13
1 Supporting Information (SI) Appendix Predictable allele frequency changes due to habitat fragmentation in the Glanville fritillary butterfly Toby Fountain, Marko Nieminen, Jukka Sirén, Swee Chong Wong and Ilkka Hanski DNA extraction. In the case of field-collected specimens, larval tissue was homogenized prior to extraction using TissueLyser (Qiagen) at 30/s for 1.5 mins with Tungsten Carbide Beads, 3 mm (Qiagen). DNA was extracted using the NucleoSpin 96 Tissue Core Kit (Macherey-Nagel). Where DNA yield was low, extracted DNA underwent two rounds of Whole Genome Amplification (WGA) (LGC Genomics). In the case of museum specimens, DNA was extracted from a leg (in a few cases from a small wing biopsy) using the QIAmp Micro kit (Qiagen). Where DNA yield was low, an additional extraction was performed and the products of the two extractions were pooled. To further increase DNA yield, WGA was performed using the GenomePlex Complete Whole Genome Amplification Kit (Sigma). After WGA, samples were cleaned using QIAquick PCR purification kit (Qiagen) to optimize downstream PCR performance. Sterile methods, and positive and negative controls, were used to ensure no cross-contamination between museum and contemporary samples. Initial SNP selection and validation. SNP markers were selected from candidate genes, putatively neutral regions of the genome, and otherwise uncovered chromosomes (see main text). SNP calling was performed on the RNA-seq data, including 40 unrelated individuals sampled across the Åland Islands, using the “mpileup” function from “SAMtools” package (1) with the default parameter values. These 40 Åland individuals were only used for SNP validation and were not included in the subsequent analyses. SNPs with minor allele frequency (MAF) > 0.2, call rate > 0.9, and SNP quality score > 100 were retained as candidate SNPs, which were mapped to the genome (2) to obtain the corresponding genes and exons. A SNP was excluded if there were less than 60 nucleotides flanking both upstream and downstream from the SNP in the exon. The gap-filling SNPs were from coding regions, and they were subjected to the same filtering criteria as the candidate genes. The neutral SNPs were obtained from the SOLiD matepair-1 genome sequences (2) using an in-house SNP calling method (3,4). As the genomic sequences were attained by sequencing only one male individual, only heterozygotes SNPs spanning across all 31 chromosomes from non-coding regions were selected. SNPs from candidate genes and non-coding

Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

1

SupportingInformation(SI)Appendix

PredictableallelefrequencychangesduetohabitatfragmentationintheGlanville

fritillarybutterfly

TobyFountain,MarkoNieminen,JukkaSirén,SweeChongWongandIlkkaHanski

DNAextraction.Inthecaseoffield-collectedspecimens,larvaltissuewashomogenizedpriorto

extractionusingTissueLyser(Qiagen)at30/sfor1.5minswithTungstenCarbideBeads,3mm

(Qiagen).DNAwasextractedusingtheNucleoSpin96TissueCoreKit(Macherey-Nagel).Where

DNAyieldwaslow,extractedDNAunderwenttworoundsofWholeGenomeAmplification(WGA)

(LGCGenomics).Inthecaseofmuseumspecimens,DNAwasextractedfromaleg(inafewcases

fromasmallwingbiopsy)usingtheQIAmpMicrokit(Qiagen).WhereDNAyieldwaslow,an

additionalextractionwasperformedandtheproductsofthetwoextractionswerepooled.To

furtherincreaseDNAyield,WGAwasperformedusingtheGenomePlexCompleteWholeGenome

AmplificationKit(Sigma).AfterWGA,sampleswerecleanedusingQIAquickPCRpurificationkit

(Qiagen)tooptimizedownstreamPCRperformance.Sterilemethods,andpositiveandnegative

controls,wereusedtoensurenocross-contaminationbetweenmuseumandcontemporary

samples.

InitialSNPselectionandvalidation.SNPmarkerswereselectedfromcandidategenes,putatively

neutralregionsofthegenome,andotherwiseuncoveredchromosomes(seemaintext).SNP

callingwasperformedontheRNA-seqdata,including40unrelatedindividualssampledacrossthe

ÅlandIslands,usingthe“mpileup”functionfrom“SAMtools”package(1)withthedefault

parametervalues.These40ÅlandindividualswereonlyusedforSNPvalidationandwerenot

includedinthesubsequentanalyses.SNPswithminorallelefrequency(MAF)>0.2,callrate>0.9,

andSNPqualityscore>100wereretainedascandidateSNPs,whichweremappedtothegenome

(2)toobtainthecorrespondinggenesandexons.ASNPwasexcludediftherewerelessthan60

nucleotidesflankingbothupstreamanddownstreamfromtheSNPintheexon.Thegap-filling

SNPswerefromcodingregions,andtheyweresubjectedtothesamefilteringcriteriaasthe

candidategenes.TheneutralSNPswereobtainedfromtheSOLiDmatepair-1genomesequences

(2)usinganin-houseSNPcallingmethod(3,4).Asthegenomicsequenceswereattainedby

sequencingonlyonemaleindividual,onlyheterozygotesSNPsspanningacrossall31

chromosomesfromnon-codingregionswereselected.SNPsfromcandidategenesandnon-coding

Page 2: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

2

regionswerecombinedintotheinitialcandidateSNPset.A121base-pair(bp)flankingregionwas

extractedforeachSNPintheinitialSNPset.IfthereareanyflankingSNPslocatedwithinboththe

upstreamandthedownstreamregionsforthecandidateSNP,theSNPwasexcluded.Thestepwas

adheredtoensureacleanregionforprimersandprobesdesign.ThefilteredSNPsweresubmitted

toLGCGenomicsforprimerdesignandinsilicotesting.BLASTwasperformedfortheprimerpairs

withthereferencegenometoconfirmthattheprimersbindonlytotheregionwherethe

correspondingSNPislocated.SNPsthatdidnotfulfillthiscriterionwereexcluded.TheSNPsthat

passedallthequalitycontrolstepswereselectedforvalidation.Avalidationpanelwas

constructedusing48individualsfromeightfamiliessampledacrosstheÅlandIslandsin2007-11.

ASNPpassedthevalidationstepifitproducedclearlydefinedgenotypeclustersinascatterplot

withlessthantwoMendelianerrors,andhadahighSNPcallrate(>0.9).Followingthevalidation

process,320SNPs(18SNPsfrompriorstudies,182SNPsfrom164candidategenes,15SNPsfrom

sexchromosomalscaffolds,45neutralSNPs,and60gapfillingSNPs)wereselectedasthefinal

genotypingpanelimplementingKASPchemistry(LGCGenomics).

Potentialascertainmentbiasinmuseumsamples.Onepotentiallimitationofthisdatasetisthat

thecandidateSNPswerevalidatedwiththecontemporaryÅlandsamplesonly,introducingthe

possibilityofascertainmentbiasinthemuseumsamples.Thereasonisthatgeneticdifferences

betweentheothersamplesandtheÅlandsamplecouldreducemarkerperformanceandlevelsof

polymorphisminmoredistantpopulations.However,suchabiasisveryunlikelyinthepresent

case,forseveralreasons.AllmarkerswerepolymorphicintheÅlandmuseumsamples,and>94%

ofthemarkerswerepolymorphicinSWFinnishmuseumsamples.Thealternativealleleatloci

thatweremonomorphicintheSWFinnishsamplestendedtobeatverylowfrequencyinthe

museumÅlandsamples.Moreover,theSWFinnishsamplesshareancestralgeneticvariationwith

thecontemporaryÅlandmetapopulation,andthenowextinctSWFinnishpopulationswere

isolated.

Validationofmuseumsamplegenotypes.Totestrepeatabilityofgenotypingasubsetofthe

museumsamples(n=8)wasgenotypedforasubsetofSNPsusingSequenomiPLEXGold

genotypingplatform.Oneindividualwasgenotypedat20SNPs,sixindividualsat14SNPs,andone

individualatsevenSNPs.IncaseswhereasamplewassuccessfullycalledinbothSequenomand

KASPgenotypeconcordancewas92.1%(70/76genotypesimilarity).Moreover,weexaminedthe

relationshipbetweenthecallrateandthelevelofheterozygositytoensurethatreduced

Page 3: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

3

heterozygosityinmuseumsamplesisnotaresultoflowersamplequalityofmuseumthan

contemporarysamples(Fig.S7).Thereisgeneralreductionofheterozygositywhencallrate

decreasesinbothcontemporaryandmuseumsamples,butatthehighestcallrates(>0.8),SW

FinnishmuseumsampleshavethelowestheterozygositycomparedwithmuseumÅland(Tukey

test,P<0.0001)andcontemporaryÅland(Tukeytest,P<0.0001)samples.Asanalternative

analysis,wetestedthedifferencesbetweenthepopulationsinthefulldatasetwhileincludingcall

rateasacovariate.Inthisanalysis,thepopulationeffectwashighlysignificant(population:F=33.09,P<0.0001,callrate:F=74.29,P<0.0001),withSWFinlandhavingsignificantlylower

heterozygositythanbothcontemporaryÅland(Tukeytest,P<0.0001)andmuseumÅland

samples(Tukeytest,P<0.0001).Nonetheless,toavoidintroducinganypotentialbiasduetolow

samplequalityweonlyretainedindividualswithanaveragecallrate>0.8acrossallthe222SNPs.

FSTvalues.Usingthe222loci,wecalculatedtheFSTvalue(5)betweeneachmuseumspecimenand

thecontemporarySaltvikpopulation,sampledin2007(n=530).TheFSTvaluewasusedto

computetheprobabilityforeachmuseumspecimen(genotype)separately,usingtheobserved

allelefrequenciesintheÅlandpopulationastheexpectationandauniformpriordistribution

between0and1.TheposteriormeanoftheFSTwasusedasanestimateoftheevolutionary

distanceofthespecimenfromthereferencepopulation.Theeffectsofyearofsampling,

populationtypeandmarkertype(candidatevsneutral)weretestedusinglinearmodelsinR.We

selectedaprioriasetofbiologicallyplausiblemodelsandusedthefunctionmodel.selinthe

packageMuMInv.1.13.4torankthemodelsbasedontheirAkaikeinformationcriterionforfinite

samplesizes(AICc)(6,7).

Allelefrequencychangesintheoutlierloci.Tocharacterizeallelefrequency(AF)changesdueto

populationturnoverwecalculatedthedifferenceinallelefrequenciesbetweennewly-established,

isolatedpopulations(AF(new))andold,well-connectedpopulations(AF(old)).Thedifference

AF(new)-AF(old)iscorrelatedwithAF(old)(P=0.06;Fig.S6).Wethereforerepeatedtheanalysis

afterremovingthisbiasbyregressingAF(new)-AF(old)againstAF(old),andusedtheresidualfrom

thisregressionasthemeasureofallelefrequencydifferencesbetweenthepopulationtypes.

Similarly,wecalculatedcorrespondingresidualsforthevariablesAF(Sottunga)-AF(old)andAF(SW

Finland)-AF(old)inFig.4andFig.S5.Inallcases,theresultswereonlylittleaffectedbythis

correctionandtheconclusionsremainedunchanged(TableS6).Forsimplicity,weshowtheresults

Page 4: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

4

basedontheuncorrectedvaluesinthemaintext,withtheexceptionoftheanalysisassociated

withFigS5inwhichcorrectedvalueswereusedduetoverysmallsamplesize.

Tocharacterizeallelefrequenciesintheoutlierlociinbutterfliesfromfragmentedvs

continuouslandscapes,weextractedtheallelefrequenciesfromanRNA-seqdataset(8)forthe

fourregionalpopulationsinFig.1.Astherewerefourregionalpopulations,twoofeachlandscape

type,wesummarizedvariationinallelefrequencieswithaprincipalcomponentanalysis(Table

S4).PC2,whichexplained33%oftotalvariance,wasstronglycorrelatedwithlandscapetype

(TableS4).PC2wascorrelated,thoughnotsignificantly,withcorrectedAF(Sottunga)–AF(old)(R2

=0.14,P=0.17)andcorrectedAF(SWFinland)–AF(old)(R2=0.29,P=0.08).Tocombinethese

twoanalyses,weranaprincipalcomponentanalysisonAF(SWFinland)-AF(old)andAF(Sottunga)-

AF(old)andusedPC1astheaverageallelefrequencychangeinthetwopopulations.PC1

accountedfor79%ofthetotalvariance.ThreeoutlierlociwerenotavailablefromtheRNA-seq

datasetandwerethereforeexcludedfromthisanalysis.

References

1. LiH,etal.(2009)Thesequencealignment/mapformatandSAMtools.Bioinformatics25(16):2078–2079.

2. AholaV,etal.(2014)TheGlanvillefritillarygenomeretainsanancientkaryotypeandrevealsselectivechromosomalfusionsinLepidoptera.NatComms5:1–9.

3. RastasP,PaulinL,HanskiI,LehtonenR,AuvinenP(2013)Lep-MAP:fastandaccuratelinkagemapconstructionforlargeSNPdatasets.Bioinformatics29(24):563–3134.

4. KvistJ,etal.(2015)FlightinducedchangesingeneexpressionintheGlanvillefritillarybutterly.MolEcol24(19):4886-4900.

5. GaggiottiOE,FollM(2010)QuantifyingpopulationstructureusingtheF-model.MolEcolResour10(5):821–830.

6. BartońK(2015)MuMIn:Multi-modelinference.Rpackagev.1.13.4.https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf.

7. JohnsonJB,OmlandKS(2004)Modelselectioninecologyandevolution.TrendsEcolEvol19(2):101–108.

8. SomervuoP,etal.(2014)Transcriptomeanalysisrevealssignatureofadaptationtolandscapefragmentation.PlosOne9(7): e101467

Page 5: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

5

TableS1:FSTvaluesforthespatio-temporallypooledsamples(seeMaterialandMethodsinmaintext)calculatedusingallthe222SNPs(lowerdiagonal).Significantvalues(P<0.05)arehighlightedinbold.Valuesbasedonthe34neutralSNPs(upperdiagonal)gavequalitativelysimilarresults.

Åland1905 Åland1945 Åland1965 Saltvik2010 Sottunga2010 SWFinland1900 SWFinland1940 SWFinland1965

Åland1905 0.033 0.043 0.014 0.074 0.013 0.148 0.227Åland1945 0.012 0.014 0.035 0.052 -0.003 0.142 0.177Åland1965 0.021 0.013 0.054 0.094 0.009 0.168 0.204Saltvik2010 0.014 0.026 0.040 0.075 -0.022 0.134 0.197Sottunga2010 0.051 0.059 0.074 0.056 -0.053 0.147 0.191SWFinland1900 0.060 0.041 0.050 0.050 0.045 -0.043 -0.015SWFinland1940 0.131 0.116 0.122 0.125 0.149 0.129 0.059SWFinland1965 0.204 0.165 0.190 0.182 0.198 0.226 0.136

Page 6: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

6

TableS2.ThesetofaprioriselectedmodelsexplainingFSTvaluesinFig.S1.Kisthenumberofparametersinthemodel.ModelsarerankedbasedonthedifferenceinAICcvalues(ΔAICc)betweenthefocalmodelandthebestmodelintheset.Akaikeweightsreflectthelikelihoodofamodelrelativetoallothermodelsintheset.

model K AICc ΔAICc Akaikeweight

year+pool+markertype+markertype*pool 6 -238.7 0 0.409year+pool+markertype+markertype*pool+year*pool 7 -238.3 0.44 0.328year+pool+markertype 5 -236.2 2.49 0.118year+pool+markertype+year*pool 6 -235.8 2.95 0.094pool+markertype 4 -234.5 4.16 0.051year+pool 4 -223.1 15.59 0.000pool 3 -221.7 16.99 0.000type 3 -181.1 57.61 0.000year+markertype 4 -179.7 58.99 0.000interceptonly 2 -172.0 66.72 0.000year 3 -170.6 68.12 0.000

Page 7: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

7

TableS3.Asummaryoftheresultsfromthethreeanalysesinvolvingtheoutlierloci.Inthecaseoftherepeatabilityanalysisandcomparisonwithpopulationturnoverrate,allelefrequencydifferencebetweenthefocalpopulationandtheoldlocalpopulationsfromtheSaltvikreferencepopulationaregiven.Inthecomparisoninvolvingthedegreeoffragmentationatthelandscapelevel,thetwoprincipalcomponentsusedintheanalysisaregiven.Positivevaluesarehighlightedingreen,negativevaluesarehighlightedinred.

OutlierSNPs SWFinland Sottunga SWFinland New Sottunga SWFinland/Sottunga(pc1) Fragmentedlandscapes(pc2)

Mc1:1041:122591 0.462 0.066 0.462 -0.040 0.066 1.176 1.870

Mc1:2666:34531 0.518 0.010 0.518 -0.040 0.010 0.852 -0.663

Mc1:2966:24907 -0.384 0.076 -0.384 -0.135 0.076 0.604 0.011

Mc1:1061:35594 -0.052 -0.259 -0.052 0.049 -0.259 -1.199 0.534

Mc1:1873:36910 -0.585 -0.439 -0.585 -0.171 -0.439 -2.006 -1.853

Mc1:2025:177786 -0.382 -0.197 -0.382 -0.073 -0.197 -0.448 0.639

Mc1:1124:71239 -0.244 -0.055 -0.244 0.040 -0.055 -1.115 -1.375

Mc1:1206:26737 0.238 0.096 0.238 -0.009 0.096 NA NA

Mc1:752:33517 0.196 -0.296 0.196 0.008 -0.296 0.351 0.199

Mc1:2673:141336 0.745 0.323 0.745 0.136 0.323 1.785 0.639

Mc1:1129:26699 -0.252 -0.144 -0.252 -0.195 -0.144 NA NA

Mc1:658:68226 0.091 -0.193 0.091 -0.092 -0.193 NA NA

Repeatability(Fig.3) Habitatfragmentation(Fig.S5)Populationturnover(Fig.4)

Page 8: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

8

TableS4.Correlationsbetweenthefirstfourprincipalcomponentsandtheallelefrequenciesinthefourregionalpopulationsinhabitingeitherfragmented(bold)orcontinuouslandscapes.

TableS5.PairsofSNPswithsignificantLD(P<0.05afterFDR).KASPID,chromosomeandpositionareshown.

TableS6.Resultsfromlinearmodelsofallelefrequencydifferencesusingvaluescorrectedversusnotcorrectedforaweakandnon-significantcorrelationwithAF(old)(seeSectionAllelefrequencychangesintheoutlierlociinSIAppendix).

PC1 PC2 PC3 PC4

Åland -0.43 0.61 -0.45 -0.49Uppland -0.46 0.43 0.73 0.27Öland -0.62 -0.28 -0.44 0.59Saaremaa -0.47 -0.61 0.27 -0.58

Proportionofvariance 0.47 0.33 0.16 0.04

Locus#1 Chromosome Position Locus#2 Chromosome Position

Åland

K3-82 1 1620 K4-5 24 100694K2-111 2 194473 K5-7 2 192234K2-25 3 5112 K3-17 3 15952K3-12 13 16716 K3-62 8 103903K2-60 13 37262 K3-150 13 33875K3-185 15 10977 K8-82 10 47209K3-192 15 73713 K5-133 15 70120K2-79 17 168063 K2-80 17 166435K2-86 25 24287 K2-88 25 19949K2-54 25 15219 K2-86 25 24287K3-162 NA 1329 K5-128 10 13465

SWFinland

K3-134 4 2340 K3-137 4 3654

R2 P R2 P R2 P R2 P

Uncorrected 0.36 0.02 0.14 0.13 0.36 0.02 0.15 0.16Corrected 0.30 0.04 0.05 0.24 0.30 0.04 0.30 0.07

Repeatability(Fig.3) Habitatfragmentation(Fig.S5)

SWFinland-Sottunga Sottunga-New SWFinland-New

Populationturnover(Fig.4)

SWFinland/Sottunga

Page 9: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

9

Fig.S1.FSTvaluesofeachmuseumspecimencomparedtoSaltvikreferencepopulation(in2007)plottedagainstthetimeofsampling,separatelyforcandidate(solidtriangles)andneutralmarkers(opentriangles)for(a)Ålandand(b)SWFinnishmuseumsamples.TheregressionlinesoftheFSTvaluesagainsttimeareplottedseparatelyforthetwomarkertypes(solidlineforcandidatemarkers,dashedlineforneutralmarkers).FortheanalysisseeTableS2.

Fig.S2.Theallelefrequencyshiftsofoutlierloci(n=12)intheSWFinnishpopulationinrelationtocontemporaryÅlandsamplesaresignificantlycorrelatedwiththecorrespondingallelefrequencyshiftsintheSottungapopulationinrelationtocontemporaryÅlandsamples(R2=0.36,P=0.02)

1880 1920 1960 2000

0.0

0.2

0.4

0.6

0.8

1.0

Aland

Year

Drif

t val

ue

1880 1920 1960 2000

0.0

0.2

0.4

0.6

0.8

1.0

SW Finland

Year

Drif

t val

ueYear Year

F ST

F ST

a) b)

AllelefrequencydifferencebetweenSo4ungaandÅland

Allelefreq

uencydiffe

rencebe

tween

SWFinland

and

Åland

Page 10: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

10

Fig.S3.Allelefrequencydifferencesofneutralloci(n=34)betweensamplesfromnowextinctpopulationsinSWFinland(black)andtheintroducedmetapopulationinSottunga(white),comparedtoold,well-connectedlocalpopulationsinSaltvik.Dashedlinesshowlociwithallelefrequencieslessthan0.2orgreaterthan0.8intheoldlocalpopulations.

Allelefreq

uencydiffe

rencefrom

contem

poraryÅland

AllelefrequencyincontemporaryÅland

Page 11: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

11

Fig.S4.Allelefrequencyshiftsofneutralloci(n=20)intheSWFinnishmuseumsamplesandinSottungainrelationtothecontemporaryÅlandsamples.AstherewasahighlysignificantrelationshipbetweentheallelefrequencydifferenceAF(Sottunga)-AF(old)inrelationtoAF(old)intheneutralmarkers(R2=0.22,P=0.003),allelefrequencychangesareexpressedasresidualsfromalinearregressionofAF(Sottunga)-AF(old)againstAF(old)andAF(SWFinland)-AF(old)againstAF(old)(seetextinSI).Locithathadallelefrequenciesgreaterthan0.2orlessthan0.8inoldwell-connectedpopulationsareincluded(Fig.S3).Theremainingmarkerswereexcludedastheyfelloutsidetheminorallelefrequencycutoffsusedintheselectionofcandidatemarkers.Thecorrelationisnotsignificant(R2=-0.004,P=0.35).

Allelefreq

uencydiffe

rence

betw

eenSW

Finland

and

Åland

AllelefrequencydifferencebetweenSo8ungaandÅland

Page 12: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

12

Fig.S5.Thesecondprincipalcomponentoftheallelefrequenciesintheoutliers(n=9)infourregionalpopulations(Fig.1)plottedagainstthefirstprincipalcomponentoftheallelefrequencydifferencesbetweenSottungaandSWFinlandfromoldlocalpopulationsintheSaltvikreferencepopulation(forthecalculationseeAllelefrequencychangesintheoutlierlociinSItext).DataforthreeoutlierswerenotavailableforallthefourregionalpopulationsintheRNA-seqdataset,hencen=9.PC2ontheverticalaxisispositivelycorrelatedwithhabitatfragmentationintheregionalpopulations(TableS4).Theregressionisclosetosignificant(R2=0.30,P=0.07).

−2 −1 0 1−2−1

01

2

pc1cor

pc2

Allelefrequencychangeinisolatedmetapopula6onandex6nctpopula6ons(PC1)

Allelefreq

uenciesc

haracterizingfragmen

ted

land

scapes(P

C2)

Page 13: Predictable allele frequency changes due to habitat ... · 17.02.2016  · two analyses, we ran a principal component analysis on AF(SW Finland)-AF(old) and AF(Sottunga)-AF(old) and

13

Fig.S6.Thereisanegativerelationshipintheoutlierloci(n=13)betweentheallelefrequencydifferenceAF(new)-AF(old)andAF(old)(R2=0.22,P=0.06).Toassesswhetherthiswasinfluencingourresultswerepeatedtheanalysesonallelefrequenciesusingresidualsfromthisregression(seetextinSI).Theresultsremainedqualitativelythesameandtheconclusionswerenotaffected(TableS6).

Fig.S7.Therelationshipbetweenthecallrateandtheproportionofheterozygousloci.SamplesaresplitamongstthetwoKASPgenotypingplatesthatcontainedmuseumsamples.FortheanalysesseethetextinSI.

AllelefrequencyincontemporaryÅland

Allelefreq

uencydiffe

renceinold

comparedtonew

pop

ula6

ons

Plate&15,&museum&Åland&Plate&15,&museum&SW&Finland&

Plate&16,&museum&Åland&Plate&16,&museum&SW&Finland&

Plate&16,&contemporary&So:unga&Plate&16,&contemporary&Åland&

Call&Rate&

Prop

or>o

n&of&heterozygou

s&loci&