and manufacturing products that have reduced on-state resis-tance and improved trade-off between turn-off switching loss and surge voltage. We have recently developed the 2nd-generation low loss SJ-MOSFET “Super J MOS S2FD Series,” which features user-friendliness and low loss, by improving its reverse recovery withstand capability through a built-in fast diode. The use of this product is expected to improve the efficiency of power conversion equipment and facilitate product miniaturization.

drain  and  source  (VDS  surge)  at  the  time  of  turn-off switching(9).

This  paper  describes  the  2nd-generation  low  loss SJ-MOSFET  “Super  J MOS  S2FD  Series”  (S2FD  Se-ries) which is a product line using a built-in diode be-ing faster than those of the S2 Series.

2. Design Concept

In order to improve the power conversion efficiency of the switching power supply, we applied the technolo-gies  of  the S2 Series  to  the S2FD Series  to make  the conduction  loss  and  turn-off  switching  loss  Eoff  lower than those of the S1FD Series.  We also worked to re-duce  the gate drive  loss as well as  the  loss generated during charging/discharging of the output capacitance Eoss  in  order  to  suppress  the  circuit  loss  under  light loads.

Current  resonant  and  other  full-bridge  LLC  cir-cuits  widely  used  for  relatively  large  capacity  power supplies  in  the  communication  and  industrial  sec-tors may cause a short circuit between the upper and lower  arms  during  resonant  breakaway.    This makes the  built-in  diode  of  the MOSFET  start  a  reverse  re-covery  operation.    The  built-in  diode  of  the MOSFET starts the reverse recovery operation at a high current change rate -diDR/dt, resulting in the generation of an excessive  reverse  recovery  peak  current.   During  this recovery  period,  the  voltage  change  rate  between  the drain and source dv/dt may rise sharply, which makes the parasitic bipolar transistor of the MOSFET operate and cause a breakdown.   Consequently, products with a  high  reverse  recovery  withstand  capability  (-diDR/dt withstand capability) have been used for full-bridge circuits  to  prevent  the  breakdown  of  MOSFET.    The S2FD Series is intended to further improve the reverse recovery withstand capability of the S1FD Series that 

Page 62: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

276 FUJI ELECTRIC REVIEW vol.62 no.4 2016

has been currently used for such power supplies.

3. Features

3.1 Reduced conduction lossIn order  to  reduce  the conduction  loss  in  the high 

withstand  voltage  power MOSFET,  it  is  necessary  to reduce the on-state resistance of the chip RDS (on) which is a dominant factor in the conduction loss.   Since the size  of  the  chip  that  can  be mounted  on  the  package is  limited,  we  need  to  reduce  the  on-state  resistance without increasing the chip size.  For the S2FD Series, we improved the impurity diffusion process of the drift layer  in  the  superjunction  structure  of  the  S2  Series.  In this way, we maintained a high impurity concentra-tion in the n-type region, reduced the resistance(10) and, as a result, lowered Ron∙A by about 25% compared with that of the S1FD Series.

Table 1 shows the minimum RDS (on) for each pack-age of the S2FD Series and S1FD Series with a rated voltage  of  600 V.    By  reducing  Ron∙A,  we  can  mount chips  with  the  resistance  reduced  from  42 mΩ  to  27 mΩ, from 93 mΩ to 75 mΩ and from 132 mΩ to 84 mΩ for  packages  TO-247,  TO-220F  and  TO-220  respec-tively.    This  holds  promise  for  highly  efficient  power supplies.

3.2 Reduced switching loss and suppressed VDS surgeWhen we design a  circuit pattern of a power sup-

ply  substrate,  we  often  cannot  create  an  ideal  circuit pattern.   This is because we reuse a pattern design of conventional  power  supply  substrates  or  because  of  a limitation with the layout of parts.  In such cases, just replacing the MOSFET to be used may cause problems of  erroneous  ON  triggered  by  gate  vibration  during switching  or  an  increased VDS  surge due  to  the para-sitic inductance of wiring on the circuit or other causes.

To  improve the flexibility of circuit pattern design of the S2FD Series, we optimized the threshold voltage to  prevent  erroneous  ON  triggered  by  gate  vibration during switching.  We also optimized the internal gate resistance to suppress the VDS surge as  in the case of the S2 Series.

These measures have allowed our customers to re-place a conventional MOSFET with the new MOSFET without the need to change the circuit pattern or mod-

ify  the  component  constant greatly.   This means  they can design highly efficient power supplies easily.

We used a chopper circuit to evaluate the trade-off characteristics between Eoff and VDS surge in the S1FD and  S2FD  Series.  Figure 1  shows  the  trade-off  char-acteristics between Eoff and VDS surge.  When the VDS surge is the same at 480 V, the Eoff of the S2FD Series reduced by approximately 18 µJ from that of the S1FD Series.    This  shows  the  improvement  in  the  trade-off between Eoff and VDS surge.

3.3 Reduced watt loss under light loadsWhen the power supply is under light loads, the cur-

rent flowing between the drain and source of the MOS-FET decreases, so that the percentage of the conduction loss of the MOSFET to the watt loss of the entire power supply becomes smaller.  As a result, the percentage of the gate drive loss and Eoss on the circuit increases.  To improve  the  conversion  efficiency  of  the  power  supply under  light  loads,  we  optimized  the  surface  structure of the MOSFET to reduce the total gate charge QG and suppress the gate drive loss.  We also improved the im-purity diffusion process of the drift layer formed in the superjunction structure to reduce Eoss.

Figure 2  shows  the QG  characteristics.   Compared with the S1FD Series, the S2FD Series has reduced QG 

Table 1 Applicable minimum on-state resistance

Item

TO-247package

TO-220package

TO-220Fpackage

Applicable minimum RDS (on)

S1FD Series 42 mΩ 132 mΩ 93 mΩ

S2FD Series (Reduction rate)

27 mΩ(36% re-duction)

84 mΩ(36% re-duction)

75 mΩ(19% re-duction)

S1FD Series

S2FD Series

VDD = 400 V, VGS = 10/0 V, ID = 39.4 A (600 V/75 mΩ max. model)

440 460 480 500VDS surge (V)

700

600

500

400

300

200

Eof

f(µ

J)

Fig.1 Trade-off characteristics between turn-off switching loss Eoff and VDS surge

S2FD Series

S1FD Series

Approx. 17%reduction

VDD = 400 V, ID = 39.4 A (600 V/75 mΩ max. model)

0 10050 150 200QG (nC)

15

10

5

0

VG

S (V

)

Fig.2 Total gate charge QG characteristics

Page 63: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2772nd-Generation Low Loss SJ-MOSFET with Built-In Fast Diode “Super J MOS S2FD Series”

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

by approximately 17% when the gate voltage VGS is 10 V.  Figure 3 shows the dependence of Eoss on the volt-age between the drain and source VDS.  Compared with the S1FD Series, the S2FD Series has reduced Eoss by approximately 37% when VDS is 400 V.

3.4 Improved reverse recovery withstand capability and reduced watt loss during OFFIn order to improve the reverse recovery withstand 

capability of the built-in diode, we used a lifetime killer to  accelerate  the  reverse  recovery  operation  of  the built-in  diode.   We  also  reduced  the  reverse  recovery time and reverse recovery peak current.  On the other hand,  the  lifetime killer  concentration has  a  trade-off relationship  with  the  drain-source  leak  current  IDSS which  is  a watt  loss  during OFF.   We  therefore  opti-mized  the  lifetime  killer  concentration  and  achieved better  IDSS  characteristics  while  maintaining  reverse recovery characteristics equivalent to the S1FD Series.  As a result, we  further  improved the reverse recovery withstand capability.

Figure 4  shows a  comparison of  the  reverse  recov-ery  withstand  capability  characteristics.    The  S2FD Series has achieved a 66% improvement of the reverse recovery withstand capability compared with the S1FD 

Series.Figure 5  shows a  comparison of  the  reverse  recov-

ery  characteristics.    The  S2FD  Series  maintains  re-verse  recovery  characteristics  equivalent  to  the S1FD Series.

Figure 6  shows  the  relationship  between  RDS  (on) max. and the IDSS characteristics.  When RDS (on) max. is 75 mΩ, the S2FD Series has achieved a reduction of about 50% in IDSS compared with the S1FD Series.

4. Application Effect

In  order  to  confirm  the  improvements  in  the  con-version efficiency of the power supply, we conducted a comparative  evaluation  of  the  conversion  efficiency  of the power supply.   We did this by mounting 600 V/75 mΩ max. models  of  the  S2FD  and  S1FD  Series  on  a full-bridge LLC circuit of a power supply as shown  in Fig. 7.  Figure 8 shows the evaluation result.   The I/O conditions  for  the  evaluation  were:    Input  voltage  of 115 V, output voltage of 53.5 V and external gate resis-tance Rg of 5.1 Ω.  Due to the improved characteristics and  reduced  losses  described  above,  the  S2FD  Series achieved higher efficiency than the S1FD Series in the entire  load  region.    In  addition,  the  average  conver-sion efficiency improved by 0.25 point.  As a result, we 

(600 V/75 mΩ max. model)

S1FD Series

S2FD Series

Approx. 37%reduction

0 400200 300100 500 600VDS (V)

35

25

30

5

10

15

20

0

Eos

s (µJ

)

Fig.3 Loss generated during charging/discharging Eoss char-acteristics

66%improvement

VDD = 400 V, ID = −39.4 A, VGS = −30 V, Tch =150 °C (600 V/75 mΩ max. model)

S2FD Series S1FD Series

2.0

1.8

1.4

1.6

1.0

1.2

0.6

0.8

0.4

0.2

0

−di D

R/dt(

a.u

.)

Fig.4 Reverse recovery withstand capability characteristics

VDD = 400 V, ID = −39.4 A, −diDR/dt =100 A/µs, Tch = 25 °C (600 V/75 mΩ max. model)

-500 -250 0 250 500 750 1,000t (ns)

100

80

60

40

20

0

-20

-40

-60

I D (A

)

S1FD Series

S2FD Series

Fig.5 Reverse recovery characteristics

0 50 100 150 200 250RDS(on) max. (mΩ)

VDS = 500 V, Tch =150 °C

1.0

0.8

0.6

0.4

0.2

0

I DSS

(m

A)

S1FD Series

Approx. 50% reduction

S2FD Series

Fig.6 Drain-source leak current IDSS characteristics

Page 64: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

278 FUJI ELECTRIC REVIEW vol.62 no.4 2016

teristics of the S2FD Series.The line-up includes products with a rated voltage 

VDS  of  600 V,  on-state  resistance RDS  (on)  of  27  to  170 mΩ and rated current ID of 95.5 to 17.9 A, allowing the users to select the appropriate product for their power supply capacity.

6. Postscript

The 2nd-generation low loss SJ-MOSFET “Super J MOS S2FD Series” with a built-in fast diode is a prod-uct achieving both lower watt loss and suppressed VDS surge compared with the S1FD Series.   As a result,  it improves the -diDR/dt withstand capability.

A  comparative  evaluation  conducted  by  mount-ing  the  S2FD Series  on  a  full-bridge  LLC  circuit  has proved  that  it  can  achieve  higher  efficiency  than  the S1FD  Series.    This  holds  promise  for  contributing  to higher  efficiency  and  miniaturization  of  switching power supplies.

In order to meet further market needs, we will con-tinue  to expand  the  line-up of high withstand voltage models  and  packaged  models  while  working  to  mini-

can expect a power  supply design offering higher effi-ciency and reliability by applying the S2FD Series to a switching power supply.

5. Product Line-Up

Table 2 lists the product line-up and major charac-

+

+

OUT

Full-bridge − LLC

MOSFETExternal gate resistance Rg

RTN

N

FG

L

Line filter

Fig.7 Full-bridge LLC circuit of power supply

0 400 800 1,200 1,600Load (W)

96.0

95.0

94.0

93.0

92.0

91.0

Con

vers

ion

eff

icie

ncy

(%

)

Vin =115 V AC, Vout = 53.5 V DC, Rg = 5.1 Ω (600 V/75 mΩ max. model)

S1FD Series

S2FD Series

Fig.8 Conversion efficiency evaluation result

Table 2 Product line-up and major characteristics of “Super J MOS S2FD Series”

VDS (V)RDS (on)

max. (mΩ) ID (A)

Product line-up

TO-247 package TO-220 package TO-220F package

600

27 95.5 FMW60N027S2FD − −43 66.2 FMW60N043S2FD − −59 49.9 FMW60N059S2FD − −75 39.4 FMW60N075S2FD − FMV60N075S2FD

84 37.1 FMW60N084S2FD FMP60N084S2FD FMV60N084S2FD

94 32.8 FMW60N094S2FD FMP60N094S2FD FMV60N094S2FD

105 29.2 FMW60N105S2FD FMP60N105S2FD FMV60N105S2FD

133 22.7 FMW60N133S2FD FMP60N133S2FD FMV60N133S2FD

170 17.9 FMW60N170S2FD FMP60N170S2FD FMV60N170S2FD

Page 65: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

2792nd-Generation Low Loss SJ-MOSFET with Built-In Fast Diode “Super J MOS S2FD Series”

issu

e: P

ower

Sem

icon

duct

ors C

ontri

butin

g in

Ene

rgy

Man

agem

ent

TRIC REVIEW. 2010, vol.56, no.2, p.65-68.(6)  Tamura, T. et al. “Super J-MOS” Low Power Loss Su-

perjunction  MOSFETs.  FUJI  ELECTRIC  REVIEW. 2012, vol.58, no.2, p.79-82.

(7)  Tamura,  T.  et  al.  “Reduction  of  Turn-off  Loss  in  600 V-class  Superjunction  MOSFET  by  Surface  Design”. PCIM Asia 2011, p.102-107.

(8)  Watanabe, S. et al.“ A Low Switching Loss Superjunc-tion  MOSFET  (Super  J-MOS)  by  Optimizing  Surface Design”. PCIM Asia 2012, p.160-165.

(9)  Watanabe, S. et al. 2nd-Generation Low-Loss SJ-MOS-FET  “Super J MOS S2 Series”. FUJI ELECTRIC RE-VIEW. 2015, vol.61, no.4, p.276-279.

(10)  Sakata,  T.  et  al.  “A  Low-Switching  Noise  and  High-Efficiency Superjunction MOSFET, Super J MOS® S2”. PCIM Asia 2015, p.419-426.

mize chip size and enhance performance such as by re-ducing on-state resistance.

References(1)  Fujihira,  T.  “Theory  of  Semiconductor  Superjunction 

Devices”.  Jpn.  J.  Appl.  Phys.,  1997,  vol.36,  p.6254-6262.

(2)  Deboy,  G.  et  al.  “A  New  Generation  of  High  Voltage MOSFETs  Breaks  the  Limit  Line  of  Silicon”.  Proc. IEDM, 1998, p.683-685.

(3)  Onishi, Y. et al. “24 m·cm2 680 V Silicon Superjunction MOSFET”. Proc. ISPSD’ 02, 2002, p.241-244.

(4)  Saito,  W.  et  al.  “A  15.5  m·cm2-  680  V  Superjunction MOSFET  Reduced  On-Resistance  by  Lateral  Pitch Narrowing”. Proc. ISPSD’ 06, 2006, p.293-296.

(5)  Oonishi, Y. et al. Superjunction MOSFET. FUJI ELEC-

Page 66: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

280 FUJI ELECTRIC REVIEW vol.62 no.4 2016

*  Power Electronics Business Group, Fuji Electric

2016-S09-1

A motion controller is used for controlling the mo-tion of  industrial machinery and equipment  including industrial  robots.    There  are  demands  for  industrial machinery and equipment that can handle complicated movement  and  processing  while  achieving  short  pro-cessing  time  and  high  precision.    Motion  controllers are  required  to  have  a  performance  that  allows  them to provide synchronous control of a greater number of control axes in a faster control cycle.  As motion control programs become more complicated and larger in scale, development environment with higher engineering effi -ciency than in the past has come to be required.

In order to respond to these market requests, Fuji Electric has developed a new CPU module of the inte-grated  controller  “MICREX-SX  Series.”    Motion  con-troller  “SPH3000D”  can  run motion  control  programs twice as fast as conventional models.  Furthermore, we developed  the  functions  of  the MICREX-SX  program-ming  support  tool  “SX-Programmer  Expert,”  which improve  the  engineering  effi ciency  of users.   One  is  a function for automatically creating motion control pro-grams and the other is a motion FB add-in function.

1. “SPH3000D”

Figure 1 shows a confi guration example of a motion system using the SPH3000D.  The SPH3000D has the following  characteristics  to  achieve  quick  and  precise 

FUKUSHIMA, Koji *      SHIMOKAWA, Takayuki *

“MICREX-SX Series” Motion Controller “SPH3000D”

motion control.

1.1 Short motion control cycleA control program can be confi gured by combining 

function  blocks  (FBs)  consisting  of  specifi c  functions.  FBs consist of 2 types:  System function blocks (system FBs)  that have been  incorporated  in  the  support  tool; and user function blocks (user FBs) that are created by individual users.

Motion  control  function blocks  (motion FBs) are a core of  the programs used  for motion control.    In pre-vious  systems,  a  motion  FB  needed  to  be  registered as a user FB.    In response to  the market requests  for faster operation, it is now provided as a standard func-tion  in  the  system  FBs.    When  a  motion  FB  is  used as  a  system FB,  the  execution  time  of motion  control can be reduced to half compared with the time for the equivalent  processing  using  the  conventional  model, “SPH3000” (see Fig. 2). This means that the number of control axes can be doubled within the same control cy-cle.  For example, the number of control axes of a pro-portional synchronization FB in a control cycle of 2 ms was 17 with the conventional model, whereas 32 with the SPH3000D (the maximum number of axes that can be mounted on the SX bus).

1.2 Execution of motion control-specifi c instructions and high-precision arithmetic instructionsIn  addition  to  motion  FBs  (10  selections),  the 

SPH3000D  is  provided  with  64-bit  integer  arithme-tic  instructions  (93  selections)  and  type  conversion instructions  (8  selections).    These  instructions  allow high-precision  arithmetic  processing  to  be  done  with 

HMI

SPH3000D

SX bus

Servo system

Ethernet*

*Ethernet: Trademark or registered trademark of Fuji Xerox Co., Ltd.

Fig.1 Confi guration example of motion system using “SPH3000D”

Conventional model

SPH3000D

1 105 15 20 25 30 32Number of control axes

1,200

1,000

800

600

400

200

0

Pro

cess

ing

tim

e (µ

s)

Processingtime reduced

to half

Fig.2 Number of axes controlled in proportional synchroniza-tion motion control

Page 67: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

281“MICREX-SX Series” Motion Controller “SPH3000D”

New

Pro

duct

s

2016-S09-2

a  combination  of  simple  instructions,  which  leads  to a  reduction  in  the  person-hours  needed  for  creating programs as well as an  improvement  in visibility and maintainability.

1.3 Expanded high-speed memory areaA  function  block  instance  memory  (FB  instance 

memory)  is  used  as  working memory  to  enable  high-speed  calculation  of  user  FBs  and  system  FBs.    The size  of  this high-speed memory has been  expanded  to 224 K  words,  which  is  7  times  larger  than  the  32 K words of the conventional model.

Moreover,  based  on  the  same mechanism  as  that of  the  conventional  model,  the  support  tool  allocates the FB  instance memory  by  assigning  higher  priority to the expanded high-speed memory.   As a result,  the operation speed can be doubled compared with the con-ventional model for control programs using many user FBs,  system  FBs  and  programs  having  a  large  data capacity.

2. Improvement in Motion FB Processing Speed

With  the  conventional  model,  motion  FBs  were registered  as  user  FBs  to  be  used.    The  support  tool converts  the motion FBs  into program  codes  that  can be interpreted by the processor, which is an execution engine of the control program.  To increase the motion FB processing speed, it is effective to minimize the size of  the  program  code.    Consequently,  we  load  motion FBs as system FBs by using the following method:

(a)  Use a compiler that can minimize the size of the program  code  in  accordance with  the  processor of the SPH3000D.

(b)  Create  motion  FB  in  C  language  that  can  be recognized  by  the  compiler,  because  it  consists of  programmable  controller  instructions  (PLC instructions).

The  advantage  of  the  user  FBs  created  with  the conventional method, which  are  composed  of  PLC  in-structions, is that a user can modify a user FB flexibly with  the  support  tool  according  to machine  operation and  can debug  it while  operating  the machine.   How-ever,  those  loaded  as  system  FBs  cannot  be modified 

with the support tool.On  the  other  hand,  the motion  FBs  developed  by 

Fuji  Electric  as  user  FBs,  which  have  already  been used  widely  to  prove  high  reliability,  can  meet  ma-chine-specific requests only by changing the  input pa-rameters Moreover,  they have already been debugged and  do  not  need  to  be  further  debugged.    We  have made  these  motion  FBs  into  fully  compatible  system FBs in terms of functionality and operation (see Fig. 3). 

3. Motion Control Program Development Environment

We  have  developed  the  following  functions  that greatly  improve  the  efficiency  of  creating motion  con-trol programs and included them in the support tool.

3.1 Automatic motion control program creation functionWe  have  provided  motion  FBs,  which  are  a  core 

of  the motion control program,  for  the support  tool as standard  instructions  and  added  a  function  to  allow automatic  programming.    Users  can  create  a  motion control  program  easily  by  following  the  procedure  be-low (see Fig. 4).

(a)  Select the motion support menu from the system configuration  definition  screen  to  be  displayed [see (1) in Fig. 4].

(b)  Select a motion FB to apply [see (2) in Fig. 4].(c)  Set the parameters of the motion FB [see (3) in 

Fig. 4].It  is  also  possible  to  automatically  create  defini-

tions of the variables connected to the I/O parameters 

Conventional model

Combination of user FBs (PLC instructions)

SPH3000D

Multiple FBs are integrated into a system FB.

Proportionalsynchronization

Acceleration/deceleration

Servosystem

I/F

Synchro-nous

operation

System FB

Movingaverage

Fig.3 Improvement in motion FB processing speed

System configuration definition screen

(1) Display the motion support menu.

(2) Select a motion FB.

Automatic creation of a motion control program

(3) Set the parameters of the motion FB.

Fig.4 Automatic programming function of support tool “SX-Programmer Expert”

Page 68: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

282 FUJI ELECTRIC REVIEW vol.62 no.4 20162016-S09-3

of the motion FB (type, data type, comment, etc.).  This greatly  improves  the  engineering  efficiency  of  users while preventing creation errors.

3.2 Motion FB add-in functionMotion  control  has  become  increasingly  compli-

cated and diversified, and users are creating their own motion FBs and registering them as user FBs.   These are the software assets of individual users.

We added an add-in function to allow users to reg-ister their own motion FBs as system FBs.  Users can handle their registered motion FBs in the same way as other system FBs for motion control provided as stan-dard  instructions and can use  them in automatic pro-

gramming.This  allows  the  support  tool  to  be  customized  so 

that  it  is  suitable  for  the motion control  of  each user, which improves engineering efficiency.

Launch timeNovember 2016

Product InquiriesFactory Automation Engineering Department, Drive Division,  Power  Electronics  Business  Group,  Fuji Electric Co., Ltd.Tel: +81 (3) 5435-7190

Page 69: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

New

Pro

duct

s

283FUJI ELECTRIC REVIEW vol.62 no.4 2016

*    Industrial  Infrastructure  Business  Group,  Fuji  Electric Co., Ltd.

2016-S10-1

Since the end of the 1960s, gas-insulated switchgear (GIS) has become widespread as key equipment of sub-stations.  It houses the components insulated with SF6 gas into a compact metal enclosure to reduce equip-

ment footprint and improve reliability.Fuji  Electric  has  delivered  the  line-up  of  GIS 

products  ranging  from 72  to 300 kV since 1970, when it  delivered  the  fi rst  72-kV GIS.   Conventional  72-  to 145-kV GIS products have been on the market for over 15  years  since  their  development.    To meet  demands such as  those  for  a  further  size  and weight  reduction and elimination of the need for maintenance, we have developed and launched the 72- to 145-kV compact GIS “SDH714.” 

1. Features

Figure 1  shows  the  cross-section  image  of  the SDH714,  Figure 2,  a  comparison  of  dimensions  with those  of  the  conventional  product,  and  Table 1,  out-line  specifi cations.   The SDH714  conforms  to  the  IEC 62271  series,  which  are  international  standards,  and the  gas  leak  rate  meets  the  0.1%/year  level,  more stringent than the standard (0.5%/year).   In addition, options provide a built-in partial discharge sensor, cur-rent transformer (CT) enclosure as an independent gas compartment, and CTs to be attached to both sides of the circuit breaker.(1)   Size and weight reduction

The  SDH714  has  the  standard  bay  width  re-duced  from  the  1,200 mm  of  conventional  products  to 900 mm, achieving a reduction in the footprint to 70% and mass to 65%.  The height during transportation is reduced to 2,650 mm maximum to allow for transporta-tion in dry containers.(2)   Overall use of aluminum alloy enclosure

With  conventional  products,  aluminum  alloy  was used  only  for  the  bus  enclosure.    With  the  SDH714, overall  use  of  aluminum alloy  for GIS  enclosures  has not only led to a reduction in the mass but also in the eddy current loss, resulting in reduced power loss.(3)   Adoption of motor spring system

With  conventional  products,  operation  of  circuit breakers used a motor spring system for  those with a breaking  current  of  31.5 kA  and  a  hydraulic  system for 40 kA.  With the SDH714, reduction in the operat-

OANA, Hideyuki *     

72- to 145-kV Compact Gas-Insulated Switchgear “SDH714”

ing  force  required  has made  it  possible  to  use  a  mo-tor spring system even for 40 kA, which has improved maintainability.(4)   Adoption of 3-position switch

An  earthing  switch  used  for  maintaining  a  cir-

CHd

CB Operating mechanism housing

CB

DS

VT

HSES

CT

DS/ES

DS/ES

BUS

BUS

CB: Circuit breakerDS: DisconnectorES: Earthing switchHSES: High-speed earthing switch

CT: Current transformerVT: Voltage transformerCHd: Cable sealing endBUS: Bus bar

Fig.1 Cross-section image of “SDH714”

Conventional product

Unit: mm

SDH714

2,99

5

2,70

0

1,20

0

900

3,29

0

4,590

4,290

3,78

5

Fig.2 Comparison of dimensions

Page 70: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

284 FUJI ELECTRIC REVIEW vol.62 no.4 20162016-S10-2

cuit  breaker  and  a  disconnector have  been  integrated into one 3-position switchgear so as to reduce the size, and a mechanical  interlock has  been used  to  improve safety.(5)   Compliance with Class M2 of IEC standards

In  order  to  eliminate  the  need  for  maintenance, the number of cycles in the mechanical endurance test in the type test has been increased to 10,000 from the conventional 2,000.  This has achieved compliance with Class  M2,  which  requires  a  switching  test  of  10,000 consecutive cycles.

2. Background Technology

2.1 Application of tandem thermal puffer systemTo extinguish the arc of a circuit breaker, conven-

tional models use a single puffer system, in which SF6 gas compressed by mechanical force is blown against a current arc at the open pole for arc extinction.  The re-cent mainstream of arc extinction systems is a tandem thermal puffer system,  intended to reduce the operat-ing force of the operating mechanism.

Figure 3  shows the structure of a  tandem thermal puffer  arc-extinguishing  chamber.   With  this  system, the thermal puffer chamber  is provided  in series with the mechanical  puffer  chamber,  and  a  check  valve  is placed  between  them.    When  gas  pressure  increase caused by a large-current arc leads higher gas pressure for  the thermal puffer chamber than for the mechani-

cal  puffer  chamber,  the  check  valve  prevents  the  gas flowing  back  from  the  thermal  puffer  chamber  to  the mechanical  puffer  chamber.    This  avoids  placing  any unnecessary load on the operating equipment.  In this way, the system requires less operating force than the conventional single-puffer system.  For large currents, gas blowing from the thermal puffer chamber is mainly used for arc extinction.   For small currents, gas blow-ing from the mechanical puffer chamber is mainly used for arc extinction to cut off the current.

In  applying  this  system,  it  is  important  to  deter-mine the shapes of the arc-extinguishing chamber noz-zle and check valve and set the operation value.   Fuji Electric  has  utilized  the  latest  analysis  technology  to optimize them.

2.2 Thermo-fluid analysis and structural analysisThe  heat  of  a  large  current  arc  causes  evapora-

tion  (ablation)  of  the  surface  of  the  inside  of  the  arc-extinguishing  chamber  nozzle  of  the  circuit  breaker.  This  leads  to an  increase  in gas pressure  in  the  ther-mal puffer chamber.  We quantitatively evaluated this phenomenon  by  thermo-fluid  analysis  to  optimize  the shape of the arc-extinguishing chamber nozzle.

In addition, we performed 3D operation simulation using  the  latest  structural  analysis  for  3D  operation simulation  to  optimize  the  shapes  and  dimensions  of various  parts  of  the  operating  mechanism  as  well  as coupled  analysis  with  thermo-fluid  analysis  to  deter-mine the optimum operation values.

Table 1 Outline specifications of “SDH714”

Item Compact GIS Conventional product

Type SDH714 SDH314 SDHa314

Rated voltage 72 to 145 kV 72 to 145 kV

Frequency 50 Hz 50/60 Hz

Rated normal cur-rent

3,150A (at 40 °C)2,500A (at 55 °C) 3,150A (at 40 °C)

Rated breaking current 40  kA 31.5 kA 40 kA

Rated short-time withstand current 40 kA (3 s) 31.5 kA

(3 s)40 kA(3 s)

Rated peak with-stand current 100 kA 80 kA 100 kA

Operation system of circuit breaker Motor spring system Motor spring 

systemHydraulic pressure

Rated break time 3 cycles 3 cycles

Rated gas pressure (gauge pressure) 0.6MPa 0.6MPa

Gas leak rate 0.1%/year 0.5%/year

Enclosure material Aluminum alloy Bus bar:  Aluminum alloyOther:  Steel

3-position switch Applied Not applied

Number of cycles of mechanical endur-ance test (IEC Class)

10,000 cycles (M2) 2,000 cycles (M1)

Standard bay width 900 mm 1,200 mm

Footprint ratio 70% 100%

Mass ratio 65% 100%

Applicable standards IEC 62271-203, etc. IEC 60517, etc.

N

N

N

N

N

N

N

N

Pressure-relief valve

Insulationrod

Mechanical puffer chamber

Check valve Moving

contact

Arcingcontact

(b) Opening (priming)

(c) Opening (arc extinction)

(d) Open position

Insulation cover

Nozzle Fixedcontact

Thermal puffer chamber

(a) Closed position

Fig.3 Structure of tandem thermal puffer system arc-extin-guishing chamber

Page 71: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

28572- to 145-kV Compact Gas-Insulated Switchgear “SDH714”

New

Pro

duct

s

2.3 Safety structure of 3-position switchThe  3-position  switch  employs  a mechanism with 

high  operation  stability  and  durability,  it  has  thus passed  a  mechanical  endurance  test  of  10,000  cycles (Class M2).

The  switch  operation  includes  3  states:    first,  the disconnector “on,” then, the intermediate position with both the disconnector and earthing switch “off,” finally, the earthing switch “on.” In the intermediate position, the  operation  motor  always  stops  once  and  does  not start  operating without  the  next  operation  command.  Even in case the disconnector is turned “off” from “on,” 

but the motor still operates and overruns, the earthing switch won’t  turn  to  “ON”  unintentionally  due  to  the mechanical lock, ensuring safety.

Launch timeNovember 2016

Product InquiriesTransmission & Distribution Systems Division, Industrial Infrastructure Business Group, Fuji Electric Co., Ltd.Tel: +81 (43) 642-8562

Page 72: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

286 FUJI ELECTRIC REVIEW vol.62 no.4 2016

 *    Production  Division,  Food  &  Beverage  Distribution 

Business Group, Fuji Electric Co., Ltd.

2016-S11-1

Recently,  changes  in  lifestyle  and  family  compo-sition  have  led  to  increased  demand  for  frozen  foods.  Distribution of frozen foods has also become diversified and  the  number  of  frequent  and  small  deliveries  has rapidly  increased.   Meanwhile,  the  distribution  infra-structure  does  not  have  sufficient  equipment  or  ma-chinery to meet the needs for such demand and forms of  distribution.    To  have  complete  temperature  man-agement,  individual package  transportation using dry ice  and  outsourcing  to  transportation  companies with freezer vehicles are carried out, which is a factor caus-ing a cost increase.

To solve these problems and improve the efficiency of delivery operations, Fuji Electric has developed the frozen  storage  container  “WALKOOL” with  a  built-in refrigerator unit (see Fig. 1).

This  product  won  a Good Design  Award  2016  for its functions, performance and aesthetic design.

1. Product Overview

The WALKOOL  is a  freezer  container  that allows mixed cargo to be transported on a chilled vehicle.    It eliminates  the need  for preparing a  freezer vehicle  or a large amount of dry ice for mixed loading on a chilled vehicle.  It realizes temperature management and low-cost  operation  at  the  same  time.    By  cooling  the  cold storage materials for 9 hours in advance, it  is capable of  stably  providing  cold  storage  for  at  least  8  hours at -20 °C or  less.   With  the stainless steel exterior,  it combines  cleanliness  and  sturdiness.    Its  dimensions 

ONZUKA, Shojiro *    SUGAWARA, Sho *    KURA, Kaoru *

Frozen Storage Container “WALKOOL”

are the same as those of a basket truck for food trans-portation, which allows it to be loaded on a platform of a truck carrying mixed cargo and allows it to be easily secured with a lashing belt, etc.   An effective capacity of 400 L is ensured, which  is a sufficient size  for stor-ing together products to be delivered to more than one place.

In  addition,  the  WALKOOL  (frozen)  operates  on a 100-V household power supply and does not require the installation of a special power supply.  This makes it simple to implement and allows food to be easily re-cooled at delivery destinations.

2. Specifications and Features

(1)   Product specificationsIn  response  to  requests  from  customers,  we  have 

placed  the door  of  the WALKOOL  in  the  longitudinal direction so that there is a large opening as this allows products to be easily taken in and out.  The opening is about  1.5  times  larger  than  that  of  other  companies’ products  with  an  equivalent  capacity.    Generally,  a larger  opening  causes  susceptibility  to  an  increased amount  of  heat  intrusion  but we  have  employed  vac-uum  insulators  and  magnet  gaskets  to  reduce  this.  Table 1 lists the specifications of the WALKOOL.(2)   Cold storage performance

With  the  WALKOOL,  cold  storage  materials  are provided for the top and back sides of the inside.  This causes  the  temperature  difference  in  the  container  to generate  a  circulating  air  flow.    The  air  inside  is  dif-fused uniformly by this effect, which functions to keep the  temperature  differences  between  the  top  and  bot-tom  parts  of  the  container  to within  ± 3 °C  of  the  av-erage  temperature.    Generally,  to  realize  a  good  cold storage  performance,  it  is  necessary  to  improve  the efficiency  of  heat  exchange  between  the  cold  storage material and air inside and reduce the variation of the temperature  inside  at  the  same  time.   With  products that  use  an  internal  fan,  the  space  inside  is  reduced accordingly.   With the WALKOOL, we have devised a good layout for the cold storage materials to eliminate the need for a functional part like that and successfully achieved  high  storage  performance  while  ensuring  a capacity of 400 L.

In  addition,  we  have  utilized  the  heat  insulation technology that has already been employed for vending machines  to  significantly  reduce  the  amount  of  heat intrusion to the inside by combining vacuum insulators 

Fig.1 “WALKOOL”

Page 73: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

287Frozen Storage Container “WALKOOL”

New

Pro

duct

s

2016-S11-2

with urethane foam insulators.Figure 2  shows  the  cold  storage  performance  of 

WALKOOL.    It  shows  that,  while  the  temperature inside  increases  if  the  door  is  opened  for  10 minutes, which simulates the loading of products, the tempera-ture subsequently recovers to -20 °C or  lower and the cold  storage  temperature  is  maintained  even  after  8 hours.(3)   Cooling performance

To  realize  the  cold  storage  performance  de-scribed  above,  the  container  is  equipped  with  cold storage  materials  for  the  frozen  temperature  zone.  Conventionally,  to  freeze  cold  storage  materials  for 

the  frozen  temperature zone  it was necessary  to have a  refrigerator  capable  of  cooling  to  around  -50 °C  to -40 °C.    In  addition,  a  lower  cooling  temperature  re-quired a longer freezing time.

For freezing in a short time of within 9 hours, the WALKOOL  uses  cold  storage  materials  featuring  a very  small  difference  between  the  melting  tempera-ture and freezing (supercooling) temperature.  This has made  it possible  to  freeze with a compact  refrigerator for  general  freezers.    The  container  for  cold  storage materials  has  also  been  designed  exclusively  for  the WALKOOL  to  increase  the  area  of  contact  with  the piping  for heat  exchange, which  significantly helps  to reduce the time needed for freezing.(4)   Vibration-resistance  and  shock-resistance  perfor-

manceThe  WALKOOL  has  a  structure  that  withstands 

various types of vibration and shock applied in day-to-day product transportation.

As a measure to deal with vibration, the optimum hardness of  the caster  tire material has been selected to  avoid  resonance  between  the  vibration  applied  to the WALKOOL and the natural frequency of the hous-ing itself, and the rigidity of the housing structure has been improved as well.

As  a  measure  against  shocks,  we  have  optimized the design of  the  shapes of parts by  structural analy-sis.   Distribution  equipment and materials  are  bound to  be  subjected  to  rough handling  and  damage  to  the exterior  is  unavoidable.    Accordingly,  a  replaceable panel  structure  is used  for  the  exterior.   At  the  same time,  it has enough strength to endure the tightening of lashing belts used for securing the freezer in a truck.(5)   Exterior

The exterior structure has the minimum number of the protrusions of  its parts  to prevent  falling or dam-age  caused  by  getting  caught  during  transportation.  For example, it employs embedded types of handle and door locks.(6)   Power cord

The  WALKOOL  (frozen)  is  powered  by  a  100- household power supply with the connector at the top of  the  product  via  the  special  power  cord  (see Fig. 3).  The  power  cord  and  connector  have  high  durability.  For re-cooling at a destination, all that is necessary is a 100-V household power supply.(7)   Design

Our  concept  for  this  product  is  “realization  of  re-liable  frozen  temperature  storage  and  improved  ef-ficiency of delivery operations and representation of a sense  of  reliability.”    To  achieve  this,  the WALKOOL is  provided  with  a  design  that  expresses  “safety  and security”  as  well  as  the  toughness  required  of  back-yard  equipment  with  the  stainless  steel  strips  used for the housing and the operation parts given a sharp appearance  with  the  accenting  black.    As  a  result,  it won a Good Design Award 2016 for helping to achieve not  only  lower-cost  operations  of  transportation  but 

Average ambient temperature

Average inside temperature

0 2 4 6 8Time period (h)

15

10

0

5

-5

-10

-15

-20

-25

-30

Tem

pera

ture

(°C

)

Measuring conditions: With 40 kg of a product at a temperature of −25 °C stored, the door was opened for 10 minutes at an ambient temperature of 10 °C and closed again.

Fig.2 Cold storage performance of “WALKOOL (Frozen)”

Table 1 Specifications of “WALKOOL”

Item Specifications

Type FMB0400F1KT

Dimensions W850 ×  D650 ×  H1,700 (mm)Effective inside dimensions W730 ×  D520 ×  H1,060 (mm)Effective capacity 400L

Cold storage temperature -20 °C or lower (temperature inside)

Cold storage time 8 hours min. (in an environment of 10 °C ambient temperature)

Cold storage ambient tem-perature -5 °C to +20 °C

Cooling time9 hours max. (in an environment of 10 °C ambient temperature/initial 

cooling)

Cooling ambient tempera-ture 5 °C to 25 °C

Product mass 180 kg

Maximum loading capacity 150 kg

Door Single-leaf (door opening angle:  100°, right-hand hinge)

Caster 4 universal wheels (2 front wheels with stoppers) 

Power supply Single-phase 100 V, 15A

Power cord length 2 m

Refrigerant R404a

Other Built-in refrigerator unit

Page 74: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

288 FUJI ELECTRIC REVIEW vol.62 no.4 20162016-S11-3

also  having  the  potential  for  various  applications,  in addition  to  the  functions,  performance  and  aesthetic design.

Launch timeSeptember 2016

Product InquiriesSales Dept. VI, Sales Division, Food & Beverage Distribution Business Group, Fuji Electric Co., Ltd.Tel: +81 (3) 5435-7078

Cover of operation parts

Door

Door lock (bottom)

Door lock (top)

Power cord

Front cover (left)Earth leakage circuit breaker

Power switch

Power lamp

Fig.3 Front face structure of “WALKOOL (Frozen)”

Page 75: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global
Page 76: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global
Page 77: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

Cover Photo (clockwise from the upper left):3rd-generation direct liquid cooling power modules for automotive applications with RC-IGBT, High-side 2-in-1 IPS “F5114H” for automobiles, All-SiC 2-in-1 module, 2nd-generation SJ-MOSFET for automotive applications “Super J MOS S2 Series”

42016Vol.62 No. Power Semiconductors Contributing in Energy

Management

To curb the emissions of CO2, which is a cause of global warming, eff ective measures include utilizing renewable energy represented by photovoltaic and wind power generation, improving energy conversion effi ciency and introducing electrically driven vehicles, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs). One key to those measures is power electronics technology, which controls electric en-ergy. Fuji Electric has developed and commercialized power semicon-ductors, which contribute to overwhelming downsizing and effi ciency improvement of power electronics equipment.

This special issue presents the latest technologies and products re-lating to Fuji Electric’s power semiconductors.

FUJI ELECTRIC REVIEW vol.62 no.4 2016date of issue: December 30, 2016

editor-in-chief and publisher EGUCHI NaoyaCorporate R & D HeadquartersFuji Electric Co., Ltd.Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku,Tokyo 141-0032, Japanhttp://www.fujielectric.co.jp

editorial offi ce Fuji Electric Journal Editorial Offi cec/o Fuji Offi ce & Life Service Co., Ltd.1, Fujimachi, Hino-shi, Tokyo 191-8502, Japan

Fuji Electric Co., Ltd. reserves all rights concerning the republication and publication after translation into other languages of articles appearing herein.All brand names and product names in this journal might be trademarks or registered trademarks of their respective companies.

AmericaFuji Electric Corp. of America

Sales of electrical machinery and equipment, semiconductor devices, drive control equipment, and devices

Tel +1-732-560-9410URL http://www.americas.fujielectric.com/

Fuji Electric Brazil-Equipamentos de Energia Ltda *Sales of inverters, semiconductors, and power distribution

Tel +55-11-2283-5991URL http://americas.fujielectric.com/pt-br/

Reliable Turbine Services LLCRepair and maintenance of steam turbines, generators, and peripheral equipment

Tel +1-573-468-4045

Fuji SEMEC Inc.*Manufacture and sales of door opening and closing systems

Tel +1-450-641-4811

AsiaFuji Electric Asia Pacifi c Pte. Ltd.

Sales of electrical distribution and control equipment, drive control equipment, and semiconductor devices

Tel +65-6533-0014URL http://www.sg.fujielectric.com/

Fuji SMBE Pte. Ltd. *Manufacture, sales, and services relating to low-voltage power distribu-tion board(switchgear, control equipment)

Tel +65-6756-0988 URL http://smbe.fujielectric.com/

Fuji Electric (Thailand) Co., Ltd. *Sales and engineering of electric substation equipment, control panels, and other electric equipment

Tel +66-2-210-0615 http://www.th.fujielectric.com/

Fuji Electric Manufacturing (Thailand) Co., Ltd.Manufacture and sales of inverters (LV/MV), power systems (UPS, PCS, switching power supply systems), electric substation equipment (GIS) and vending machines

Tel +66-2-5292178

Fuji Tusco Co., Ltd. *Manufacture and sales of Power Transformers, Distribution Transformers and Cast Resin Transformers

Tel +66-2324-0100 URL http://www.ftu.fujielectric.com/

Fuji Electric Vietnam Co.,Ltd. *Sales of electrical distribution and control equipment and drive control equipment

Tel +84-4-3935-1593

Fuji Furukawa E&C (Vietnam) Co., Ltd. *Engineering and construction of mechanics and electrical works

Tel +84-4-3755-5067

PT. Fuji Electric Indonesia *Sales of inverters, servos, UPS, tools, and other component products

Tel +62 21 398-43211 URL http://www.id.fujielectric.com/

Fuji Electric India Pvt. Ltd. *Sales of drive control equipment and semiconductor devices

Tel +91-22-4010 4870 URL http://www.fujielectric.co.in

Fuji Electric Philippines, Inc.Manufacture of semiconductor devices

Tel +63-2-844-6183

Fuji Electric (Malaysia) Sdn. Bhd.Manufacture of magnetic disk and aluminum substrate for magnetic disk

Tel +60-4-403-1111 URL http://www.fujielectric.com.my/

Fuji Furukawa E&C (Malaysia) Sdn. Bhd. *Engineering and construction of mechanics and electrical works

Tel +60-3-4297-5322

Fuji Electric Taiwan Co., Ltd.Sales of semiconductor devices, electrical distribution and control equipment, and drive control equipment

Tel +886-2-2511-1820

Fuji Electric Korea Co., Ltd.Sales of power distribution and control equipment, drive control equip-ment, rotators, high-voltage inverters, electronic control panels, medium- and large-sized UPS, and measurement equipment

Tel +82-2-780-5011 URL http://www.fujielectric.co.kr/

Fuji Electric Co.,Ltd. (Middle East Branch Offi ce)Promotion of electrical products for the electrical utilities and the indus-trial plants

Tel +973-17 564 569

Fuji Electric Co., Ltd. (Myanmar Branch Offi ce)Providing research, feasibility studies, Liaison services

Tel +95-1-382714

Representative offi ce of Fujielectric Co., Ltd. (Cambodia)Providing research, feasibility studies, Liaison services

Tel +855-(0)23-964-070

EuropeFuji Electric Europe GmbH

Sales of electrical/electronic machinery and components Tel +49-69-6690290 URL http://www.fujielectric-europe.com/

Fuji Electric France S.A.SManufacture and sales of measurement and control devices

Tel +33-4-73-98-26-98 URL http://www.fujielectric.fr/

Fuji N2telligence GmbH *Sales and engineering of fuel cells and peripheral equipment

Tel +49 (0) 3841 758 4500

ChinaFuji Electric (China) Co., Ltd.

Sales of locally manufactured or imported products in China, and export of locally manufactured products

Tel +86-21-5496-1177 URL http://www.fujielectric.com.cn/

Shanghai Electric Fuji Electric Power Technology (Wuxi) Co., Ltd.

Research and development for, design and manufacture of , and provi-sion of consulting and services for electric drive products, equipment for industrial automation control systems, control facilities for wind power generation and photovoltaic power generation, uninterruptible power systems, and power electronics products

Tel +86-510-8815-9229

Wuxi Fuji Electric FA Co., Ltd.Manufacture and sales of low/high-voltage inverters, temperature controllers, gas analyzers, and UPS

Tel +86-510-8815-2088

Fuji Electric (Changshu) Co., Ltd.Manufacture and sales of electromagnetic contactors and thermal relays

Tel +86-512-5284-5642 URL http://www.fujielectric.com.cn/csfe/

Fuji Electric (Zhuhai) Co., Ltd.Manufacture and sales of industrial electric heating devices

Tel +86-756-7267-861 http://www.fujielectric.com.cn/fez/

Fuji Electric (Shenzhen) Co., Ltd.Manufacture and sales of photoconductors, semiconductor devices and currency handling equipment

Tel +86-755-2734-2910 URL http://www.szfujielectric.com.cn/

Fuji Electric Dalian Co., Ltd.Manufacture of low-voltage circuit breakers

Tel +86-411-8762-2000

Fuji Electric Motor (Dalian) Co., Ltd.Manufacture of industrial motors

Tel +86-411-8763-6555

Dailan Fuji Bingshan Vending Machine Co.,Ltd. Development, manufacture, sales, servicing, overhauling, and installa-tion of vending machines, and related consulting

Tel +86-411-8754-5798

Fuji Electric (Hangzhou) Software Co., Ltd.Development of vending machine-related control software and develop-ment of management software

Tel +86-571-8821-1661 URL http://www.fujielectric.com.cn/fhs/

Fuji Electric FA (Asia) Co., Ltd.Sales of electrical distribution and control equipment

Tel +852-2311-8282

Fuji Electric Hong Kong Co., Ltd.Sales of semiconductor devices and photoconductors

Tel +852-2664-8699 URL http://www.hk.fujielectric.com/en/

Hoei Hong Kong Co., Ltd.Sales of electrical/electronic components

Tel +852-2369-8186 URL http://www.hoei.com.hk/

Overseas Subsidiaries* Non-consolidated subsidiaries

最終修正

Page 78: Power Semiconductors Contributing in Energy Management · Vol.62 No. Power Semiconductors Contributing in Energy Management To curb the emissions of CO2, which is a cause of global

Power Semiconductors Contributing in Energy Management

Printed on recycled paper

Whole Number 255, ISSN 0429-8284

2016Vol.62 No. 4

FU

JI EL

EC

TR

IC R

EV

IEW

Po

wer S

emico

nd

ucto

rs Co

ntrib

utin

g in

En

ergy M

anag

emen

tVol.62 N

o.4 2016

最終修正