30
Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth University at Buffalo, SUNY CSS 2013 - Snowmass on the Mississippi University of Minneapolis, August 1, 2013 1 / 30

Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Precision Frontier: Status and Future of Electroweak PrecisionObservables

Doreen Wackeroth

University at Buffalo, SUNY

CSS 2013 - Snowmass on the Mississippi

University of Minneapolis, August 1, 2013

1 / 30

Page 2: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Precision physics with W and Z bosons

W and Z production processes are one of the theoretically best understood, most preciseexperimental probes of the Standard Model (SM):

Test of the SM as a fully-fledged Quantum Field Theory: sensitivity to multi-loop andnon-universal radiative corrections.

Check of the consistency of the SM by comparing direct with indirect measurements ofmodel parameters, e.g., mtop ,MW , sin2 θl

eff ,MH .

Search for indirect signals of Beyond-the-SM (BSM) physics in form of small deviationsfrom SM predictions, yielding exclusions of, and constraints on, BSM scenariocomplementary to direct searches for new particles.

Multi-electroweak gauge boson processes:

Electroweak (EW) gauge boson pair and triple production directly probes the non-abeliangauge structure of the SM.

Vector boson fusion processes, e.g. WW →WW scattering, directly probe the EWSBsector of the SM.

Search for non-standard gauge boson interactions provide an unique indirect way to look forsignals of new physics in a model-independent way.

Improved constraints on anomalous triple-gauge boson couplings (TGCs) and quarticcouplings (QGCs) can probe scales of new physics in the multi-TeV range.

2 / 30

Page 3: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Electroweak precision physics requires high-precision measurements

e+

e<

a

f<

f

e+

e<

Z

f<

f

10

10 2

10 3

10 4

10 5

0 20 40 60 80 100 120 140 160 180 200 220Centre-of-mass energy (GeV)

Cro

ss-s

ectio

n (p

b)

CESRDORIS

PEPPETRA

TRISTANKEKBPEP-II

SLCLEP I LEP II

Z

W+W-

e+e<Ahadrons

LEP/SLC collab., hep-ex/0509008

3 / 30

Page 4: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Electroweak precision physics requires excellent control of predictions at thequantum-loop level

Predictions for cross sections (dσ) and asymmetries are based on perturbation theory, i.e.an expansion in the interaction Lagrangian, which results into an expansion of theamplitude in orders of the coupling strength g :

M(g) = g kA0 + g k+1A1 + g k+2A2 + . . .

Lowest order (LO): A0 describes the desired final state with minimum extra radiation anda minimal number of interactions:

e+e− → f f̄ : dσLO(q2, α,mf ,me ,MZ ) is of O(α2)

Radiative corrections are contributions beyond LO describing the real radiation of one,two, . . . extra particles and the virtual presence of particles in quantum loops.Fixed order (NLO, NNLO . . .):

dσNLO,NNLO ∝ g 2k |A0|2 + g 2(k+1)|A1|2 + 2g k+2+kRe(A2A0∗) + . . .

Beyond fixed order: resummation of logarithmic enhanced corrections (L = ln(A), α = g 2)

1 + α(L2 + L + 1) + α2(L4 + L3 + L2 + L + 1) + . . .→

C(α) exp [Lg1(αL) + g2(αL) + αg3(αL) + . . .] + R(α)

4 / 30

Page 5: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Electroweak precision physics: e+e− → f f̄ at NLO EW

At NLO EW σNLO(q2, α,mf ,me ,MZ ,mtop,MH , . . .) is of O(α3) and includes weak 1-loopcorrections, which modify Zf f̄ couplings and the Z propagator as follows:

e+

e<

a/Z

t<b<

Wt

b

e+

e<

a/Z

W

b<

tW

b

a,Z/W

f

f</f’a,Z/W a,Z/W

W

W/a,Za,Z/W

Z/W

H

Z/WZ/W Z/W Z/W

H

5 / 30

Page 6: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

EW (Pseudo-)Observables around the Z resonance

Taken from D.Bardin et al., hep-ph/9902452

Pseudo-observables are extracted from “real” observables (cross sections, asymmetries)by de-convoluting them of QED and QCD radiation and by neglecting terms(O(αΓZ/MZ )) that would spoil factorization (γ,Z interference, t-dependent radiativecorrections).The Zf f̄ vertex is parametrized as γµ(G f

V + G fAγ5) with formfactors G f

V ,A, so that thepartial Z width reads:

Γf = 4N fc Γ0(|G f

V |2R fV + |G f

A|2R fA) + ∆EW/QCD

R fV ,A describe QED, QCD radiation and ∆ non-factorizable radiative corrections.

Pseudo-observables are then defined as (g fV ,A = ReG f

V ,A)

σ0h = 12π Γe Γh

M2Z

Γ2Z

, Rq,l = Γq,h/Γh,l

AfFB = σF−σB

σF +σB→ Af ,0

FB = 34AeAf ,Af = 2

g fV g f

A

(g fV

)2+(g fA

)2

ALR (SLD) = NL−NRNL+NR

1<Pe>

→ A0LR (SLD) = Ae

and 4|Qf | sin2 θfeff = 1− g f

V

g fA

with g fV ,A being effective couplings including radiative

corrections.

6 / 30

Page 7: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

EWPOs around the Z resonance

To match or beter exceed the experimental accuracy, EWPOs had to be calculatedbeyond NLO, some up to leading 4-loop corrections, but complete NNLO EW for allEWPOs is not available.Some of the most important precision observables for Z -boson production and decay andtheir present-day and future estimated theory errors: (see discussion by A.Freitas in EW WG Snowmass

report)Quantity Current theory error Leading missing terms Est. future theory error

sin2 θleff 4.5× 10−5 O(α2αs ), O(N≥2

f α3) 1...1.5× 10−5

Rb ∼ 2× 10−4 O(α2), O(N≥2f α3) ∼ 1× 10−4

ΓZ few MeV O(α2), O(N≥2f α3) < 1 MeV

Precise predictions for EWPOs for global fits are provided for instance by the LEPEWWGbased on the Monte Carlo programs ZFITTER by Bardin et al., using the following set ofinput parameters:

∆α(5)had , αs (MZ ),MZ ,mt ,MH ,Gµ

and GFITTER, J.Erler et al PDG 2012, Ciuchini et al., 1306.4644.

7 / 30

Page 8: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

EWPO: Measurements vs SM Predictions

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

New: ferm. 2-loop corr. reduce Rb

by approx exp. error

Freitas, Huang, 1205.0299

LEPEWWG, March 2012

SM predictions for the

Z pole EWPOs predicted by ZFITTER

Bardin et al (1999)

8 / 30

Page 9: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Predicting the W boson mass

Muon decay is well-approximated by effective

4-fermion interaction in the limit q2 << M2W from talk by A.Freitas at Seattle Snowmass EF meeting:

9 / 30

Page 10: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Predicting the W boson mass

Implicit equation for MW :

Gµ√2

=πα(0)

2s2wM2

W

[1 + ∆r(α,MW ,MZ ,mt ,MH , . . .)]

∆r describes the loop corrections to muon decay:

∆r = ∆α− c2w

s2w

∆ρ(0) + 2∆1 +s2

w − c2W

s2w

∆2 + boxes, vertices, higher orders

∆ρ(0) at 1-loop is given in terms of 1-PI EW gauge boson self energies, ΠTV1V2

:

∆ρ(0) =ΠT

WW (0)

M2W

− ΠTZZ (0)

M2Z

− 2sW

cW

ΠTZγ(0)

M2Z

∆α describes contributions to the running of α: ∆α = ∆αlep + ∆αtop + ∆α(5)had + . . ..

10 / 30

Page 11: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Parametric and theory uncertainties in MW

Theory uncertainty are due to missing 3-loop corrections of O(α2αs ), O(N≥2f α3).

Parametric uncertainties (Awramik et al, EW WG Snowmass report):

MW = M0W − c1 ln

(MH

100GeV

)+ c6

( mt

174.3GeV

)2

− 1 + . . .

∆MW [MeV] present future∆mt = 0.9; 0.6(0.1) GeV 5.4 3.6(0.6)∆(∆αhad) = 1.38(1.0); 0.5 · 10−4 2.5(1.8) 1.0∆MZ = 2.1 MeV 2.6 2.6missing h.o. 4.0 1.0total 7.6(7.4) 4.7(3.0)

See discussion by Ayres Freitas in Snowmass EW WG report.

11 / 30

Page 12: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

MW measurement at LEP2

0

10

20

30

160 180 2003s (GeV)

mW

W (p

b)

YFSWW/RacoonWWno ZWW vertex (Gentle)only ie exchange (Gentle)

LEP

e+ W+

ie

e< W<

e+

e<a

W+

W<

e+

e<Z

W+

W<

∆MW = 33 MeV

Best prediction includes NLO EW to e+e− → 4f

and dominant NNLO corr. at threshold.

Theory uncert. due to missing NNLO corr.:

∆MW ≈ 3 MeV at threshold

see discussion by C.Schwinn in Snowmass EW WG report

12 / 30

Page 13: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

The past: MW vs Mtop in 2005

80.3

80.4

80.5

150 175 200

mH [GeV]

114 300 1000

mt [GeV]

mW

[G

eV

]

68% CL

∆α

LEP1, SLD data

LEP2 (prel.), pp− data

LEPEWWG 2005

red ellipse:

fit of SM pred. to EWPOs

with MW ,mtop free

blue ellipse:

mtop,MW measurement

green band:

MW (mtop,MH ) SM prediction

13 / 30

Page 14: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

A new era of EW precision physics: MW measurement at the Tevatron

MW from the transverse mass of the lν pair in pp̄ →W → lν:

, GeVTm50 60 70 80 90 100

Ev

en

ts/0

.5 G

eV

0

5000

10000

15000

20000

25000

30000

35000

DATA

FAST MC

ντW­>

Z­>ee

MJ

­1D0 Run II, 4.3 fb

Fit Region/dof = 37.4/492χ

, GeVTm50 60 70 80 90 100

χ

­4

­3

­2

­1

0

1

2

3

4­1D0 Run II, 4.3 fb

δMW = 16 MeV with 7.6 fb−1

TEVEWWG, arXiv:1204.0042

14 / 30

Page 15: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

A new era of EW precision physics - δMexpW ≈ 0.02%

80200 80400 80600

Mass of the W Boson

[MeV]WM March 2012

Measurement [MeV]WM

CDF-0/I 79±80432

-I∅D 83±80478

CDF-II )-1(2.2 fb 19±80387

-II∅D )-1(1.0 fb 43±80402

-II∅D )-1 (4.3 fb 26±80369

Tevatron Run-0/I/II 16±80387

LEP-2 33±80376

World Average 15±80385

LEPEWWG March 2012 15 / 30

Page 16: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

A new era of EW precision physics: δmexptop ≈ 0.54%

TEVEWWG, arXiv:1305.3929

see also R.Erbacher’s talk for the Top WG

16 / 30

Page 17: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

A new era of EW precision physics: δMexpH ≈ 0.51%

MH = 125.7± 0.3± 0.3 GeV (CMS) CMS-PAS-HIG-13-005

MH = 125.5± 0.2+0.5−0.6 GeV (ATLAS) ATLAS-CONF-2013-014,ATLAS-CONF-2013-025

17 / 30

Page 18: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

A new era of EW precision physics: Consistency check of the SM

[GeV]WM

80.32 80.33 80.34 80.35 80.36 80.37 80.38 80.39 80.4 80.41

2 χ∆

0

1

2

3

4

5

6

7

8

9

10

σ1

σ2

σ3 measurementW

SM fit w/o M

measurementsH

and MW

SM fit w/o M

SM fit with minimal input

world average [arXiv:1204.0042]WM

G fitter SM

Sep 12

[GeV]tm

160 165 170 175 180 185 190

2 χ∆

0

1

2

3

4

5

6

7

8

9

10

σ1

σ2

σ3 measurementtSM fit w/o m

measurementsH and MtSM fit w/o m

ATLAS measurement [arXiv:1203:5755]tkinm

CMS measurement [arXiv:1209:2319]tkinm

Tevatron average [arXiv:1207.1069]tkinm

[arXiv:1207.0980]tt

σ obtained from Tevatron tpolem

G fitter SMS

ep 12

GFITTER, arXiv:1209.2716

Predicted Mtop and MW

before (gray band) and after (blue)

MH measurement is included in the fit.

SM predictions and

direct measurements agree!

Fit result: ∆MW = 11 MeV

18 / 30

Page 19: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

A new era of EW precision physics: MW vs. mtop

GFITTER, arXiv:1209.2716

19 / 30

Page 20: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Search for indirect signals of BSM physics in EWPOs

Consider a specific BSM model, which is predictive beyond tree-level, and calculatecomplete BSM loop contributions to EWPOs (Z pole observables, MW , . . .).Example: MSSM

In many new physics models, the leading BSM contributions to EWPOs are due tomodifications of the gauge boson self energies which can be described by the obliqueparameters S ,T ,U Peskin, Takeuchi (1991):

∆r ≈ ∆rSM +α

2s2W

∆S − αc2W

s2W

∆T +s2

W − c2W

4s4W

∆U

sin2 θleff ≈ (sin2 θl

eff )SM +α

4(c2W − s2

W )∆S − αs2

W c2W

c2W − s2

W

∆T

Effective field theory: Weinberg (1979); Buchmueller, Wyler (1986)

Effective Lagrangians parametrize in a model independent way the low–energyeffects of possible BSM physics with characteristic energy scale Λ. Residual newinteractions among light degrees of freedom, ie the particles of mass M << Λ, canthen described by higher-dimensional operators:

LEFT = LSM +∑

i

ci

Λ2Oi +

∑j

fjΛ4Oj + . . .

20 / 30

Page 21: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

The present: Experimental constraints on S ,T and S ,T in the 2HDM

M.Baak et al, 1107.0975

21 / 30

Page 22: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

The future: Experimental constraints on S ,T from global EW fit

see talk by M.Baak at BNL EF Snowmass meeting

22 / 30

Page 23: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

The present: MW (mtop,Msusy , . . .) in the MSSM

23 / 30

Page 24: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

The future: MW (mtop,Msusy , . . .) in the MSSM

168 170 172 174 176 178mt [GeV]

80.30

80.40

80.50

80.60

MW

[GeV

] MSSM

MH = 125.6 ± 0.7 GeVSM

Mh = 125.6 ± 3.1 GeV

MSSMSM, MSSM

Heinemeyer, Hollik, Stockinger, Weiglein, Zeune ’13

experimental errors 68% CL / collider experiment:

LEP2/Tevatron: todayLHCILC/GigaZ

see also talk by A.Kotwal

for EW WG

24 / 30

Page 25: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

The future: MW and sin2 θleff within the MSSM

80.2 80.3 80.4 80.5 80.6MW [GeV]

0.2300

0.2305

0.2310

0.2315

0.2320

0.2325

0.2330

sin2 e

eff

mt = 170 .. 175 GeV

SM:MH = 125.6 ± 0.7 GeV

MSSMSM, MSSM Heinemeyer, Hollik, Weiglein, Zeune et al. ’13

experimental errors 68% CL / collider experiment:

LEP/SLD/TevatronLHCILC/GigaZ AFB (LEP)

ALR (SLD)

25 / 30

Page 26: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

The future: EWPOs and extra gauge bosons: Z ′

Z ′ are associated with U(1)′ extension:From J.Erler’s contribution to Snowmass EW WG report

EWPOs constrain θZZ ′ to 10−2 level → future precision in EWPOs will improve theconstraint to 10−3 level

In certain models, e.g. sequential Z ′χ as in GUT SO(10), MZ ′ and θZZ ′ are related→ sensitivity of EWPOs to masses of up to ≈ 6 TeV.

If Z ′ is discovered with, e.g., MZ ′ = 3 TeV, EWPOs can determine size and sign ofθZZ ′ .

26 / 30

Page 27: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Anomalous quartic gauge couplings and heavy resonances

From J.Reuter’s talk at Seattle EF Snowmass meeting:BSM physics could enter in the EW sector in form of very heavy resonances that leaveonly traces in the form of deviations in the SM couplings, ie they are not directlyobservable. But such deviations can be translated into higher-dimensional operators thataffect triple and quartic gauge couplings in multi-boson processes:For example, a scalar resonance σ, whose Lagrangian is given by(V = Σ(DΣ)†,T = Στ 3Σ†)

Lσ = −1

2

[σ(M2

σ + ∂2)σ − gσvVµVµ − hσTVµTV

µ]

leads to the effective Lagrangian after integrating out the scalar,

Leffσ =

v 2

8M2σ

[gσVµV

µ + hσTVµTVµ

]2

ie integrating out σ generates the following anomalous quartic couplings

α5 = g 2σ

(v 2

8M2σ

)α7 = 2gσhσ

(v 2

8M2σ

)α10 = 2h2

σ

(v 2

8M2σ

)

27 / 30

Page 28: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Anomalous quartic gauge couplings and heavy resonances

For strongly coupled, broad resonances, one can then translate bounds for anomalouscouplings directly into those of the effective Lagrangian:

α5 ≤4π

3

(v 4

M4σ

)≈ 0.015

(Mσ in TeV)4⇒ 16π2α5 ≤

2.42

(Mσ in TeV)4

From the Snowmass EW WG report (ATLAS study):For a different choice of operator basis:

α4 =fS0

Λ4

v 4

16

α5 =fS1

Λ4

v 4

16

For example, W±W± scattering at 14 TeV and 3000 fb−1 constrains fS0/Λ4 to 0.8TeV−4 at 95% CL.

28 / 30

Page 29: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

A new era of EW precision physics: combined tests of gauge and Higgsinteractions

Leff =∑

n

fnΛ2On

TGCs in terms of fn (dim6 operators):

∆κγ ∝ (fW + fB )v 2

Λ2, ∆gZ

1 ∝ fWv 2

Λ2

Corbett et al., arXiv:1304.115 [hep-ph]

29 / 30

Page 30: Precision Frontier: Status and Future of Electroweak Precision Observables · 2013. 8. 1. · Precision Frontier: Status and Future of Electroweak Precision Observables Doreen Wackeroth

Future of EW precision physics ?

Lesson from the LHC (so far): again the SM has proven to be very robust!

With the discovery of the Higgs, global fits to EWPOs are now providing extremelyprecise predictions for MW and sin θl

eff : ∆MW = 11 MeV and∆ sin2 θl

eff = 10× 10−5 (compared to exp. uncertainty of 15 MeV and 16× 10−5).

LHC is already providing a wealth of EW measurements at very high precision (permil/percent level) and/or probing new kinematic regimes, and this is just thebeginning.

Further improving measurements and predictions of W and Z observableswill keep ’squeezing’ the SM until we will hopefully detect a (convincing) deviation andwill provide guidance to the nature of the underlying BSM physics.will put more and more stringent constraints on BSM scenarios under consideration.

When new particles are found, EWPOs can help in the identification of the BSMmodel and provide complementary information about the parameter space.

The past and present tremendous experimental and theoretical efforts will have tobe continued in the LHC era and even more so at future colliders to benefit from thefull power and richness of EW precision physics.

30 / 30